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Abstract  

This paper discusses the asymptotic behavior of M-estimators for dependent Gaussian random variables. We show that 
for a Gaussian distribution, the asymptotic variance of an M-estimator of scale is minimal in the independent case and 
must necessarily increase for dependent data. This is not true for location estimation where the asymptotic variance can 
increase or decrease for dependent observations, depending on the sign of the correlation. Several examples are analyzed, 
showing that the asymptotic variance of the maximum likelihood estimator varies widely under dependencies. @ 1998 
Elsevier Science B.V. All rights reserved 
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I .  I n t r o d u c t i o n  

The term M-estimator denotes a broad class o f  estimators o f  maximum likelihood type, which play an 
important role in robust statistics. At first introduced for location estimation by Huber (1964), who studied 
their robustness properties by means o f  a minimax theorem for the asymptotic variance, they have since been 
extended to many other situations. The most important ones are scale estimation, regression models and tests. 
The theory o f  M-estimators for independently distributed observations is for the most part known. Some of  
their properties are discussed in Huber (1981), Hampel et al. (1986), Genton and Rousseeuw (1995). The 
case of  dependent data received less attention. It seems that pioneers in this field were Gastwirth and Rubin 
(1975) with a paper investigating the effect o f  serial dependence in the data on the efficiency of  some robust 
location estimators. This theme was followed up by Portnoy (1977, 1979), who studied approximately optimal 
estimators, in the asymptotic minimax sense of  Huber (1964, 1972, 1981), in dependent situations. Most o f  
the results are for the location problem, whereas in this paper, we examine the case of  scale estimation, which 
produces interesting results for the Gaussian situation. 
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Let Xi . . . . .  Xn be identically distributed observations according to a parametric distribution Fo. An M- 
estimator Tn(X: ..... Xn) of the parameter 0 is defined by the implicit equation 

n 

1 (l)  
n 

i = l  

and corresponds asymptotically to the statistical functional T(F) defined by 

f q(x, T(F))dF(x) = 0, (2) 

where t/ is a real and sufficiently regular function. 
Under regularity conditions, T, is consistent, i.e. T,, --~ T(F) in probability as n --+ exp. Moreover, x/n(Tn - 

T(F)) is asymptotically normal with zero expectation and variance V*(T,F,F(k)), given by (Portnoy, 1977) 

V*(T, F,F <k)) = A(q,F) + 2 ~ l A*(q,F(k)) Ta(F), (3) 
B2(tl,F) 

where 

A(q,F) = f qZ(x/r(F))dF(x), (4) 

B(t/,F) = f(x/r(F))q'(x/T(F))dF(x), (5) 

A*(q, Fa))= f f q(x,/r(F))u(x2/r(F))dF<k)(x,,x2), (6) 

and F (k) is the bivariate distribution of the pair (XI, Xl+k). Regularity conditions for consistency and asymptotic 
normality are given by Huber (1967) for the independent case and by Portnoy (1977, 1979) and Bustos (1982) 
for the dependent case. In this latter situation, mixing conditions like e-mixing or @mixing are sufficient 
(Billingsley, 1968; Doukhan, 1994). 

In the framework of the location model Fo(x)= F(x-O), 0 E ~, it is natural to use tl(x, T(F))= ~b(x-T(F)) 
in Eqs. (1) and (2), where ~ is odd. Some examples of M-estimators of location are given in Section 3. 

2. Scale estimation 

The scale model is given by F~(x)=F(x/a), a > 0. In this context, it is natural to use the function 
q(x,S(F))=Z(x/S(F)) in Eqs. (1) and (2), where g is even. Some examples of M-estimators of scale are 
given in Section 3. The following lemma and theorem show that for dependent Gaussian random variables, the 
asymptotic variance of an M-estimator of scale is necessarily greater than for independent ones. This is true 
even if the Gaussian random variables are negatively correlated. Let us denote by • the standard Gaussian 
distribution and by ¢b~, -1  < z < 1, the Gaussian bivariate distribution with variance matrix 

X = (  lz ~ ) '  (7) 

Its density function is 

1 (1 ) 
q~(xl,x2)- 2 n ~  exp ~(xl X 2 ) ~ - I ( x l  X2) T • (8) 
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Note that further restriction on z may be necessary in order to insure positive definiteness of the complete 
variance-covariance matrix of the sample X1 . . . . .  An. 

Lemma 1. Let X1 and X2 be two dependent random variables having a Gaussian bivariate distribution qbr, 
- 1  < z < 1. For any even Z, the inequality 

A (Z,q~)~..O, 

holds', with equality i f  and only iJ'z = O. 

Proof. The proof is based on an inequality of Dudley (1973), generalized by Gutmann (1978). If z = 0 ,  
then the bivariate density function can be written as qS(xl,x2)= ~b(xl )qS(x2), where q5 is the standard density 
function. This yields A*(g, 4~0)=0. If the covariance Cov(Xi,X2)=z > 0, then Gutmann (1978) has shown 
that 

Cov(h(X1 ), h(X2)) > 0, (9) 

for any real function h such that 0 < Var(h(X1 )) < cx~. This is the case for our function Z- If the covariance 
Cov(Xi ,)(2 ) =  ~ < 0, then Cov(-Xi,X2 ) = - z  > 0, and we have Cov(z(-Xi ), z(X2))= Cov(z(Xi ), z(X2)) > 0, 
as the function Z is symmetric. This proves the desired inequality. [] 

Theorem 1. For ever), symmetric M-estimator o f  scale based on dependent data, with marginal distribution 
F =  qb and bivariate distributions F Ik) = q~T~, k >~ 1, the inequality 

v*(s, 4,, ¢~ ) >/v(s,  ~),  

holds., with equality i f  and only i f  rk = O, Vk >~ 1. 

Proof. Using the previous lemma, we have ~ A*(Z,q)~,)>/0, and hence k = l  

A(Z, qb) + 2 ~'~ ~ A*(Z ,~h)  A(z, qb) k = l  
V*(S, q~, ~h ) = B2(Z, q~) >1 B2(Z, qb) V(S, q~). [] 

x2 

. . . . . . . . . . . . .  ¥ - - ¥  

+ 

- + + - 
. . . . . . . . . . . .  4 . . . . . . . .  4 . . . . . . . . . . . .  

+ - _ + 

x l  

Fig. 1. The sign of the function Z(Xl )Z(X2). The negative parts are represented by the symbol - and the positive ones by the symbol +.  
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Note that this result is not necessarily true if the underlying distribution is not Gaussian and if the obser- 
vations are negatively correlated. Effectively, the proof of Theorem 1 is based on the inequality (9), which 
becomes tricky under non-Gaussian distributions. In fact, as Z is an even function, the sign of the product 
g(xl )g(x2) takes the structure presented in Fig. 1. Thus, one can construct a bivariate distribution which does 
not satisfy the inequality (9). For example, a distribution with heavy weights along the axes (in the negative 
parts of Z(xl )g(x2)), or a multi-modal distribution with modes in the negative parts of Z(xl )X(x2), will produce 
a negative covariance between the random variables z(XI ) and z(X2). 

3.  E x a m p l e s  

In this section, we analyze the behavior of the asymptotic variance of some typical location and scale 
estimators. First, we consider the simple case where z l - - z  and zk--0,  Vk >~2. This corresponds to an MArl) 

1 1 dependence structure (Brockwell and Davis, 1987), and needs the additional constraint - 3  < z < i- 

3.1. The maximum likelihood estimator 

In the location model, the maximum likelihood estimator (MLE) at F =  tp is defined by the function ~k(x) =x ,  
and corresponds to the arithmetic mean. Straightforward computation yields A*(q~P~)=T and V*(T,~, 
qb~) = 1 + 2~. Note in this case that the asymptotic variance may decrease if the correlation is negative. 

In the scale model, the maximum likelihood estimator (MLE) at F = tp is defined by the function X(x) = x  2 -  
1, and corresponds to the classical standard deviation. This yields A*(Z, q~T) = 2z2 and V*(S, 4, ~ )  = ½ + r 2. 
Note in this case that the asymptotic variance may not decrease if the correlation is negative. 

3.2. The median estimator 

In the location model, the median estimator at F = ~ is defined by the function ~(x) = sign(x). This yields 

- arctan , 

V* (T, 4~, 4~ ) = ~ + 2 arctan . 

3.3. The median absolute deviation estimator 

In the scale model, the median absolute deviation estimator (MAD) at F = • is defined by the function 
Z(x) = s ign( lx l -  q), where q =  4~-1(3/4). This yields 

.I" (q-rx~ 
A*(Z, ¢b~) = 8 • d~(x)  - 3, 

. 14T-s-~- ~2 / 

and 

q2~b2(q~ \ lx/]--Z~_z2j d ~ ( x ) -  , 

where ~b is the standard Gaussian density function. 
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Fig. 2. The asymptotic efficiency relative to independence v*(q'r) in the location model and MA(I) dependence structure for the MLE 
and the median. 

3.4. The Welsch estimator 

In the scale model, the generalized Welsch estimator at F = 4, is defined by the function Z(x) : ~/ d a72 
exp(-x2/d), with d > 0. This yields 

A*(Z,a~)= d d 

V/4(1 - r 2 ) + d ( d  + 4 )  d + 2 "  

The classical Welsch estimator corresponds to d = 2/3 and yields 

A*(Z,~)= 1 1 

x / ~ -  9z 2 4' 

128 64 16 
V*(S, ~, q~)= 9 ~  + 9 ~x/7 3 " 

3.5. The effects of  dependencies 

In order to analyze the effects of the dependencies on the asymptotic variance, we define the asymptotic 
efficiency relative to independence v*(q~,) of an M-estimator S at q~ as being the ratio 

v*(q,~) = 
v(s, a~) 

Note that in the case of M-estimators of scale, this quantity is always greater than 1. 
Fig. 2 shows the asymptotic efficiency relative to independence v*(q~) in the location model for the MLE 

and the median. The asymptotic efficiency relative to independence of the maximum likelihood estimator 
depends quite strongly on ~. Moreover, the asymptotic variance can increase or decrease for dependent ob- 
servations, depending on the sign of the correlation. Note that the asymptotic variance of the MLE could 
theoretically be reduced to zero by letting ~ ~ -½, whereas the asymptotic variance of the median could not, 
because 

lira [2 + 2 arctan (~------~_ ~2) ] rt 
z-->--l/2 = 6 "  

The asymptotic efficiency relative to independence v*(~z) in the scale model is shown in Fig. 3 for the 
MLE, the Welsch estimator and the MAD. Here again, we notice that the asymptotic efficiency relative to 
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Fig. 3. The asymptotic efficiency relative to independence v*(4~r) in the scale model and MA(I) dependence structure for the MLE, the 

Welsch estimator and the MAD. 

independence of the maximum likelihood estimator varies quite a lot. However, the asymptotic variance must 
necessarily increase for dependent observations, even if the data is negatively correlated. 

3.6. The Atoll dependence structure 

The case where rk = O k, Vk >~ 1 corresponds to an AR(I) dependence structure (Brockwell and Davis, 1987) 
with - 1 < 0 < 1. No additional constraint is needed for the correlation since - 1 < Tk < 1, Vk/> 1. The maxi- 
mum likelihood estimator (MLE) allows explicit computations of the infinite sums in equation (3) by means of 
elementary results on geometric series. In the location model, the MLE at F = 4 yields V*(T, 4, 4'o) = 1 +2  0 I -- 0 
for the asymptotic variance, which may decrease if the correlation is negative. In the scale model, the MLE at 

1 2 
F = 4 yields V*(S, 4, 4o) = i + ~ for the asymptotic variance, which may not decrease if the correlation 
is negative. Both models (location and scale) show larger variations of the asymptotic variance for the AR(I/ 
dependence structure than for the MA(I). 

4. Conclusion 

In this paper, the asymptotic variance of M-estimators for dependent Gaussian random variables has been 
studied. We showed that for a Gaussian distribution, the asymptotic variance of an M-estimator of scale is 
minimal in the independent case and must necessarily increase for dependent data. However, this is not true 
for location estimation where the asymptotic variance can increase or decrease for dependent observations, 
depending on the sign of the correlation. The asymptotic variance under dependencies has been computed for 
several examples of M-estimators, showing that the asymptotic variance of the maximum likelihood estimator 
suffers quite a large variation due to dependencies. 
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