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Spatial Breakdown Point of Variogram Estimators1

Marc G. Genton2

In the context of robust statistics, the breakdown point of an estimator is an important feature of
reliability. It measures the highest fraction of contamination in the data that an estimator can
support before being destroyed. In geostatistics, variogram estimators are based on measurements
taken at various spatial locations. The classical notion of breakdown point needs to be extended to
a spatial one, depending on the construction of most unfavorable configurations of perturbation.
Explicit upper and lower bounds are available for the spatial breakdown point in the regular
unidimensional case. The difficulties arising in the multidimensional case are presented on an easy
example in IR2, as well as some simulations on irregular grids. In order to study the global effects
of perturbations on variogram estimators, further simulations are carried out on data located on a
regular or irregular bidimensional grid. Results show that if variogram estimation is performed
with a 50% classical breakdown point scale estimator, the number of initial data likely to be
contaminated before destruction of the estimator is roughly 30% on average. Theoretical results
confirm the previous statement on data in IRd, d > 1.

INTRODUCTION

Variogram estimation is a crucial stage of spatial prediction, because it deter-
mines the kriging weights. It is important to have a variogram estimator which
remains close to the true underlying variogram, even if outliers (faulty obser-
vations) are present in the data. Otherwise kriging can produce noninformative
maps. As a consequence, many robust variogram estimators have been proposed
in the literature, in order to remedy the lack of robustness of Matheron's classical
variogram estimator (1962). An important robustness feature of such an esti-
mator is its breakdown point, which indicates how many data points need to be
replaced by arbitrary values to destroy the estimator. In this paper, this notion
is extended to variogram estimators, because it is useful in practice to know,
loosely speaking, "how far" the robustness of a variogram estimator extends.

Consider a spatial stochastic process {Z(x) : x e D}, where D is a fixed
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subset of IRd, d > 1. Assume that this process is ergodic and satisfies the
hypothesis of intrinsic stationarity given by

where 2y(h) is the variogram. Let 27(h) be a variogram estimator based on a
sample Z = {Z(x1), . . . , Z(xn)} of the spatial process.

The most natural approach to variogram estimation is via scale estimation
(Cressie and Hawkins, 1980; Cressie, 1993; Genton, 1998). The stochastic
process of differences at lag h, F(h) = Z(x + h) - Z(x), has zero expectation
and a variance of 2-y(h). Let Vh = {V1(h), . . . , VN h(h)} be the sample of K(h)
corresponding to the sample Z = (Z(x1), . . . , Z(xn)} of Z, where Nh is the
cardinality of N(h) = {(x,, xj) : x1 - xj = h}. If SNh(Vh) is a scale estimator
of the process F(h), a natural variogram estimator is given by

The classical notion of breakdown point of a scale estimator is given in
the following definition.

Definition 1. The sample breakdown point of a scale estimator SNh(Vh) is
defined by

where Vh is a sample of size Nh and Vh is obtained by replacing any m obser-
vations of °Vh by arbitrary values.

Roughly speaking, the classical breakdown point gives the maximum frac-
tion of bad outliers (in our case m/Nh) the scale estimator can cope with. This
indicates how many data points can be replaced by arbitrary values before the
scale estimator explodes (tends to infinity) or implodes (tends to 0). For instance,
in the location framework, it is well known (Huber, 1981) that the mean has a
classical breakdown point of 0%, whereas the median attains 50%, the highest
possible value. Further discussions of this concept can be found in Hampel
(1971, 1974, 1976), Huber (1981, 1984), and Donoho and Huber (1983). The
sample breakdown point e^h of most scale estimators is known, or can be com-
puted. Note that this is at the level of the process of differences K(h), on which
the scale estimator is applied. However, in geostatistics, one is much more
interested in the breakdown point related to the initial data Z, which are spatially
located. Therefore, the previous definition loses its meaning because the location
of the perturbed data becomes important. In fact, the effect of the perturbation
of a point located on the boundary of the spatial domain D, or inside of it, can
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Figure 1. The effects of perturbations of points located on the
boundary of the spatial domain D or inside of it. For example,
a perturbation located at x4 has much more impact on the var-
iogram estimator than one located at x1.

be quite different and depends notably on the lag vector h. Figure 1 depicts this
behavior for an isotropic variogram and a fixed lag vector h.

A perturbation located at xi i = 1, . . . , 4, generates a perturbation of all
differences with the points on the circumference or arc of circumference of the
circles centered at xi, i = 1, . . . , 4, with radius ||h||. This means, for example,
that a perturbation located at x4 has much more impact on the variogram esti-
mator than one located at x1. For that reason, the concept of a spatial breakdown
point, which is more suitable for variogram estimators, is introduced in the next
section. Its link with the classical breakdown point is studied by mean of the-
oretical results and by simulations. Some examples on typical variogram esti-
mators are presented. Because the spatial breakdown point is only a local notion,
for a fixed lag vector h, the last section is devoted to the study of more global
effects of perturbations.

SPATIAL BREAKDOWN POINT

Denote by Im a subset of size m of { 1 , . . . , n } . Recalling the link between
the sample Vh = (V1,(h), . . . , KNh(h)} of the process of differences K(h) and



the sample Z = [Z(n1), . . . , Z(xn)} of the initial process Z, it is now possible
to write the following definition.

Definition 2. The spatial sample breakdown point of a variogram estimator
2-y(h) = (SNh)

2 is defined by

where Z(Im) is the sample of size n, obtained by replacing m observations of
Z, indexed by Im, by arbitrary values.

Note that in opposition to Definition 1, the configuration (i.e., the spatial
location) of the perturbation is now taken into account, by adding the supremum
and infimum on lm. This definition is justified by the fact that a variogram
estimator can be destroyed by a single configuration of perturbation, indexed in
lm. Therefore, it is quite possible to find other configurations, with more than
eSp(Sn, Z)% of perturbations, which do not demolish the estimator. Notice fur-
thermore that this definition is local, in the sense that it is valid for a fixed h.

The study of the spatial breakdown point of variogram estimators is now
analyzed for data in IR1, on a regular spatial support. In this case, it is possible
to compute the maximal number of perturbed differences by using most unfa-
vorable configurations of perturbation. Moreover, lower and upper bounds for
the spatial breakdown point are available. Next, the situation of data on regular
grids in IRd, d > 2, is investigated. In this case, it is no longer possible to
compute the maximal number of perturbed differences. This question turns into
a complex problem of number theory, as shown by a simple example in IR2.
The case of irregular grids in IRd, d > 1, is also investigated by simulations.

Regular Configurations in IR1

Consider the simple situation when the spatial stochastic process is located
on a regular unidimensional support and note Z = {Z1, . . . , Zn} = {Z(x1),
. . . , Z(xn)} a realization of it. In this case, the variogram is automatically
isotropic. Fix a positive lag distance h e IR and note Vh = {V1(h), ... ,
Vn-h(h)} = {Z,- — Zj : i < j;j - i = h}. For m = 1 perturbed data point, it
follows that, if h < n/2, one perturbation located at *,•, with h < i < n — h,
generates the perturbation of two differences, whereas for 0 < i < h or n - h
< i < n, a single difference is perturbed. Finally, if h > n/2, one perturbation
located at xi with 0 < i < n — h or h < i < n, affects one difference, and
none in the other cases. Therefore, to one perturbed observation corresponds at
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Figure 2. The most unfavorable configuration of perturbation in IR1, for the
case h = 3, m = 7, and n = 21.
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most two perturbed differences. If m > 1, we are interested in finding the most
unfavorable configuration of perturbed data for a fixed h. Such a configuration
is shown in Figure 2 for the case h = 3, m = 7, and n = 21. Open circles
represent unperturbed observations, whereas filled circles represent perturbed
observations. There are m filled circles. Construction of this configuration con-
sists in placing h unperturbed observations, followed by h perturbed observa-
tions, followed by h unperturbed observations, and so on until exhaustion of
the m filled circles.

This configuration ensures that the most possible differences are perturbed
(i.e., each filled circle perturbes two differences). Moreover, perturbations do
not overlap for a given lag distance h, which means that no difference between
two perturbed observations is ever taken. Let vmax(h, m, n) be the maximal
number of perturbed differences for given h, m, and n. This function depends
on the relation between m and h. Let p and q be the two nonnegative integers
such that m = ph + q and q < h. By disjunction of cases, it is then possible
to compute the function vmax(h, m, n) explicitly:

vmax(h, m, n) =



Notice that the case m > n/2 makes no sense because it implies that more than
half of the differences are perturbed. No equivariant scale estimator can be that
resistant (Huber, 1981). Figure 3 shows the function vmax(h, m, 100). The
hollows appearing in t>max are highly related to the relation betwen m and h,
and vary also with n.

The following theorem and corollary examine the relation between the
classical breakdown point (usually known) and the spatial one. Afterward, some
applications on variogram estimators are presented.

Theorem 1. For each h e {1, . . . , n — 1} and for each integer M = (n
— h)£*_h(Sn _h,,%) < n/2, the sample breakdown point and the spatial sample
breakdown point of a variogram estimator 2y(h) = (Sn _ h)2 verify the double
inequality

Figure 3. The function vmax(h, m, 100). The hollows appearing in vmax are highly
related to the relation between m and h, and vary also with n.

858 Genton

with the first equality if and only if h = n/2 or M = n/2, and with the second
equality if and only if h and M are such that vmax(h, M, n) = 2M.

Proof. In order to prove the first inequality, consider the function
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We have to show that the function 6 is nonnegative for all possible integers m.
If vmax (h, m, n) = n - h, then d(h, m, n) = 1 — 2m/n > 0 because n/2 >
m. If vmax(h, m, n) = 2m, then 6(h, m, n) = 2m/(n — h) — 2m/n > 0 because
n — h < n. If vmax(A, m, n) = n - 2h + q, then

Finally, if h = n/2 or m = n/2, then 6(h, m, n) = 0 and therefore equality is
reached. The second inequality follows from the fact that a perturbation on a
single observation generates the perturbation of at most two differences. Thus,
the perturbation of m observations generates the perturbation of at most 2m

If vmax(h, m, n) = m, then

If vmax(h, m, n) = m + n - 2h, then

If vmax(h, m, n) = 2ph + q, then



differences, and vmax(h, m, n) < 2m. Consequently, we have the inequality

Genton860

with equality if and only if fmax(h, M, n) = 2M.
By transforming the double inequality for e*_h(Sn_h, 'Vh)) of the previous

theorem in a double inequality for £^(2y(h), Z), we obtain the following cor-
ollary.

Corollary 1.1. For each & e { l , . . . , n — 1} and for each integer M =
(n — h)en_h(Sn - h ,Vh) < n/2, the sample breakdown point and the spatial
sample breakdown point of a variogram estimator 2y(h) = (5n_h)2 verify the
double inequality

with the first equality if and only if h and m are such that vmax(h, m, n) = 2m,
and with the second equality if and only if h = n/2 or m = n/2.

Let us look into some examples. Matheron's classical variogram estimator
(1962), as well as the one of Cressie and Hawkins (1980), are based on scale
estimators whose sample breakdown point is 0 (Genton and Rousseeuw, 1995;
Genton, 1998). Therefore, by Corollary 1.1, the spatial sample breakdown point
of these variogram estimators is also 0, for every lag h. This means that a single
outlier in the data can destroy them.

Genton (1998) proposes a highly robust variogram estimator, based on an
equivariant scale estimator 5n_h = Qn-h, whose sample breakdown point is
en_h = |_(n - h)/2) — 1J /(n — h), the highest possible value (Rousseeuw
and Croux, 1993), where |_| stands for the integer part. Figure 4 shows the
spatial sample breakdown point ef 100(S100, Z) of this highly robust variogram
estimator, for each lag distance h, represented by the black curve. The upper
and lower bounds given in the previous corollary are shown by the light grey
curves. As it was stated, the spatial sample breakdown point equals its lower
bound as long as vmax(h, M, n) = 2M, and equals its upper bound if h = n/2.
The interpretation of this figure is as follows. For a fixed h, if the percentage
of perturbed observations is below the black curve, the estimator is never de-
stroyed. If the percentage is above the black curve, there exists at least one
configuration which destroys the estimator. This implies that highly robust var-
iogram estimators are more resistant at small lags h or around h = n/2, than at
large lags h or before h = n/2, according to Figure 4.

Regular and Irregular Configurations in IRd, d > 1

The previous results have been obtained for data located on a unidimen-
sional and regular support. We would like to extend our results to d-dimensional
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Figure 4. The spatial sample breakdown point (in black) as a function of the lag distance
h, for a scale equivariant estimator, with maximal sample breakdown point. The upper
and lower bounds are drawn in light grey.

supports, d > 1, either regular or irregular. In the regular case, we suppose
that there are n = Ild=1 ni observations, where n, is the number of locations
along the ith axis. In the irregular case, we assume that only N locations among
all the n points of a regular grid are being observed. Notice that a totally irregular
configuration, that is to say when points are not located on a grid, may be
reduced to an irregular grid by using tolerance neighborhoods, as described in
Cressie (1993). Our two notions of regular and irregular grid are therefore quite
general.

If the spatial domain D C IRd of the spatial stochastic process is a regular
or irregular grid, and if the variogram is isotropic, then it becomes intractable
to compute explicitly the function fmax(h, m, n) which counts the number of
perturbed differences for given h, m, and n. Nevertheless, we conjecture that
the behavior of the spatial sample breakdown point is quite similar to the one
in the unidimensional case, as is shown by the following example. Let us
consider a regular grid of size n = 10 X 10 = 100. We are interested in the
most unfavorable configuration of perturbation for a fixed h. Figure 5 depicts
this configuration for each h. Perturbed observations are represented by black
points, on which the corresponding number of perturbed differences (between
one and four) is indicated. As in the unidimensional case, we construct blocks
of observations of size h x h, which are placed as a checkerboard on the grid,
beginning with a block of perturbed observations in the left upper corner. In
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Figure 5. The nine most unfavorable configurations of perturbation for a regular grid of size
n = 10 X 10 = 100. Perturbed observations are represented by black points, on which the
corresponding number of perturbed differences (between one and four) is indicated.

order to ensure that a perturbation affects four differences, the maximum possible
value in IR2, it has to be located at least at a distance h from the border of the
grid. If h > 5, one has to eliminate the overlapping perturbations. Therefore,
this configuration ensures that the most possible differences are perturbed. More-
over, perturbations do not overlap for a given lag distance h, which means that
no difference between two perturbed observations is ever taken.

Table 1 shows the behavior of the spatial sample breakdown point for the
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Table 1. The Spatial Sample Breakdown Point for a Regular Grid of Size n = 10 x 10 = 100:
Its Behavior Is Close to the One of the Unidimensional Case

h

1
2
3
4
5
6
7
8
9

Nh

180
160
140
120
100
80
60
40
20

[Nh-1]
89
78
69
59
49
39
29
19
9

D4

32
20
10
4
0
0
0
0
0

D3

16
16
16
8
0
0
0
0
0

D2

2
16
26
40
50
32
18
8
2

D1

0
0
0
0
0

16
24
24
16

Esp

22.5
20.0
20.0
22.0
25.0
20.0
15.0
12.0
8.0

previous grid of size n = 10 x 10 = 100. The first column contains the lag h,
to which corresponds a number Nh = n1(n2 — h) + n2(n1 - h) = 2n1(n1 - h)
of differences along the axes-directions of the grid. If we choose a scale equi-
variant estimator for the variogram, with a sample breakdown point of eNh =
[Nh /2 — 1]/Nh (for example, take the highly robust variogram estimator pro-

posed by Genton (1998)), then the third column shows the maximal number of
differences tolerated by the estimator. The columns Di, i = 1, . . . , 4 contain
the number of initial perturbations which can destroy i differences, for each h.
Finally, the last column shows the spatial sample breakdown point. We note
that its behavior is quite close to the one shown in Figure 4.

GLOBAL EFFECTS OF PERTURBATIONS

The spatial sample breakdown point is a theoretical tool, indicating the
worst-case behavior of the variogram estimator for each h. It allows to judge
the resistance of the variogram estimates, and consequently their respective
reliability. As already mentioned, this concept is of local nature. However, in
practice, one is generally confronted with a fixed configuration of perturbed
data, which does not change with the lag h. Applied geostatisticians are usually
concerned about the global effects (i.e., at all lags h) of a given configuration
of perturbations on the estimation of the variogram. For that reason, we start
by carrying out some simulations, which are afterward supported by theoretical
results.

Simulations

On a regular grid, of size n = 10 x 10=100, randomly perturb m = 25
observations and compute the percentage p of perturbed differences for each h.
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Table 2. Simulation of the Average Percentage p of Perturbed Differences for Each h When
m = 25 Observations of a Regular Grid of Size n = 10 x 10 = 100 Are Perturbed

h

1
2
3
4
5
6
7
8
9

sim 1

45.0
43.8
46.4
45.0
44.0
40.0
40.0
40.0
30.0

sim 2

46.1
46.3
44.3
48.3
44.0
40.0
40.0
37.5
20.0

sim 3

42.2
41.3
47.9
44.2
45.0
40.0
41.7
42.5
50.0

P

44.0
43.9
43.8
43.8
44.0
44.0
44.0
44.5
44.4

°p

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.3

Table 2 contains the percentages p for three replications of this simulation, as
well as an average p and its standard deviation ap over 1000 replications.

The results are quite surprising. First, the average of the percentages seems
to be stable, independent of h, as shown in the fifth column. Second, the average
of the percentages is close to 44% and not to 50%, as one would expect at first
sight. If we vary the number m of perturbed observations, we obtain in average,
and for each h, a percentage p of perturbed differences presented in Table 3.

Note that if m/n is small, p equals approximately 2m/n, whereas it is
slightly smaller if m/n is large. This decrease comes from differences taken
between two perturbed observations. Similar simulations are carried out on an

Table 3. Simulation of the Average Percentage p of
Perturbed Differences When m/n Percent of Observa-
tions of a Regular Grid of Size n = 10 x 10 = 100

Are Perturbed

m/n

5
10
15
20
25
30
40
50
60

P

10
19
28
36
44
51
64
75
84
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Table 4. Simulation of the Average Percentage p of Perturbed Differences for Each h, When
m = 25 of the N = 100 Observations of an Irregular Grid Are Perturbed

h

1
2
3
4
5
6
7
8
9

10
11
12
13

sim 1

45.7
49.4
44.4
44.3
42.9
40.7
39.1
48.7
37.9
44.0
42.1
45.5
33.3

sim 2

44.2
40.0
32.4
48.3
36.5
37.5
43.1
55.8
51.5
46.7
42.9
60.0
50.0

sim 3

40.7
38.9
40.0
41.7
43.9
40.4
48.9
44.4
43.6
48.5
46.4
50.0
66.7

P

43.8
43.9
43.7
44.1
43.8
44.0
43.8
44.0
43.8
44.1
43.8
44.2
44.6

*p

0.1
0.1
0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.3
0.3
0.4
0.6

irregular grid. From a regular grid of size n = 14 x 14 = 196, N = 100
observations are selected randomly, among which m = 25 are perturbed ran-
domly. The results, presented in Table 4, are similar to those obtained in the
case of a regular grid. However, the standard deviation a^ is slightly higher.

Theoretical Results

Some theoretical results are now established, allowing one to understand
the results of the previous simulations. The configurations of regular or irregular
grids are treated separately. Afterwards, some examples are discussed.

First consider a d-dimensional regular grid of n = Ild=1 ni points. Select
randomly m points among the n points of the grid and perturb them. Let Mh be
the number of perturbed differences for each h and Nh be the number of distances
equal to h among the n points of the grid. Then, Mh is a random variable and
the expectation E(Mh/Nh) corresponds to the average p given in the previous
simulations. Let Hj,h be the random variable which counts the number of per-
turbed differences by a single perturbed point, they jth one, j = 1, . . . , m, for
each h and Kh be the random variable which counts the number of perturbed
differences between two perturbed points, separated by a lag distance h. The
random variable Mh may be decomposed in
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Figure 6. A unidimensional configuration with 0 < h <
n1/2 and n1/2 < h < n 1 .

where Bi,1 ~ /3((ni - 2h)/ni) and <Bi,2 ~ (B(2(n, - h)/n,). Thus, the expectation
of Hj,h is

where B1 ~ (B((n1 - 2h)/n1) and B2 ~ ®(2(n1 - h) are Bernoulli random
variables, as is shown in Figure 6. If d > 1, the random variable HJ,h behaves
like Hj,h = Sd

=1 X1, with

Lemma 1. Let D c IRd, d > 1, be a d-dimensional regular grid of n =
Ild=1 ni points. The expectation of H j , h equals E(H j , h) = 2 Ef=1 (n, - h)+/ni,
and the expectation of Kh equals E(Kh) = m(m - 1)Nh/(n(n - 1)).

Froof. First consider the case d = 1. Perturb a single point, randomly
selected on a segment of length n1. Then, the random variable H j , h equals the
random variable X1 defined by

This relation expresses the fact that Em
=1 H j , h counts differences between two

perturbed points twice. For the next lemma, we need the notation
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There are a total of n(n - 1)/2 distances between the n points and m(m - I)/
2 distances between the m perturbed points. Hence, the random selection of m
points among n corresponds to the random selection of m(m - I)/2 distances
among n(n - 1)/2 distances, from which Nh are equal to h. It follows that Kh

is an hypergeometric random variable, with expectation given in the lemma's
statement.

The expectation of the percentage Mh/Nh can now be computed, and leads
to the following result.

Theorem 2. Let D C IRd, d > 1, be a rf-dimensional regular grid of n =
Ild=1 ni points. The expectation of Mh/Nh equals

Proof. On the regular grid, Nh is defined by Nh = Ed
=l [(n, - h) +

U j # i n j ] . Therefore, by Lemma 1, we have

We now study the case of a d-dimensional irregular grid D C IRd, d >
1, of Appoints. It is obtained by randomly selecting N points from a regular grid
of n = Ild=1 ni points. Next, randomly select m points among the N points of
the irregular grid. The random variables Mh, H j ,h and Kh are defined as in the
regular case. However, Nh is no longer constant, but random. There is a similar
lemma to the one of the regular case.

Lemma 2. Let D C IRd, d > 1, be a cf-dimensional irregular spatial grid
of N points, selected randomly among the n = IId

=1 n1 points of a regular grid.
The expectation of Hj,h equals E(H J , h ) = 2(Ed

=1 (ni -h)K)+/ni)(N - l)/(n - 1),
and the expectation of Kh equals E(Kh) = m(m - 1)E(N h ) / (N(N - 1)).

Proof. Demonstration of this lemma is similar to the one of Lemma 1.
First consider the case d = 1. Perturb a point x, randomly selected on a segment
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There are N(N - 1)/2 distances between the N points and m(m — 1)/2 distances
between the m perturbed points. Hence, the random selection of m points among
N corresponds to the random selection of m(m — 1)12 distances among N(N —
1)/2 distances, from which E(Nh) are equal to h exactly. It follows that Kh is
an hypergeometric random variable, with expectation given in the lemma's
statement.

An approximation of the expectation of the percentage Mh/Nh can now be
computed:

Theorem 3. Let D C IRd, d > 1, be a d-dimensional irregular grid of N
points, randomly selected among the n = nfd=1 ni points of a regular grid. Then,
the expectation E(Mh/Nh) equals approximately

where Bi Ug, Bi,1d ~ (B ((n i - h)/ni • (N - 1)/(n - 1)) and Bi,2 ~ (B (2(ni -
h)/n i • (N — 1)/ (n — 1)). Thus, the expectation of H j , h equals

where B]g, Bld ~ ($> ((n1, - h)/n1 • (N - 1)/(n - 1)) and B2 ~ <B (2(n1 -
h)/n1 • (N — 1)/(n - 1)) are Bernoulli random variables, as shown in Figure
6. The probability for the point x to have a neighbor belonging to the N points
of the irregular grid and being at distance h on the left of x is (n1 - h)/n1 • (N
— 1)/(n — 1). This probability is obtained by conditioning. Effectively, (n1 —
h)/n1 is the probability for the point x to have a neighbor at distance h on its
left and (W — 1)1 (n - 1) is the probability for the point x to belong to the N
points of the irregular grid, given that it has a neighbor at distance h on its left.
The same is true for a neighbor at distance h on his right. The probability for
B2 is obtained by the same way. If d > 1, the random variable H j , h behaves
like Hj,h = Ed

=1 Xi with

of length n1. Then, the random variable H j , h is equal to the random variable X1

defined by
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where we used the fact that Ed=1 [(ni - h)+ IIj # nj] can be approximated by
nd. Therefore, for N large enough, E(Nh)/Nh is a constant, equal to 1, and in
this case, by Lemma 2, E(Mh/Nh) can be approached by

whose expectation is 1 and whose variance is

Taylor expansion of order 1 shows that E(Nh)/Nh behaves approximately as

Since

for N large enough.
Proof. On the regular grid, Nh is defined by Nh = Ed=1 [(ni - h)+ Hj#i

nj]. If N points of the regular grid are selected randomly, then Nh is an hyper-
geometric random variable, as we have to select N(N — l)/2 distances among
n(n — 1)/2 from which Ed=1 [(n, — h)+ 11j#i nj] are at distance h. Thus, with
f=N(N- 1)/(n(n - 1)), we have
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Note that, as in the simulations, the expectation of Mh/Nh for a regular grid is
identical to the one for an irregular grid, according to the approximations. This
expectation does not depend on h. The variance of Mh/Nh for a regular or
irregular grid, is not easy to compute, because perturbed locations are drawn
without replacement. In fact, it depends on h and the irregularity of the grid. If
the number of perturbed points m and the number n or N of points of the grid
are not small, this expectation is approximately equal to (2 - m/n)m/n. This
means that for a variogram estimator with classical breakdown point of 50%,
the maximal percentage of data which can be perturbed is solution of the equa-
tion

870 Genton

which leads to

If a highly robust variogram estimator is used, for example the one proposed
by Genton (1998), it will have a global resistance to roughly 30% of outliers
in the initial observations. On the contrary, Matheron's classical variogram
estimator (1962), as well as Cressie and Hawkins' one (1980), have no global
resistance at all to any outlier in the initial observations.

CONCLUSIONS

In this paper, the concept of breakdown point has been extended to var-
iogram estimators. If a variogram estimator is based on an equivariant scale
estimator with classical breakdown point of 50%, the highest possible value,
then the maximal number of initial data which can be perturbed before destroying
the estimator, is roughly 30% on average. This has been confirmed by simu-
lations and theoretical results. However, there exist particular configurations of
perturbation, called most unfavorable configurations, for which the maximal
number of initial data which can be perturbed before destroying the estimator,
is much lower than 30%. Of course, variogram estimators like Matheron's
classical one or Cressie and Hawkins' one, are not resistant to any perturbation
in the data.
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