
. ~  . a . .~ ) l  

| 
E L S E V I E R  Statistics & Probability Letters 41 (1999) 131 137 

STATISTICS& 
PROBABItJI~ 

LETTERS 

The correlation structure of the sample autocovariance 
function for a particular class of time series 

with elliptically contoured distribution 

Marc G. Genton* 

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA 

Received February 1998; received in revised form May 1998 

Abstract 

In the context of time series, the classical estimator of the autocovariance function can be written as a quadratic form 
of the observations. If data have an elliptically contoured distribution with constant mean, then the correlation between the 
sample autocovariance function at two different lags is a function of the time design matrix and the covariance matrix of 
the process. When data have a regular support, an explicit formula for this correlation is available for a particular family 
of covariance matrices. Surprisingly, this correlation structure is exactly the same as the one for a Gaussian white noise. 
(~ 1999 Elsevier Science B.V. All rights reserved 
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1. Introduction 

The autocovariance function plays an important role in time series analysis. For example, it is often used 
to study the underlying dependence structure of the process (Box and Jenkins, 1976; Brockwell and Davis, 
1987). This is an important step towards constructing an appropriate mathematical model for the data. How- 
ever, estimates of  the sample autocovariance function at different time lags are correlated, for the same 
observation is used for different lags. This is true, even if data are independent. The case of  Gaussian white 
noise has been studied by Dufour and Roy (1985, 1989), Anderson (1990, 1991, 1993), and Anderson 
and Chen (1996). Some extensions to spherical distributions can be found in Dufour and Roy (1985, 1989). 
In this paper, we study the correlation structure of  the sample autocovariance function and compute an explicit 
formula for a particular family of  covariance matrices of  the process with elliptically contoured distribution, 
thus extending the results in Dufour and Roy (1985, 1989), and Anderson (1990). Moreover, our approach is 
based on generalized multivariate statistical analysis, and yields results which do not depend on the underlying 
dependence structure of  the process, but only on the sample size and the lag distance. Further studies, for 
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example in the case of ARIMA processes, may be found in De Gooijer (1980), Anderson (1982), as well as 
Anderson and De Gooijer (1983, 1988). 

Consider a time series {Xt : t E 77} and assume that it satisfies the hypothesis of second-order stationarity: 
(i) E(Xt2)<oo, VtET/, 

(ii) E(Xt) = # = constant, Vt E 7, 
(iii) Cov(Xt+h,Xt)=7(h), Vt, h E 77, 
where 7(h) is the autocovariance function of Xt at lag h. The classical estimator for the autocovariance 
function, based on the method-of-moments, is 

n-h 

1 ~-'(X~+h --~)(Xi--~),  O<~h<~n- 1, 
~ ( h )  = n 

i=1 

(1) 

where 3 ( =  1/n ~ in l  Y i. The simple form of this estimator allows us to write (1) as a quadratic form. In fact, 
if x =  (Xl . . . . .  Am) T is the data vector and D(h) is the time design matrix of the data at lag h, then 

~(h) = (I/n) xTMD(h)Mx,  (2) 

where M = / ~  - ( I /n )1~1T  is a symmetric matrix satisfying M 2 =M, In is the identity matrix of size n x n, 
and In = (1 . . . . .  1)TE En. It is then straightforward to compute the first and second moments of the above 
expression (2), as shown in the next theorem. 

Let us first recall some concepts on elliptically contoured distributions (Fang et al., 1989; Fang and Zhang, 
1990; Fang and Anderson, 1990). A random vector x E E,  is said to have an elliptically contoured distribution 
ECn(p, S*, q~) if its characteristic function has the form 

eitT ~ (a(tz z*t) ,  (3) 

where i =  v/-L-1, t E 0~ n, p E En, Z*E ~n × n is a positive-definite matrix, and ~b a real function such that 
(3) be a characteristic function. The expectation of x is E ( x ) = p  and its covariance matrix is Var(x)=  S =  
-2q~'(0)S*. This is a general class of distributions whose contours of equal density have the same ellip- 
tical shape as the multivariate Gaussian, but which contains long-tailed and short-tailed distributions. Some 
important subclasses of elliptically contoured distributions are the Kotz-type, Pearson-type, multivariate t, 
multivariate Cauchy, multivariate Bessel, logistic, scale mixture, and of course the multivariate Gaussian with 
q~(u) = e -u/2. If p = 0  and S* =In, then x has a spherical distribution, and the contours of equal density have 
a circular shape. Recently, some Q - Q  probability plots were proposed (Li et al., 1997) to test spherical and 
elliptical symmetry in the data. Muirhead (1982) defines the kurtosis parameter K of an elliptically contoured 
distribution ECn(/t, X*, q~) as 

q~"(O) 
t o - - - -  1, 

(qV(0)) 2 

where ~b'(0) and ~b"(0) are the first and the second derivatives of ~b, evaluated at zero. In particular, the kurtosis 
parameter is equal to zero for the multivariate Gaussian distribution. Subsequently, we focus on elliptically 
contoured distributions with kurtosis parameter tc = 0, because they yield the same correlation structure of 
the autocovariance function (2) as for the multivariate Gaussian distribution. This is stated in the following 
theorem. 

Theorem 1. Let  x be a random vector with an elliptically contoured distribution ECn(/~, Z*, q~), where tt = I~ln 
and the kurtosis parameter is tc = O. Then, the sample autocovariance function ~(h ) satisfies: 

(a) E(~(h))---- ftr[MD(h)MZ*], 
n 
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(b) V a r ( ~ ( h ) ) =  ~tr[MD(h)MZ*MD(h)MZ*], 

(c) Cov(~(hl ), ~(h2)) -- ~tr[MD(hl )M2;*MD(h2)M22*], 

tr [MD( hl )M2;*MD( h2 )M22" ] 
(d) Corr(~(hl ), ~(h2 )) = v/tr[MD(hl )MZ*MD(hl )M2;* ]tr[MD(h2 )MZ*MD(h2 )M2;* ]' 
where tr[.] is the trace operator. 

Proof.  These results are automatic by-products of  multivariate analysis o f  quadratic forms for elliptically 
contoured distributions (Li, 1987) and the property Mln  = 0. [] 

In particular, note that the multivariate Gaussian distribution satisfies this theorem. 

2. A particular family of covariance matrices 

Suppose that the covariance matrix 22 E E n of  the data belongs to the particular family 5 p of  matrices: 

.9 ° = {2;IX = 0d, + 1,,a T + al,T, }, (4) 

where ~E ~ and a=(al . . . . .  an)VE ~" are defined in such a way that 22 is positive definite. For instance, 
straightforward computations show that the eigenvalues of  a covariance matrix 2; E 5 e are ~ with multiplicity 
n - 2 and 

~ + Z a i - t -  n a . 
i=l  i=1 

Therefore, for any vector a = ( a l  . . . . .  a~)TE R n, one can choose c~>O such that 

c~> n Z a  - ai (5) 
\ i=1 / ~=1 

in order to insure positive definiteness of  2;. For this particular family 5e of  matrices, formula (d) o f  Theorem 1 
for the correlation reduces to the expression given in the next theorem. 

Theorem 2. Let x be a random vector with an elliptically contoured distribution EC,,(/~,2;*,~b), where 
# =/~1, ,  ,2 = - 2q~'(0)Z* E 5 a, and the kurtosis parameter is ~: = O. Then, the correlation of the sample 
autocovariance function is 

tr[ MD( h l )MD( h2 )] 
C o r r ( ~ ( h l  ), ~ ( h 2 ) )  = v / t r [ g D ( h l  )MD(hl  )]tr[gD(h2)MD(h2)]' (6) 

which depends only on the time design matrix D(h) and the matix M. 

Proof. The result is a direct by-product o f  the following computation: 

tr[mD( hl )M22* MD( h 2 )m2;* ] 

1 
=4c~,(o)2 tr[MD(hl )M(al. + 1.a  T + alT)MD(h2)M(M. + 1.a T + al~)]  
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1 
- 4q~,(0)~ tr[(~,/D(h i )M + MD(hl ) M l , a  T + MD(hl ) M a l  T) 

x (ccMD(h2)M + MD(h2 ) M l , a  T + MD(h2 )MalT)] 

_ 1 t r [ (~4D(hl  )M + MD(hl )MalT)(~MD(h2)M + MD(h2)MalT)] 
4~b'(0) 2 

~2 

- 4~b,(0)2 tr[MO(hl )MO(h2 )], 

by using the fact that M I ,  = 0 and M 2 = M. [] 

Note that the family 5 ~ contains several interesting structures. In particular, the independent case is obtained 
by letting :~ = rr 2 and a = 0, thus yielding 2; = rr21n. Note that "uncorrelated" becomes "independent" for the 
multivariate Gaussian distribution. The equicorrelation case is also a member o f  5 e obtained by letting :¢ = 1 - p  
and a = (p/2)ln,  thus yielding 

2 ;=  P 1 ". 
• . ,  " . ,  

p ...  p 

Other choices o f  a = (al . . . . .  a , )XE ~" and ~ > 0  satisfying (5) yield a wide range o f  dependency structures. 
In all these cases the correlation structure o f  the sample autocovariance function is the same, depending only 
on the time design matrix D(h) and the matrix M, but not on the vector a. 

3. The correlation structure 

From now on, we consider data on a support of  n points, regularly spaced, and having a covariance matrix 
in the family ~ .  Definitions (1) and (2) o f  the classical estimator o f  the autocovariance function give the 
expression of  the time design matrix D(h), of  size n × n: 

D ( h ) =  ½(P(h)+P(h)T), O<~h<.n- l, 

where P(h) is an n × n matrix with ones on the hth upper diagonal and zero elsewhere, l<~h<~n- 1 and 
P(0)  =/n .  There are three possible forms of  the matrix D(h), depending on h <n /2 ,  h = n/2, or h >n /2 ,  where 
the size o f  the upper or lower diagonal o f  ones is n - h. In this situation, the matrix D(h) has a particular 
form, which allows us to compute the trace o f  the product o f  such matrices explicitly• 

Lemma 1. Let D(h) be the time design matrix of the data at lag h, of size n x n, and let M =/n  - ( l / n )  lnln T. 
Then, we have 

n - h  1 2 " " 
tr[MD(h)MD(h)]- ~ + ~-~ Dq(h) - Z Z [D2(h)lij 

i=l \ i=1 j=l 

and for h I < h2 

1 Dij(hl) Dij(h2) 2 [D(hl)D(h2)]ij . tr[MD(hl )MD(h2)] = ~ \ i=1 j=l / -- ~ \ i=1 j=l 
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Proof.  By direct computation, we have 

tr[MO(hl )MO(h2 )] 

= tr [D(hl )D(h2 ) -  1 l" l~D(h]n )D(h2 ) -  In D(h, )lnlTD(h2)+ ~ lnl~D(hl )lnlTnD(h2)l 

2 T 1 T T 
= tr[D(hl )D(h2)] - ntr[l.lnD(hl )D(h2)] q- ~ t r [ 1 . l . D ( h l  )lnlnD(h2)] 

= 0 - 2-tr[1TD(h, )D(h2)l.] + l t r [ (1TD(h ,  )l.)(lnTD(h2)l.)] 
n n - 

= n  ~ Z ~ D i j ( h l  ) ~ - -~ZDq(h2  ) 2 E Z [ D ( h l ) D ( h 2 ) ] i j  ' 
n \i=1 /=1 i=1 j=l \i=1 .j=l 

where tr[D(hl)D(h2)]=O for hi ¢h2.  The first formula is obtained with hi = h 2 = h  and tr[D(h)D(h)]= 
(n - h )/2. [] 

L e m m a  2. Let D( h ) be the time design matrix of the data at lag h, of size n x n. We have 
n 

h, 
i~l j=l 

and for h i <~ h2 

~ -~ -~  { l ( 4 n - 4 h 2 -  2hl) 
[D(hl )O(h2)]ij = 

i~l j=l l (n -- h2) 

if n - h l - h 2 / > O ,  

if n - h i  - h 2 < 0 .  

Proof. This is a straightforward consequence of the three possible forms of  D(h) given above. [~ 

With Lemmas 1 and 2, we have the following: 

Theorem 3. Let x be a random vector with an elliptically contoured distribution ECn(/~,S*,~b), where 
/ J = / d n ,  S = - 2 ~ Y ( 0 ) Z *  E 5 °, and the kurtosis parameter is x = 0 .  Suppose that the data vector x has 
unidimensional and regular support of n points. 
(1/n )xT MD( h )M x satisfies: 

• (n - h) 
(a) E(~(h))= 2n2q~,(0 ), 

(b) 

Then, the sample autocovariance function ~(h)= 

°~ 2 

4n4~'(0) 2 
Var(~(h)) = ~2 

4n4~bt(0) 2 

and for hi <h2 

(c) Cov('~(hl ), ~(h2)) = { 

((n - h)(n 2 - 2h) - 2n(n - 2h)) 

(n - h)(n z - 2h) 

if 

if 

0~ 2 
2n4c~t(O)~(hl(n - h2) q- n(n - he - hi )) 

~2 
2nac~t(o)ihl(n -- h2) 

if n - h 1  - h2>~0, 

if n - h i  - h2<0,  
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Fig. 1. This plot shows the dependence of  Corr(~(ht ),~(h2)) on the lags ht (horizontal axis) and h2 (vertical axis), for the sample 
autocovariance function when the covariance matrix of  the elliptically contoured time series is 27 6 5 a. The sample size is n = 20. The 
plot shows the contour lines for correlations between -0 .11  and -0 .10 ,  between - 0 . 1 0  and -0 .09 ,  etc. 

(d) Corr( (hl), (h2)) 

- 2 ( h l ( n  - h2) + n(n - h2 - h i ) )  

¢ ( ( n - h l ) ( n Z - 2 h l ) - 2 n ( n - 2 h l ) ) ( ( n - h 2 ) ( n Z - 2 h 2 ) - 2 n ( n - 2 h 2 ) )  

- 2 ( h i ( n -  h z ) + n ( n  - h2 - h i ) )  

¢ ( ( n  - h l ) ( n 2 - 2 h l )  - 2n(n - 2h l ) ) ( (n  - h2)(n 2 - 2h2)) 

- 2 h l ( n  - h2) 

¢ ( ( n  - hi )(n 2 - 2hi ) - 2n(n - 2hi ))((n - h2)(n 2 - 2h2))  

- 2 h l ( n  - h2) 

¢ ( ( n  -- hi )(n 2 - 2hi ))((n - h2)(n 2 - 2h2))  

i f  h2~<~, 

i f  h 2 >  2 and n - h t  - h2~>0, 

i f  hl <~ ~, and n - h i  - h 2 < 0 ,  

i f  h l > ~ .  

Note that the covariance in (c) and the correlation in (d) are always negative. These results are similar to those 
of Dufour and Roy (1985, 1989), and Anderson (1990), but they are valid under much broader conditions, 
since Theorem 2 holds for all matrices 27 E 5 a. Moreover, the multivariate Gaussian distribution of the time 
series has been extended to elliptically contoured distributions. A contour plot of  the correlation structure of 
the sample autocovariance function is visualized in Fig. 1, where n = 20 and the formula (d) of Theorem 2 
is used. The correlation ranges between -0.11 and 0, and can thus be significant for small sample sizes. Its 
general behavior is similar for other values of n. When the data are dependent through 27 ~ 5 e, the correlation 
between the observations themselves modifies the correlation of the sample autocovariance function. 

4. Conclusion 

In this paper, the correlation structure of the sample autocovariance function has been derived for specific 
time series with elliptically contoured distribution. This structure has been studied for a particular family of 
covariance matrices of the data, thus extending the results in Dufour and Roy (1985, 1989), and Anderson 
(1990). This special class of  time series contains in particular the uncorrelated case and the equicorrelation 
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case. It yields a correlation structure of the sample autocovariance function which does not depend on the 
underlying dependence structure of the process, but only on the sample size and the lag distance. Therefore, 
the statistical properties of the sample autocovariance function are the same for all this special class of time 
series with elliptically contoured distribution. 
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