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Abstract

In this paper we derive the change-of-variance function of M-estimators of scale under general contamination, thereby
extending the formula in Hampel et al. (1986). We say that an M-estimator is B-robust if its influence function is bounded,
and we call it V-robust if its change-of-variance function is bounded from above. It is shown, for a natural class of
M-estimators, that the general notion of V-robustness still implies B-robustness. Several classes of M-estimators are
studied closely, as well as some typical examples and their interpretation.
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1. Introduction

The influence function IF (x, S, F) of a statistical functional S at a distribution F is defined as the
kernel of a first-order von Mises derivative:

JIF(x,S,F) dG(x) =%[S((1 — &) F 4+ £G) .o, (1.1)

where G ranges over all distributions (including point masses). Analogously, the change-of-variance
function [3] is defined by

JCVF(x, S,F)dG(x) = %[V(S,(l — &) F +¢G)];=0, (1.2)
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where V (S, F) is the asymptotic variance of S at F. The latter formula [1, p. 128] was applied to
M-estimators of location, but for M-estimators of scale only distributions G with S(G) = S(F) = 1
were used for simplicity. In the present paper we derive the change-of-variance function for
M-estimators of scale under general contaminating distributions G.

Let us recall the definition of an M-estimator of scale. Suppose we have one-dimensional
observations X4, ..., X, which are independent and identically distributed according to a distribu-
tion from the parametric model {F,;a > 0}, where F,(x) = F(x/a). An M-estimator S,(X1,...,X,)
of g is given by

Y x(Xi/Sy) =0
i=1
and corresponds to the statistical functional S defined by

j £ C/S(F))AF (x) = . 13)

The influence function of S is
x(u/S(F))S*(F)
§xx'(x/S(F))dF(x)’

For more information, see [1]. An important summary value of the influence function is the
gross-error sensitivity of S at F, defined by

IF (5, F) = (1.4)

y* = sup [IF(«, S, F)|. (1.5)

It measures the worst influence that a small amount of contamination can have on the value of the
estimator. Therefore, a desirable feature is that y* be finite, in which case S is called B-robust
(bias-robust) at F.

Under certain regularity conditions, \/Y—I(S,, — o) is asymptotically normal with asymptotic
variance

V(S,F) = JIFZ(u, S,F)dF (u)

_ I 2/SF)SHF)dF(u)
(§ x x'(x/S(F))dF (x))?
The change-of-variance function is then found by inserting (1.6) in (1.2), and the resulting
expression will be given in Section 2. We then define the change-of-variance sensitivity k* as + oo
if a delta function with positive factor occurs in the CVF, and otherwise as
CVF(z, S, F)
V(S F)

(1.6)

(1.7)

k* = sup
V-4
Note that large negative values of the CVF merely point to a decrease in V, indicating a better
accuracy. If x* is finite then S is called V-robust (variance-robust) at F.
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2. The change-of-variance function of M-estimators of scale

Recall that F,(x) = F(x/o). We need the following regularity conditions on F:
(F1) F has a twice continuously differentiable density f (with respect to the Lebesgue measure A)
which is symmetric around zero and satisfies f(x) >0 Vx e R.
(F2) The mapping A= —f'/f=(—Inf) satisfies A'(x)>0 VxeR, and [A'fdi=
—fAfdi< .
Let us denote

A(y) = fx%x) dF (x), @

B(x) = j x2'(x) dF (x). 22)

We will assume that y belongs to the class ¥ of all functions satisfying the following four regularity

conditions:

(R1) x is well-defined and continuous on R\ D?(y), where D (y) is finite. In each point of D‘®(y)
there exist finite left and right limits of y which are different. Also y(— x) = x(x) if
{ — x,x} =« R\D@(x), and there exists d > 0 such that y(x) <0 on (0,d) and x(x) >0 on
(d, o).

(R2) The set D™M(y) of points in which y is continuous but in which y’ is not defined or not
continuous, is finite. '

(R3) | x(x)dF(x) = 0 (Fisher consistency) and 0 < A(y) < 0.

(R4) 0 < B(x) = [ (xA(x) — D) x(x)dF(x) < 0.

From (1.2) and (1.6) we obtain

CVF(z,S8,F) = <jx'(x/S(F))xdF(x)>—3 |:< fx'(x/S(F))xdF(x))
x( - /s NS E1aF 6 + 226/ (FDSHF)
~ 20F (e, S.F) 1S (E)E @/ SE) /S F)S*F)IF
+ 4IF(z, 5, F) J xz(u/S(F))S3(F)dF(u)>
- 2( ] x%u/S(F))S‘(F)dF(u))
x ( - [x s EDxaFE) + (/s

—IF(z, S, F) f X" (x/S(F))(x/SZ(F))xdF(x))]. 2.3)
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Making use of (2.1), (2.2), and S(F) = 1 at the model distribution, (2.3) becomes

_A(y) 12 .z (2) x(2)
CVEESH) =B, [1 Y 2 Be TEW B(x)]’ 24
where
2
Clx)=4- ;1—%5 uy(u)y' (u)dF (u) + FX) Juzx”(u)dF(u). (2.5)

Note that (2.4) differs from the expression in [1] by the addition of the last term, the integral of
which is zero when S(G) = 1. This distinction does not exist for location, at least in the case of odd
¥, as can be seen in [1, pp. 145-146], where

v v ..
C“”)‘zf (sz)‘ AW) )dF‘“"O‘

From here on we will assume that C(x) > 0, which is true in all practical applications. In Section
4.2 we will derive an alternative expression for C(y) which is easier to compute than (2.5).

3. Relation between B-robustness and V-robustness

Let us define

‘Y_ = Ssup (_ IF(usSaF))> (31)
ue(0,d)

y" = sup IF(uS,F)). (3.2)
ue(d, + o)

In the theorems below we will impose that y* >y~ (and hence y* = y*). This is a very natural
requirement for scale estimators. For instance, when discussing breakdown properties [2], notes
that y* >y~ in the more interesting cases. The opposite situation leads to implosion of the scale
estimator, as well as to lower efficiency.

The first theorem shows that the concept of V-robustness is stronger than the concept of
B-robustness.

Theorem 1. For all y € ¥ withy™ >y~ and C(y) = 0, V-robustness implies B-robustness. In fact

y* SEVVAS, F)CP (1) + 4V (S, F)(* — 1) = V(S,F)C()].

Proof. Suppose that x* is finite and that there exists some x, for which

|IF (x0, 5, F)| > $ [/ V2(S, F)C?(x) + 4V (S, F)(* — 1) — V(S,F)C(x)].
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Without loss of generality, put xo¢ D™ (x) and x, > d. It follows that

1 ANCHY . ANCH |
x(xo) > §|:\/<W) +4A()K* - 1) — W:I =

If ' (x0) < O then

x2(x0) . Xox'(x0) | C(1) b:  C() .
" PBw TBo 7 A B T
a contradiction. Therefore, x'(xo) > 0. Since we have y(x,) > 0, there exists ¢ > 0 such that
2'(t) >0 for all t in [x¢,X0 + &), 80 x(x) > x(xo) for all x in (xo,xo + ¢]. It follows that
x(x) > y(x0) > b for all x > xo, x ¢ D@(x) because only upward jumps of y are allowed for positive
x. As D©@(x) U DW(y) is finite, we may assume that [xo, + 00 ) (D@ (y) U DM (x)) is empty. It
holds that

12(x) Sxx' () Co

"0 "By TBRp Y S
Therefore
e 400 . CAQ) « 1 CAR 2
22 (x) — 2x'(x) By )<A( D* —1) — B 21(X) S AR * — 1) — B b <b?
hence
%mzmu§%<w

for all x > x,. Hence

1) _ B L
22(x)—b* 7 24(0) x”

Putting
()
R(x) = bcoth <b )
and
P(x) = 212(’(‘;) In(x),

it follows that R’(x) > P’(x) for all x > x,. Hence R(x) — R(xo) = P(x) — P(x,), and thus

coth™1 <X( )> < b[P(xo) R(xo) — % ln(x)].

However, the left member is positive because x(x) > b and the right member tends to — oo for
x — o0, a contradiction. This proves the desired inequality. [J
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Theorem 2. For all ye ¥ withy™ >y~ and C(x) = 0, and y nondecreasing for x > 0, V-robustness
and B-robustness are equivalent. In fact
(*)
* 14— *
K + V(S,F)+C(X)y

Proof. One of the two inequalities follows from Theorem 1. For the other, assume that § is
B-robust. Because y is monotone, the CVF can only contain negative delta functions, which do not
contribute to x*. For all x > 0 it holds that x'(x) > 0, so

x2x) Lxx'(x)  C) (y*)?
A 2Bl B M <'"TvEh

Hence, S is also V-robust. []

1+ + C(x)v*

Theorem 3. For all y € ¥ withy* >y~ and C(x) = 0, and y nondecreasing for x > 0, we have

K¥*22+C()y*
Proof. We have
V(S,F)= JIFZ(u,S,F)dF(u) < (y*)2

Using Theorem 2, it follows that

(*)

*=
K 1+V(S,F)

+ C(p)y* =2+ C (n)y* a

4. Examples
4.1. The L? scale estimator

The L7 scale estimator at F is given by

x(x) =|x|? — jlxl"dF(x), with ¢ > 0. 4.1
Theorem 4. For any distribution F and any q > 0, the L? scale estimator satisfies

Cip=2

Proof. From y’(x) = q|x|?” ! sign(x) we deduce the two relations

xx'(x) = qx(x) + B(x)
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and

x2x"(x) = (g — Dxy' ().
This yields

fxx(X)x'(X)dF(x) =q sz(x)dF(X) + B(x) fx(X)dF(X) = qA(x),

j x2 " ()dF(x) = (g — DB()

Hence
2

2
CO0 =4 - 707140+ 50,

A6 (g—1B(y)=2. O

Theorem S. The L? scale estimator is neither B-robust nor V-robust at any distribution F, that is to
say

y*= o0 and k*= oo.

Proof. As y is unbounded, the estimator is not B-robust. Moreover, as the CVF behaves like x24
with a positive factor when x — oo, it is not bounded from above. [J

The maximum likelihood estimator (MLE) at F = & is given by y(x) = x2 — 1, obtained by
putting ¢ = 2 in (4.1). This yields

A = fo(x)deb(x) 2,
B() = jxx'(x)dcb(x) _2,
j (1 () xdd(x) = 4,

fx” (x)x2dd(x) = 2.

Hence
IF(u,S, ) =4@u?>—1) with y* = o0,
CVF(z,S,8) =4 (z* —422 +1) with x* = co.

Both functions are plotted in Fig. 1. We see that the maximum likelihood estimator at @ is neither
B-robust nor V-robust. For ¢ = 1 we obtain the mean deviation with y(x) = | x| — \/2/r which is
again neither B-robust nor V-robust.
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Fig. 1. The influence function and change-of-variance function of the MLE.

4.2. Computation of C

Let us recall that

2
=4 — ——
CW=4=7

IF(u,S,®)
5

4

-3 -2 —1\_/1 2 E]

CVF(z,5,®)
5

4

(x) at the Gaussian model

f 2
xy(x)y' (x)dF (x) + B0 x%y" (x)dF (x).

Theorem 6. At the Gaussian distribution F = @ we have

1

C(X)=1_FX)U

fad 2 )
x2y2(x)dd(x) + B0 f(x“ — 3x?) x(x)dP(x).

Proof. Denoting the density of @ by ¢ we find

[xrer a0 =3 [xeromas

= —3 |00 + xpenax

1

- —3 [ @ - e

= % <jx2X2(x)d¢(X) - A(X))

4.2)
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and

j X2y (0)d (x) = sz(x’(X))’dJ(x)dx

= — J(2x¢(x)+x2¢’(x))x'(X)dx

_2B() + j 7' () ()dx

_2B() - j (< (x)) 2(0)dx

= —2B(y) + f (x* — 3x2) x(x)dP(x). (4.3)
This yields
Clr) =4 —#( j X272 (x)d(x) — A(x)) +i( _2B() + f(x‘ - 3x2)x(x)d¢(x)>
A0 B
_, 1 2.2 2 (4 a2
=1 A(x)jx 1 (x)dd(x) + B (x* — 3x*) x (x)dP(x). O

4.3. The Ath absolute deviation estimator (A-M AD) at the Gaussian model

Consider the Ath absolute deviation estimator (A-MAD) at F = & given by
(x) = A=/ f—@ '3 +i)<x<d7'3 +12),
=0 elsewhere,

with 0 < 4 < 1. Let us now look at Fig. 2, where C(y), v*(x) and x *(x) are plotted as functions of A.
First of all, we see that C(y) > O for all A. Secondly, the gross-error sensitivity is minimal for
4 =4, which corresponds to the usual median absolute deviation (MAD). Finally, the change-of-
variance sensitivity tends to the value 2 as A tends to zero. However, note that for A < 4 we do not
have the condition y* > y~ required by the theorems of Section 3.
Consider the special case of 4 = 4, which corresponds to the usual median absolute deviation at
F = &, given by y(x) = sign(| x| — q) where g = & ~!(3/4). This yields

Al = j $2()dd(x) = 1,
B() = f x1'()d®(x) = 46 (9)
fxzxz(x) do(x) =1,

f (x* — 3x%) 1 (x) d(x) = 44 $().
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0.2 0.4 0.6 0.8 1 A

Fig. 2. The values of C(y), y*(y) and x*(x) as a function of A for the 1-MAD.

Therefore

. _ | .
IF(,5, ¢)< S804 =0 L. y* = —— = 1.166,

4q9¢ (9) 4q9(q)
-1 2 ﬂgﬂi—_ﬂ]
CVF(z,S, ®) TP [2 p” (q)(a (2) 4+ 0_,(z)) + 29 126G
with k* =2 +————3061

2¢(q)
The MAD at @ is thus both B-robust and V-robust (see Fig. 3).
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IF(4,S,9)
2

1.5

-3 -2 ~1 1 2 3

CVF(z,S,®)
4

2

-3 -2 -1 1 2 3

Fig. 3. The influence function and change-of-variance function of the MAD.

4.4. The Welsch estimator at the Gaussian model

Let us consider the Welsch estimator family at F = ¢ given by

x(x) = fexp( — %2> do(x) — exp( — %2) with d > 0,

and let us look at the graphs of C(y), y*(x) and x*(x) as functions of d > 0 in Fig. 4.

Also here we have C(y) > 0 for all 4 > 0. Secondly, the gross-error sensitivity is minimal for
d = 0.666 which corresponds to the case y* = y* = y~. Finally, the change-of-variance sensitivity
is smallest for d = 0.190, which corresponds to a case where y© <y~ = y*.

5. Conclusions

In this paper we have derived the change-of-variance function of M-estimators of scale under
general contamination, in which case the additional term V (y) C(x) IF (z) arises. We have seen that
it is still true that V-robustness implies B-robustness. The L? scale estimators, which have
a constant C(y), are neither B-robust nor V-robust. An alternative formula for C(y) has been
obtained, and used to analyze the A-MAD and the Welsch estimators.
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Fig. 4. The values of C(y), y*(x) and x*{y) as a function of 4 for the Welsch estimator.
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