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Abstract. Variogram analysis is applied to time series of
variable stars. This method allows to characterize time-
scales of varying signals. It is well suited for periodic
and pseudo-periodic signals. The aspects of robustness,
bin positions and bin widths for the variogram estima-
tor are assessed, evaluated with the help of simulations
and adapted to the Hipparcos photometry. For instance
variogram methodology is successfully applied for the de-
tection of spurious periods, the estimation of measurement
noise and the analysis of the pseudo-period of some typical
Hipparcos variable stars.
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1. Introduction

Often subjects, like astronomy and statistics, are devel-
oped rather independently and new methods have some
difficulties to break the wall between different disciplines
(see Rousseeuw 1987). There is a need of improved “tools”
for the astronomer for describing the observed objects.
Nature can show a huge range of different behaviours and
the measurement process can lead sometimes to erroneous
interpretations and results. This makes the task difficult
and implies the use of robust methods.

The goal of the proposed method is to analyse objects
with pseudo-periodic light curves (i.e. approximately peri-
odic signal) such as super giant, spotted, and semi-regular
variable stars. The behaviour of these stars is difficult to
describe, because it is not strictly periodic and there are
different time-scales involved of different amplitudes. Even
in Mira type stars, for example, very short time-scales are
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present (de Laverny et al. 1998). We want to determine
the general time-scales causing the dispersion in the data.
The method is more qualitative than quantitative at the
present time although procedures are being developed to
make it quantitative.

The photometric data of Hipparcos have two origins:
the Main mission and the Tycho mission. The latter used
the star mappers and gave two magnitudes BT and VT,
whereas the former used the image dissector tube and pro-
duced the so called Hp magnitude (van Leeuwen 1997).
The Hipparcos satellite provided around 13 000 000 mea-
surements of fluxes for 118 204 stars during a time interval
of 3.3 years. A systematic search for variability and peri-
odic stars was carried out (cf. Eyer 1998) and the results
were published (see Grenon et al. 1997 and van Leeuwen
et al. 1997). On this occasion, the variogram methodology
was applied. However, pseudo-periodic signals were pub-
lished with only an information of amplitude, and no in-
formation about time-scales. Because time-scales of mag-
nitude variations are also a valuable information, a re-
fined method was developed in order to be able to describe
pseudo-periodic signals.

The structure of the paper is now briefly described.
We begin by reviewing the methods of statistical analysis
of periodicity to be found in the literature. The variogram
approach is introduced and closely analysed in Sect. 2. The
third part contains some interesting results of our method
on simulated data examples. The use of the variogram
for spurious period discrimination is explained on a real
case in Sect. 4. The variogram allows also to estimate the
measurement noise, and is applied to the whole sample of
Hipparcos stars. Finally, the robust variogram approach
is applied to individual stars from Hipparcos photometry.
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2. Statistical analysis of periodicity for irregular
sampling

There are many ways to describe periodic signals (Cuypers
1997). Most of the proposed methods are valid for rather
strictly periodic signals: they are not very efficient when
there is not a full conservation of the phase or of the
amplitude. We may cite the following methods: “string”
(Renson 1978), analysis of variances (Schwarzenberg-
Czerny 1989), Fourier (Deeming 1975; Ferraz-Mello 1981;
Babu & Feigelson 1996). Fortunately there are other meth-
ods which are better adapted to nearly periodic signals.
The wavelets (Foster 1996), the autocorrelation (Bartholdi
1988; Edelson & Krolik 1988) methods and finally the
structure function (Hughes et al. 1992), or variogram.
These methods are obviously linked to each other. The
last one is appropriate for our situation, as will be shown.

2.1. The variogram

In order to describe a pseudo-periodic signal, we introduce
the concept of variogram. Let us consider a time series
{m(t): t ∈ D}, where D is a subset of R+. We can think
of m(t) as the magnitude of a star at time t. Suppose
that the signal m(t) can be decomposed into the sum of a
deterministic part, µ(t), plus a stochastic part, the noise.
Assume that this series satisfies the following hypothesis

E (m(t)) = µ(t), ∀t ∈ D, (a)
Var(m(t+ h)−m(t)) = 2γ(h), ∀t, t+ h ∈ D, (b)

where 2γ(h) is the variogram, which can be used in prac-
tice in order to study the periodicity of the time series.

An interesting variogram that exhibits negative corre-
lations caused by periodicity of the series is the wave (or
hole effect) variogram (Cressie 1993) given by:

γ(h, a, b, c) =

{
0 if h = 0,

a+ b
(

1− c
h

sin
(
h
c

) )
otherwise,

where a ≥ 0, b ≥ 0 and c ≥ 0. An example of a wave var-
iogram is shown in Fig. 1. A hole effect shows oscillations
of decreasing amplitude around the plateau called the sill,
a+ b = σ2

signal, which is the total variance of the time se-
ries. The oscillation reflects periodicity in the data and the
first minimum is considered as a period or pseudo-period
of the time series. The parameter a is usually called nugget
effect and represents the micro-scale variability σ2

noise due
to measurement noise.

Note that a strictly periodic signal would show a peri-
odic variogram defined by Journel & Huijbregts (1978):

γ(h, a, b, c) =

{
0 if h = 0,

a+ b
(

1− cos
(
h
c

) )
otherwise,

where a ≥ 0, b ≥ 0 and c ≥ 0. However, in practice, the
oscillations are often dampened.

Fig. 1. Wave variogram for a pseudo-periodic signal

2.2. The Matheron variogram estimator

Consider the series of differences at lag h defined by v(h) =
m(t+h)−m(t). Let {m(t1), . . . ,m(tn)} be a sample of a
time series, and {v1(h), . . . , vNh(h)} be the corresponding
sample of differences at lag h, where N(h) = {(ti, tj):
ti−tj = h} andNh is the cardinality ofN(h). The classical
variogram estimator proposed by Matheron (1962), based
on the method-of-moments, is

2γ̂L2(h) =
1

Nh

Nh∑
i=1

(vi(h)− v̄(h))2, h ∈ R+,

where v̄(h) = 1
Nh

∑Nh
i=1 vi(h). This estimator is based on

the L2 scale estimator (Genton & Rousseeuw 1995), which
is unbiased, but behaves poorly if there are outliers in
the data. One single outlier can destroy this estimator
completely. For that reason, Genton (1998) proposed a
highly robust variogram estimator.

2.3. The highly robust variogram estimator

In the context of statistical analysis of periodicity, vari-
ogram estimation is a crucial stage, because it determines
the period or pseudo-period. Therefore, it is important to
have a variogram estimator which remains close to the
true underlying variogram, even if outliers (faulty obser-
vations) are present in the data. Experience from a broad
spectrum of applied sciences shows that measured data
may contain between 10 to 15 percent of outlying val-
ues (Hampel 1973) due to gross errors, measurement mis-
takes, faulty recording, etc. One might argue that any rea-
sonable exploratory data analysis would identify outliers
in the data. However, this approach may be subjective
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and informal. Furthermore, the existence of exploratory
techniques does not supersede the usefulness of robust
techniques. In this paper, we advocate the use of estima-
tors which take account of all the available information in
the data.

In the context of scale estimation, Rousseeuw & Croux
(1992, 1993) have proposed a simple, explicit and highly
robust estimator, called QNh , which is defined by

QNh = 2.2191
{
|vi(h)− vj(h)|; i < j

}
(k)
,

where the factor 2.2191 is for consistency with the
Gaussian distribution, k =

(
[Nh/2]+1

2

)
= ([Nh/2] +

1)[Nh/2]/2, and [Nh/2] denotes the integer part of Nh/2.
This means that we sort the set of all absolute differences
|vi(h) − vj(h)| for i < j and then compute its k-th or-
der statistic (the first quartile for large Nh). This value is
multiplied by the factor 2.2191, thus yielding QNh. Note
that this estimator computes the k-th order statistic of
the

(
Nh
2

)
interpoint distances. This estimator is shown to

be very robust to outliers in the data. It is of interest to
remark that QNh does not rely on any location knowledge
and is said to be location-free. The estimator QNh can
be computed using no more than O(Nh logNh) time and
O(Nh) storage, by means of the fast algorithm described
in Croux & Rousseeuw (1992).

Using the previous definitions, Genton (1998) defines
a highly robust variogram estimator as

2γ̂Q(h) = (QNh)2,

and discusses its use and properties.

2.4. Variogram estimation for irregularly spaced data

Structure functions are used in AGN studies (Hughes et al.
1992). Apparently this goes well with the signals they want
to study, because they are mainly interested in the slope of
the rising curve of the structure function which gives infor-
mation in the frequency domain (Paltani 1996). However
for periodic signals, the oscillations may be diminished in
their analysis. We are left with the difficulty of the choice
of the binning and of the width of the bins. A too narrow
width would have the disastrous effect to have too little
measurements in a bin, whereas a constant binning can
be too large for short periods and smears out the periodic
behaviour. This is the reason why we choose to have a
binning linked with the period investigated. Denote by

2γb(h) =
1

2f(h)

∫ h+f(h)

h−f(h)

2γ(u)du,

the binned variogram based on a lag function f . It is
natural to require for a time-scale invariant variogram,
i.e. 2γ1(h) = 2γ2(ah), a > 0, that the binned variogram
be invariant too. This is achieved by choosing the linear
lag function f(h) = δh, as is shown by

2γb2(ah) =
1

2δah

∫ ah+δah

ah−δah
2γ2(u)du

(a)

(b)

Fig. 2. Diagram of pairwised differences. a) regular time sam-
pling, b) irregular sampling for the star HIP 111771

=
1

2δah

∫ h+δh

h−δh
2γ2(av)adv

=
1

2δh

∫ h+δh

h−δh
2γ1(v)dv

= 2γb1(h).

One has to determine the fraction δ, in order to get an op-
timal binning of the variogram. If data would be regularly
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Fig. 3. Empirical cumulative distribution function (CDF) of the
lag differences for the star HIP 111771, and logarithmic approx-
imation F (h) (smooth line) of the empirical CDF

spaced, one could let δ → 0, and use the classical method
2γb(h) = 2γ(h). Figure 2 depicts the diagram of pairwised
differences for regularly and irregularly (HIP 111771 time
sampling) spaced data. A closer look at Fig. 2 indicates
that if the period is h, we should set δ < 1/2, otherwise
too much information about the period is lost. Therefore,
a good compromise between regularity and period infor-
mation is to let δ = 1/4.

The remaining problem is the choice of the lags,
i.e. the position of the bin location. If one chooses equidis-
tant lags, there would be too many bins for large lags, and
too few for small lags. Therefore, the distribution of the
lags is a crucial question. Figure 3 represents the empirical
cumulative distribution function (CDF) of the lags of the
star HIP 111771, and indicates that a logarithmic scale of
the lags

F (h) = log

(
9

1200
h+ 1

)

is a satisfactory approximation. Other stars have also
been analysed and the same approximation can be used
for most of them. Note that the greatest available lag is
h = 1200, and we set F (0) = 0 and F (1200) = 1. In conse-
quence, we adopt the choice of lags h0, . . . , hk such that
F (h0), . . . , F (hk) are equidistant on the interval [0, 1].
The number k of lags must be chosen such that a good
temporal resolution is achieved (for instance, k = 90 is a
typical value with Hipparcos time sampling).

(a)

(b)

Fig. 4. Simulated sinusoidal process with noise. a) regular time
sampling, b) irregular time sampling for the star HIP 111771

Another approach in the choice of the lags consists in
computing quantiles of the empirical distribution of each
star. The advantage of this method is its adaptability to
the particular sampling of each star, whereas the former
one was global. Moreover, lags are defined only when new
data points are present. The drawback is that it provides
clumped bin locations.
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3. Simulations

In order to point out the behaviour and robustness prop-
erties of the γ̂L2 and γ̂Q variogram estimators, we simulate
a sinusoidal process

m(ti) = 0.1 sin

(
2π

70
ti

)
+ εi,

(a)

(b)

Fig. 5. Estimated variograms (above γ̂L2 , below γ̂Q) of the sim-
ulated sinusoidal process. a) without outlier, b) with one outlier

where εi is the noise, independently and identically dis-
tributed according to a Gaussian law N(0, σ2

noise) with
σnoise = 0.01. The amplitude of the signal is set to 0.10
and the period to 70 days, a possible period for semi-
regular red giant stars (Jorissen et al. 1997). This process
is visualized in Fig. 4a. As we would like to come to a
more realistic case, we generate the same behaviour but
with the time sampling ti taken from the star HIP 111771,
which is taken as representative of the mission (although
the sample is rather heterogeneous). This data set is shown
in Fig. 4b and is used to compute the variogram with γ̂L2

(Fig. 5a above) and γ̂Q (Fig. 5a below) respectively. Both
estimators are able to detect the period around 70 days,
given by the first significant minimum.

In order to show conspicuously the differences between
the two estimators when the signal is perturbed by out-
liers, we took the previous simulated data and changed
only one value. We put it at 5σsignal from the mean.
Actually, this value can sometimes occur in real data
from Hipparcos. The effect of the substitution of that sin-
gle value can be seen in Fig. 5b, which should be com-
pared with the Fig. 5a. Several remarks can be made.
First, the γ̂L2 estimator shows a flat and slight declin-
ing curve around the period: the signature of the peri-
odicity has totally disappeared. In comparison, the gen-
eral behaviour of γ̂Q has not changed. Second, the esti-
mation of the micro-scale variability σ2

noise jumped with
γ̂L2 . Furthermore, there is a higher jump at the second
lag, which would suggest that there is some variability in
the signal for extremely short time-scales. Again γ̂Q stays
unchanged. With this example we see that γ̂L2 is not re-
liable when outlying values are present in the data, and
that γ̂Q is more invariant to such values, i.e. γ̂Q is a highly
robust estimate of the variogram.

4. Application to Hipparcos

4.1. Detection of spurious periods

When using usual period search methods, the well known
problem of aliasing can produce spurious periods. On the
basis of the phase diagram only, these periods can not be
rejected. However, the variogram can be used as a com-
plementary method. It can be very helpful to rule out
certain periods, or to increase the level of confidence in
others. The accurate determination of the period is left to
the usual period search algorithm.

Here we present an example of such a situation. The
star HIP 023743 has in its power spectrum two possible
periods: p1 = 3.348 days and p2 = 80.9 days. The associ-
ated phase diagrams are presented for these two possibili-
ties in Fig. 6. Both seem to be reasonable. However, with
the variogram, the short period can be eliminated. As we
see in Fig. 7, there is no evidence of variability signature
for the periods shorter than 3 days which could explain
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Fig. 6. Phase diagram for the star HIP 023743. Above the data
is folded with the period p1 = 3.348 days. Below, with the
period p2 = 80.9 days

Fig. 7. Estimated variogram γ̂Q of the star HIP 023743

the dispersion of the data. Figure 6 shows that the phase
diagrams both have the same amplitude of approximately
0.07. Figure 7 does not reveal any such amplitude around
p1 = 3.348, whereas it does around p2 = 80.9. This case
is also instructive because the minimum of the variogram
does not exactly coincide with the period p2 = 80.9 days.
This is due to the irregularity and scarcity of the pairwised
differences near h = 80.

4.2. Estimation of measurement noise

The precision on the Hipparcos magnitudes is strongly
variable. It can be interesting to know its dependence

Fig. 8. Estimated measurement noise by short-time differences
using γ̂Q

with respect to the magnitude. As already said, the nugget
value can be viewed as a good estimator of the noise. Only
the very short pairwised time differences are used (h = 20
minutes or h = 108 minutes). The underlying assumption
is that very few variable stars have detectable variability
at lags around h = 20 minutes.

In fact the law (cf. Fig. 8) is very close to the one ob-
tained by Eyer & Grenon (1997). For a given magnitude,
the dispersion can be high and the degradation is very
rapid (exponential). Furthermore there are some outliers
which are caused by some problems of the satellite like
light pollution from companions, mispointing, or by rapid
oscillations of stars.

Based on Fig. 8, a set of potentially interesting stars
was selected on which a high frequency analysis has been
performed. As a result we found three periodic variable
stars (HIP 071119, HIP 044025 and HIP 029055) which
are not in the published catalogues (Grenon et al. 1997
and van Leeuwen et al. 1997).

The method permits also to compare our esti-
mated noise with the quoted errors εi, furnished in the
Hipparcos photometric data base. For a given star we de-
fine a mean error by εM =

√
(
∑
ε2i /n), and a highly ro-

bust noise estimator ε(h) =
√
γ̂Q(h), with h = 20 min.

In order to confirm the adequacy of the method, a simu-
lation is carried out on the 118204 stars. The magnitudes
m(ti) are drawn from a Gaussian distribution with con-
stant mean and variance ε2i . Then, the estimator ε(h) is
calculated on the simulated m(ti) for each star.

We compare the two estimators εM and ε(h) in
Fig. 9 for the simulated data; a moving median is com-
puted and is represented by the filled circles, indicating
a reasonable match between the two noise estimators. In
Fig. 10, the estimated noise of the Hipparcos real data is
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Fig. 9. Simulated measurement noise using the highly robust
noise estimator ε(h = 20) versus the mean error εM. The grey
data cloud represents the 118204 stars of Hipparcos, and the
black filled circles denote the moving median. The graph shows
that εM and ε(h = 20) are reasonable estimators for the noise

Fig. 10. Estimated measurement noise of the Hipparcos data
using the highly robust noise estimator ε(h = 20) versus the
mean error εM. The grey data cloud represents the 118204 stars
of Hipparcos, and the black filled circles denote the moving
median. The graph shows a bias of 9% for the slope

represented following the same method. The slope of the
moving medians is 1.09 indicating a 9% bias probably due
to εi. It seems that for small εM the εi can be overesti-
mated whereas for large εM the εi are underestimated in
the Hipparcos data base. As a consequence, when doing
a photometric variability analysis, some bright variable

Fig. 11. Estimated variogram γ̂Q of the star HIP 111771

Fig. 12. Estimated variogram γ̂Q of the star HIP 060998

stars might be taken as constant, and some constant faint
stars might be taken as variable.

4.3. Example of three stars from the Main Mission

Three examples illustrate the use of the wave variogram.
We have a sequence of giant stars, located in the same
region of the HR diagram, but with different properties:
HIP 111771 is the hottest star (M2III type) with a pseudo-
period of approximately 70 days (cf. Fig. 11), and an am-
plitude (peak to peak) of 0.61 Hp mag; HIP 060998 (M4III
type) has a small amplitude of 0.23 Hp mag, and a shorter
period of about 35 days (cf. Fig. 12). For a comparison,
the Fourier power spectrum of the latter star is presented
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Fig. 13. Fourier power spectrum of the star HIP 060998.
Although a characteristic time-scale can be given in the vari-
ogram (Fig. 12), the power spectrum is noisy

Fig. 14. Estimated variogram γ̂Q of the star HIP 052507

in Fig. 13, no clear information can be deduced from it.
HIP 052507 (M5III type) has a very long time-scale vari-
ation (clearly seen in the light curve), with a shorter one
superimposed. The latter is revealed by the variogram in
Fig. 14, with a period of about 85 days, and an amplitude
of 0.53 Hp mag.

5. Conclusion

In this paper, periodic structures in variable star light
curves from the Hipparcos mission were studied with
robust variogram estimators. Several problems were

investigated, such as bin positions, bin widths and ro-
bustness properties. Some specific applications to the
Hipparcos mission were discussed, such as spurious pe-
riods detections and measurement noise. The method can
be successful for detecting time-scales of semi-regular stars
of the Hipparcos mission. Although bin positions are spe-
cific to the Hipparcos mission, the whole method can be
easily applied to other irregular time series.
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