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Highly Robust Variogram Estimation1

Marc G. Genton2

The classical variogram estimator proposed by Matheron is not robust against outliers in the data,
nor is it enough to make simple modifications such as the ones proposed by Cressie and Hawkins
in order to achieve robustness. This paper proposes and studies a variogram estimator based on a
highly robust estimator of scale. The robustness properties of these three estimators are analyzed
and compared. Simulations with various amounts of outliers in the data are carried out. The results
show that the highly robust variogram estimator improves the estimation significantly.

INTRODUCTION

Variogram estimation is a crucial stage of spatial prediction, because it deter-
mines the kriging weights. It is important to have a variogram estimator which
remains close to the true underlying variogram, even if outliers (faulty obser-
vations) are present in data. Otherwise kriging can produce noninformative maps.
Experience from a broad spectrum of applied sciences shows that measured data
contains as a rule between 10-15% of outlying values (Hampel, 1973) due to
gross errors, measurement mistakes, faulty recording, etc. This proportion can
even go up to 30% (Huber, 1977). One might argue that any reasonable ex-
ploratory data analysis would identify outliers in the data, for example by ex-
amining h-scatterplots. However, this approach is subjective and informal. Fur-
thermore, existence of exploratory techniques does not supersede the utility of
robust techniques. In this paper, we advocate the use of estimators which take
account of all the available information in data.

Let us consider a spatial stochastic process {Z(x): x e D}, where D is a
fixed subset of Rd, d > 1. Assume that this process is ergodic and satisfies the
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hypothesis of intrinsic stationarity given by

where 27(h) is the variogram. This is a very simple model which can be used
in practice after detrending data (Cressie, 1991) or in some cases even directly.
Let {Z(x1), . . . , Z(xn)} be a sample of such a spatial process. The classical
variogram estimator proposed by Matheron (1962), based on the method of
moments, is

where N(h) = {(xi, xj): xi - xj = h} and Nh is the cardinality of N(h). This
estimator is unbiased, but behaves poorly if there are outliers in the data. One
single outlier can destroy this estimator completely. For that reason, Cressie
and Hawkins (1980) proposed a more robust estimator for gaussian independent
data:

where the denominator corrects for bias under gaussianity. However, this esti-
mator can also be destroyed by a single outlier in the data and is, therefore, not
really a solution to the problem.

To view variogram estimation as a problem of identifying the scale at
various lags (Cressie, 1991) is intuitively appealing and opens up new perspec-
tives. By a scale estimator of a sample {V1, . . . , Vn} we mean any positive
function Sn(V1, . . . , Vn) which satisfies

Va e R, V/3 e R. In effect, the stochastic process of differences at lag h, V(h)
= Z(x + h) - Z(x), has zero expectation and a variance of 27(h). Thus, if
{V1,(h), . . . , VNh(h)} is the sample of V(h) corresponding to the sample {Z(x1),
. . . , Z(xn)} of Z, Matheron's classical variogram estimator takes the form

i.e., it is simply the classical estimator of the sample variance of {V1,(h), .. . ,
VNh(h)} • We are now going to use the theory of M-estimators of scale to derive
robustness properties. In the third section, I propose a new variogram estimator
based on a highly robust sample scale.
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M-ESTIMATORS OF SCALE

Recalling the definition of an M-estimator of scale (Hampel and others,
1986), suppose we have one-dimensional observations V1(h), . . . , VNh(h) which
are identically distributed according to a distribution from the parametric model
{Fa; a > 0}, where Fa(v) = F(u/a). An M-estimator SNh(V1 (h), . . . , VNh(h))
of a is defined by the implicit equation

and corresponds asymptotically to the statistical functional 5 defined by

where x is a real, symmetric (even), and sufficiently regular function (Hampel
and others, 1986). The influence function of an M-estimator of scale 5 at a
distribution F is well known (Hampel and others, 1986)

The importance of the influence function lies in its heuristic interpretation: it
describes the effect on the estimator of an infinitesimal contamination at point
v. An important summary value of the influence function is gross-error sensi-
tivity of 5 at F, defined by

This quantity measures the worst influence that a small amount of contamination
can have on the estimator. It is desirable that y * be finite, in which case 5 is
B-robust (bias-robust) at F. Another important robustness property is the break-
down point e* of a scale estimator. This indicates how many data points need
to be replaced to make the estimator explode (tend to infinity) or implode (tend
to zero). In the case of M-estimators of scale, it has been shown (Huber, 1981)
that

The special choice x(v) = |v|q - J|v|q dF(v), q > 0, leads to the so-called
Lq M-estimators of scale (Genton and Rousseeuw, 1995), which are shown to
be never B-robust, for every value of q > 0, that is to say, y* = «. Moreover,
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it is easily seen that e* = 0%, for any value of q > 0. A closer look at Equation
(4) and the corresponding equation for the Cressie and Hawkins estimator shows
that they correspond to the L2 and L1/2 estimators, respectively. Thus, these two
estimators are not robust in the sense of the influence function and breakdown
point.

A HIGHLY ROBUST VARIOGRAM ESTIMATOR

In the context of scale estimation, Rousseeuw and Croux (1992, 1993)
proposed a simple, explicit and highly robust estimator, called QNh, defined by

where the factor 2.2191 is for consistency at the gaussian distribution,

and [Nh/ 2] denotes the integer part of Nh/ 2. This means that we sort the set of
all absolute differences | Vi(h) - Vj(h) | for i < j and then compute its kth quantile
(k « 1 for large Nh). This value is multiplied by the factor 2.2191, thus yielding
QNh. Note that this estimator computes the kth order statistic of the (2

Nh) interpoint
distances. It is of interest to remark that QNh does not rely on any location
knowledge and is therefore said to be location-free. This is in contrast to Math-
eron's estimator which implicitly makes use of the zero expectation of V(h).
Estimator QNh has an e* = 50% breakdown point, the highest possible value,
and a bounded influence function with y* = 2.069 at the standard gaussian
distribution. Gaussian asymptotic efficiency (Hampel and others, 1986) of QNh

attains 82%, which is close to the 100% of L2, whereas L1/2 reaches only 69.3%.
At first sight, estimator QNh appears to need O(N2) computation time, which
would be a disadvantage. However, it can be computed using no more than
O(Nh log Nh) time and O(Nh) storage, by means of the fast algorithm described
in Croux and Rousseeuw (1992).

Using the previous results and definitions of scale estimator QNh, define the
highly robust variogram estimator to be

Of course, this estimator has the robustness properties of QNh.

SIMULATIONS

In order to analyze performances of QNh, we carried out a limited simulation
study of spatial data in R1. If data is clean, that is to say without outliers, each
of the three previous variogram estimators behaves correctly. In fact, the inter-
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esting situations are those with outliers in data, which are more likely to arise
in real geostatistical data sets. For that reason, we simulate an equally-spaced
gaussian sample of size n = 200 from a spherical variogram

with parameters a = 1, b = 2, and c = 15. Then, we perturb this sample by
simply randomly replacing e percent of the data by new values, independently
and identically distributed according to a gaussian distribution N(0, a2). We
choose the following situations:

Situations [1] to [4] correspond to an increase in the percent of outliers from a
given distribution, whereas situations [5] and [6] correspond to a fixed amount
of outliers from a distribution with increasing variance. Note that the choice of
gaussian distributions is not restrictive. One could use other—more heavy tailed
and skewed—distributions and would get the similar behavior for the variogram
estimators. Next, on each sample, the variogram is estimated by Matheron's
classical estimator, that of Cressie and Hawkins and our highly robust one.
Results of the variogram estimations for each situation are shown in Figures 1,
2, and 3, up to lag h = 100 = n/2, following the empirical rule of Journel and
Huijbregts (1978). On each graph, the true underlying variogram is represented
by a solid line.

Effect of outliers in the data is shown by a greater vertical variability of
variogram estimates. For Matheron's classical estimator, as well as for that of
Cressie and Hawkins, a horizontal deformation is added, which leads to an
increase in the range, expressed through parameter c. This phenomena hardly
occurs, if at all, for the highly robust variogram estimator. In fact, parameter
c, characterizing shape and range of the spherical variogram, is of primary
importance for ordinary kriging because of the invariance of weights under linear
transformation of the variogram (Genton, 1995). The biggest problem with the
two nonrobust estimators is not only that the parameters of the model are esti-
mated incorrectly, but that the shape of the variogram is wrong. Even for small
perturbations, these variograms suggest a pure nugget effect model rather than
a spherical one. In all cases, the highly robust estimator performs well and
estimates the shape of the underlying variogram with great accuracy.
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Figure 1. The three rows of this figure show on the left-hand side the estimation from unperturbed
data and on the right-hand side estimation from perturbed data with a small amount of contamination
(e = 10% of N(0, 25)). The three estimators considered are Matheron, Cressie and Hawkins, and
the highly robust one. The underlying spherical variogram is indicated by the solid line.
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Figure 2. The three rows of this figure show the estimation from perturbed data, on the left-hand
side with e = 20% and on the right-hand side with e = 30% from a N(0, 25) distribution. The
three estimators considered are Matheron, Cressie, and Hawkins, and the highly robust one. The
underlying spherical variogram is indicated by the solid line.



220 Genton

Figure 3. The three rows of this figure show the estimation from perturbed data with a small
amount of contamination (e = 10%), on the left-hand side from a N(0, 100) distribution and on
the right-hand side from a N(0, 400) distribution. The three estimators considered are Matheron,
Cressie, and Hawkins, and the highly robust one. The underlying spherical variogram, is indicated
by the solid line.



CONCLUSIONS

In this paper, variogram estimation has been approached via scale esti-
mation. The theory of M-estimators of scale demonstrates that neither Mather-
on's classical variogram estimator, nor that of Cressie and Hawkins are robust
in the sense of influence function and breakdown point. For that reason, I
propose a highly robust variogram estimator by applying a highly robust scale
estimator to the problem. A small simulation study of spatial data containing
outliers illustrated the behavior of these three estimators and confirmed theoret-
ical results. Instead of using only the highly robust variogram estimator in
practice, I rather suggest computing it along with Matheron's estimator. If they
are very close to each other, one can assume that outliers had negligible effect.
If they are significantly different, one has to think and act with care.
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