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Abstract 

In this paper we derive the change-of-variance function of M-estimators of scale under general contamination, thereby 
extending the formula in Hampel et al. (1986). We say that an M-estimator is B-robust if its influence function is bounded, 
and we call it V-robust if its change-of-variance function is bounded from above. It is shown, for a natural class of 
M-estimators, that the general notion of V-robustness still implies B-robustness. Several classes of M-estimators are 
studied closely, as well as some typical examples and their interpretation. 
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1. Introduction 

The inJluencefunction IF (x, S, 8’) of a statistical functional S at a distribution F is defined as the 
kernel of a first-order von Mises derivative: 

s IF(x,S,F) dG(x) = ;[S((l - E)F + EG)]~=,,, (1.1) 

where G ranges over all distributions (including point masses). Analogously, the change-of-uariance 
function [33 is defined by 

s CVF(x,S,F) dG(x) = -&,(I - E)F + EG)]~=~, (1.2) 
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where I/(S, F) is the asymptotic variance of S at F. The latter formula [l, p. 1281 was applied to 
M-estimators of location, but for M-estimators of scale only distributions G with S(G) = S(F) = 1 
were used for simplicity. In the present paper we derive the change-of-variance function for 
M-estimators of scale under general contaminating distributions G. 

Let us recall the definition of an M-estimator of scale. Suppose we have one-dimensional 
observations X i, . . . ,X, which are independent and identically distributed according to a distribu- 
tion from the parametric model {F,; Q > 01, where F,(x) = F(x/a). An M-estimator &(X1, . . . , X,) 
of c is given by 

and corresponds to the statistical functional S defined by 

s 
x(x/S(F))dF(x) = 0. 

The influence function of S is 

IF(u,S, F) = MS(F))S*(F) 
jWxlS(F))dF(x) ’ 

(1.3) 

(1.4) 

For more information, see [l]. An important summary value of the influence function is the 
gross-error sensitivity of S at F, defined by 

y* = sup [IF&, S, F)I. 
” 

(1.5) 

It measures the worst influence that a small amount of contamination can have on the value of the 
estimator. Therefore, a desirable feature is that y* be finite, in which case S is called B-robust 
(bias-robust) at F. 

Under certain regularity conditions, ,/k(S,, - a) is asymptotically normal with asymptotic 
variance 

I/(S, F) = 
s 

IF*(u,S, F )dF(u) 

(1.6) 

The change-of-variance function is then found by inserting (1.6) in (1.2), and the resulting 
expression will be given in Section 2. We then define the change-of-variance sensitivity K* as + cc 
if a delta function with positive factor occurs in the CVF, and otherwise as 

CVF(z, S, F) 
Ic* = “3’ V(S,F) * 

(1.7) 

Note that large negative values of the CVF merely point to a decrease in V, indicating a better 
accuracy. If K* is finite then S is called V-robust (variance-robust) at F. 



M.G. Genton, P.J. RousseeuwlJournal of Computational and Applied Mathematics 64 (1995) 69-80 71 

2. The change-of-variance function of M-estimators of scale 

Recall that F,(x) = F(x/a). We need the following regularity conditions on F: 
(Fl) F has a twice continuously differentiable densityf(with respect ‘to the Lebesgue measure J.) 

which is symmetric around zero and satisfiesf(x) > 0 tlx E IX. 
(F2) The mapping n = - f’/f = ( - lnf)’ satisfies /i’(x) > 0 Vx E [w, and jn’fdn = 

- jAf’dn < co. 
Let us denote 

A(X) = s x ‘(4 @Cd, 

B(X) = xx’(x) dF(x). 
s 

(2.1) 

(2.2) 

We will assume that x belongs to the class Y of all functions satisfying the following four regularity 
conditions: 
(Rl) x is well-defined and continuous on Iw\D(‘)(x), where D(“)(x) is finite. In each point of D(‘)(x) 

there exist finite left and right limits of 2 which are different. Also x( - x) = x(x) if 
{ - x,x} c lR\Dco)(x), and th ere exists d > 0 such that x(x) < 0 on (0,d) and x(x) > 0 on 
(d, ~0). 

(R2) The set D(‘)(x) of points in which x is continuous but in which x’ is not defined or not 
continuous, is finite. 

(R3) jx(x)dF(x) = 0 (Fisher consistency) and 0 < A(X) < co. 
(R4) 0 < B(x) = j(x/i(x) - l)X(x)dF(x) < cc. 

From (1.2) and (1.6) we obtain 

CVF(z, S, F) = (I x’(x/S(F))xdF(x) 
> 

X ( s - x2WW’))S4(Wf’(~) + x2WW))S4(F) 

- 2IF(z,S,f’) f X(ulS(F))X’(ulS(F))(U/S2(F))S4(F)dF(u) 

+ 4IF(z,S, F) 
s 

x2(u/S(F))S3(F)dF(u) 
> 

- 2 
U 

x2(u/S(F))S4(F)dF(u) 
> 

X 
( s 

- ~‘WW’)MW4 + WWV’))z 

- IF(z,S, F) s x”(x/S(F))(x/S’(F))xdF(x) >I . (2.3) 
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Making use of (2.1), (2.2), and S(F) = 1 at the model distribution, (2.3) becomes 

CVF(z,S,F)=e 
B2(x) 

1 +%-2G X(Z) 
+ C(x) - 1 B(X) ’ 

where 

2 
C(x)=4-- 

A(X) s 
uz(u)X’(u)dF(u) + & u2X”(U)dF(u). 

s 

(2.4) 

(2.5) 

Note that (2.4) differs from the expression in [l] by the addition of the last term, the integral of 
which is zero when S(G) = i. This distinction does’not exist for location, at least in the case of odd 
$, as can be seen in [l, pp. 145-1461, where 

From here on we will assume that C(x) > 0, which is true in all practical applications. In Section 
4.2 we will derive an alternative expression for C(x) which is easier to compute than (2.5). 

3. Relation between B-robustness and V-robustness 

Let us define 

Y- = us("o~dd, ( - IF(u,S,F)), (3.1) 

y+ = sup IF@, S, F)). (3.2) 
uE(d, + co) 

In the theorems below we will impose that y+ 2 y- (and hence y* = y+). This is a very natural 
requirement for scale estimators. For instance, when discussing breakdown properties [2], notes 
that y+ > y- in the more interesting cases. The opposite situation leads to implosion of the scale 
estimator, as well as to lower efficiency. 

The first theorem shows that the concept of V-robustness is stronger than the concept of 
B-robustness. 

Theorem 1. For all x E !P with y ’ > y - and C(x) 2 0, V-robustness implies B-robustness. In fact 

Y * <&/V2(S,F)C2(x) +4V(S,F)@* - l)- V(S,F)C(x)]. 

Proof. Suppose that K* is finite and that there exists some x0 for which 

IIF(xo,S,F)I > 3 CJV2W)C2(x) + 4J’(S,J’)(rc* - 1) - v(S,J’)C(x)l. 
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Without loss of generality, put xO~D(‘)(~) and x0 > d. It follows that 

I(~o)>~[\l(~(~~~~+~~(~)(~*-l)-~~~~~]=b. 

If x’(xo) < 0 then 

1 + x%0) C(X) 

A(X) 

2 xox’(xo) + C(X) b2 -- 
B(X) 

-x(x0)2 I+- 
B(X) A(X) + B(X) 

-b==*, 

a contradiction. Therefore, x’(xo) > 0. Since we have x(x0) > 0, there exists E > 0 such that 
x’(t) > 0 for all t in [x0,x0 + E), so x(x) > x(x0) for all x in (x0,x0 + E]. It follows that 
x(x) > x(x0) > b for all x > x0, x $ D(‘)(x) because only upward jumps of x are allowed for positive 
x. As D(O)(x) u D(‘)(x) is finite, we may assume that [x o, + co) n (D(O)(x) u D(‘)(x)) is empty. It 
holds that 

1 + x2(x) 2 xx’(x) + C(x) -- - 
4x) B(x) 

-x(x) d lc*. 
B(x) 

Therefore 

x2(x) - 2xX’(x) z < A(X)&* - 1) - C(x)A(x) c(X)A(X) b < b2 

B(X) x(‘) Q A(X)(K* - ‘) - B(X) L 7 

hence 

x2(x) - 2xX’(x) ~ A(X) < b2 

B(X) 

for all x > x0. Hence 

x’(x) > B(X) 1 -- 
X2(x)-b2’2A(X)x’ 

Putting 

R(x)= -;coth- 

and 

P(x) = B(X) 
- ln (x), 
2A(x) 

it follows that R’(x) > P’(x) for all x 2 x0. Hence R(x) - R(xo) > P(x) - P(xo), and thus 

However, the left member is positive because x(x) > b and the right member tends to - cc for 
x + co, a contradiction. This proves the desired inequality. 0 
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Theorem 2. For all x E Y with y + B y - and C(x) 2 0, and x nondecreasing for x 2 0, V-robustness 
and B-robustness are equivalent. In fact 

(r*)2 rc*=1+- I/@ 
9 
F) + ‘(x)Y*’ 

Proof. One of the two inequalities follows from Theorem 1. For the other, assume that S is 
B-robust. Because x is monotone, the CVF can only contain negative delta functions, which do not 
contribute to K*. For all x 2 0 it holds that x’(x) 2 0, so 

1 + -- x2(x) 2 - xx’(x) + - C(x) x(x) < 1 + (r*J2 
4X) B(x) B(x) ’ 3 

V(S + c(x)Y** 

Hence, S is also V-robust. 0 

Theorem 3. For all x E Y with y+ 2 y - and C(x) B 0, and x nondecreasing for x 2 0, we have 

fc* 2 2 + C(x)y *. 

Proof. We have 

V(S, F) = 
s 

IF’(u,S, F)dF(u) < (Y*)~. 

Using Theorem 2, it follows that 

(Y*)2 rc*=1+- v(s F) + C(x)Y* 2 2 + C (x)Y*. 0 
, 

4. Examples 

4.1. The Lq scale estimator 

The Lq scale estimator at F is given by 

x(x) = (xl4 - 
s 

Ixl”dF(x), with q > 0. (4.1) 

Theorem 4. For any distribution F and any q > 0, the Lq scale estimator satisjes 

C(x) = 2. 

Proof. From x’(x) = q 1 x lq- ’ sign(x) we deduce the two relations 

xx’(x) = qx(x) + B(X) 
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and 

x2x”(X) = (q - l)xx’(x). 

This yields 

s 
xX(x)X’(x)dF(x) = 4 

s 
x2(x)dF(x) + B(X) z(x)dF(x) = PI(X), 

s 

s 
x2 x”(x)dF(x) = (q - l)B(x). 

Hence 

2 
C(x) = 4 - - 

A(X) 
O(X) + &4-l)N!)=2. 0 

Theorem 5. The L4 scale estimator is neither B-robust nor V-robust at any distribution F, that is to 
say 

y*= CO and K* = CO. 

Proof. As x is unbounded, the estimator is not B-robust. Moreover, as the CVF behaves like x2q 
with a positive factor when x + co, it is not bounded from above. 0 

The maximum likelihood estimator (MLE) at F = @ is given by x(x) = x2 - 1, obtained by 
putting q = 2 in (4.1). This yields 

A(X) = 
s 

x’(x)d@(x) = 2, 

B(X) = s xx’(x)d@(x) = 2, 

s x(W(~WQi(~) = 4, 

s x”(x)x2d@(x) = 2. 

Hence 

IF(u, S, @) = 3 (u2 - 1) with y * = 00, 

CVF(z, S, @) = $ (z4 - 4z2 + 1) with K* = co. 

Both functions are plotted in Fig. 1. We see that the maximum likelihood estimator at @ is neither 
B-robust nor V-robust. For q = 1 we obtain the mean deviation with x(x) = 1x1 - & which is 
again neither B-robust nor V-robust. 
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Fig. 1. The influence function and change-of-variance function of the MLE. 

4.2. Computation of C(x) at the Gaussian model 

Let us recall that 

2 
C(x) = 4 - - 

A(X) f 
~xWx’WW + 6 x’x”(x)dF(x). 

s 

Theorem 6. At the Gaussian distribution F = Q we have 

C(x) = 1 - & x2x2WW) + 
s 

& sb4 - 3x2)xW@W. 

Proof. Denoting the density of @ by 4 we find 

s 
xxCdx’WW4 = ; ~x(x’(x))‘d(x)dx 

= - f jx’o(W) + W@))dx 

= -- ; fx’o(l - X2MWx 

1 =-- 
2 (s 

~Zx2Wd@(4 -A(X) 
> 

(4.2) 
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and 

s 
x’x”(x)d@(x) = 

s 
x2(X’(x))‘4(x)dx 

= - (2xc#+) + x’@(x))X’(x)dx 
5 

= - 2B(x) + 
s 

x3x’(x)4(x)dx 

=- 2B(x) + [(x4 - 3x2)X(x)d@(x). 
J 

This yields 

1 
C(x) = 4 - - 

A(X) 
x2X2(x)d@(x) - A(X) ( -2B(X)+jb4- 

> 

1 
=I-- A(X) x2X2(x)d@(x) + 

s 
& [(x4 - 3x2)X(x)d@(x). •I 

4.3. The Ith absolute deviation estimator (A-MAD) at the Gaussian model 

Consider the Ith absolute deviation estimator (A-MAD) at F = @ given by 

x(x) = 
(A-1)/n if-~-‘(3:+~n)<x<~-‘(~+3n), 
1 elsewhere, 

with 0 < A < 1. Let us now look at Fig. 2, where C(x), y*(x) and K*(X) are plotted as functions of 1. 
First of all, we see that C(x) > 0 for all A. Secondly, the gross-error sensitivity is minimal for 

I = 3, which corresponds to the usual median absolute deviation (MAD). Finally, the change-of- 
variance sensitivity tends to the value 2 as 3, tends to zero. However, note that for 1 < 3 we do not 
have the condition y+ > y- required by the theorems of Section 3. 

Consider the special case of 1 = 4, which corresponds to the usual median absolute deviation at 
F = @, given by x(x) = sign( 1x1 - 4) where 4 = @- ’ (3/4). This yields 

(4.3) 

A(X) = x2(x)d@(x) = 1, 
I 

B(X) = 
s 

xX’(x)d@(x) = 4q4 (q), 

s x2x2(x) d@(x) = 1, 

s (x4 - 3x2)x(x) d@(x) = 4q34(q). 
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Fig. 2. The values of C(x), y*(x) and K*(Z) as a function of ,I for the I-MAD. 

Therefore 

IF(u,S, @) = sig~$~4) ‘) with y* = & = 1.166, 

CVF(z,S, @) = ’ 
(W(q))* 2 - c&(4) 4 

J-(8 (z) + S_,(z)) + 2q* “i”;;;\, q)] 

with IC* = 2 + & = 3.061. 

The MAD at @ is thus both B-robust and V-robust (see Fig. 3). 
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Fig. 3. The influence function and change-of-variance function of the MAD. 

4.4. The Welsch estimator at the Gaussian model 

Let us consider the Welsch estimator family at F = @ given by 

&)=ferp( -$)db(x)-exp( -G) withd>O, 

and let us look at the graphs of C(x), y*(x) and K*(X) as functions of d > 0 in Fig. 4. 
Also here we have C(x) > 0 for all d > 0. Secondly, the gross-error sensitivity is minimal for 

d = 0.666 which corresponds to the case y* = y + = y -. Finally, the change-of-variance sensitivity 
is smallest for d = 0.190, which corresponds to a case where y+ < y- = y*. 

5. Conclusions 

In this paper we have derived the change-of-variance function of M-estimators of scale under 
general contamination, in which case the additional term V(x) C(x) IF(z) arises. We have seen that 
it is still true that V-robustness implies B-robustness. The Lq scale estimators, which have 
a constant C(x), are neither B-robust nor V-robust. An alternative formula for C(x) has been 
obtained, and used to analyze the &MAD and the Welsch estimators. 
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Fig. 4. The values of C(x), y*(x) and K*(X) as a function of d for the Welsch estimator. 
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