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The Correlation Structure of Matheron’s Classical
Variogram Estimator Under Elliptically

Contoured Distributions1

Marc G. Genton2

The classical variogram estimator proposed by Matheron can be written as a quadratic form of the
observations. When data have an elliptically contoured distribution with constant mean, the correlation
between the classical variogram estimator at two different lags is a function of the spatial design
matrix, the covariance matrix, and the kurtosis. Several specific cases are studied closely. A subclass
of elliptically contoured distributions with a particular family of covariance matrices is shown to
possess exactly the same correlation structure for the classical variogram estimator as the multivariate
independent Gaussian distribution. The consequences on variogram fitting by generalized least squares
are discussed.

KEY WORDS: variogram estimation, quadratic form, kurtosis, variogram fitting, generalized least
squares.

INTRODUCTION

Variogram estimation is a crucial stage of spatial prediction, because it deter-
mines the kriging weights. Today, the most widely used variogram estimator is
certainly the one proposed by Matheron (1962), although it is highly nonrobust to
outliers in the data (Cressie, 1993; Genton, 1998a, 1998c). The main reasons for
this popularity are its simple appealing formulation and unbiasedness property.
If {Z(x) : x ∈ D ⊂ Rd}, d ≥ 1, is a spatial stochastic process, ergodic, and
intrinsically stationary, Matheron’s classical variogram estimator, based on the
method-of-moments, is

2γ̂ (h) = 1

Nh

∑
N(h)

(Z(xi )− Z(x j ))
2, h ∈ Rd, (1)
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whereN(h) = {(xi , x j ) : xi − x j = h} and Nh is the cardinality ofN(h). The
simple formulation of this estimator allows (1) to be written as a quadratic form.
In fact, if z= (Z(x1), . . . , Z(xn))T is the data vector andA(h) is the spatial design
matrix of the data at lagh, then

2γ̂ (h) = zT A(h)z. (2)

The spatial design matrixA(h) is a symmetric matrix of sizen × n, derived
from Equation (1). For regularly spaced data inR1, A(h) has three possible forms
depending onh (h< n/2, h= n/2, andh> n/2). For instance, ifh< n/2, then

A(h) = 1

n− h



1 −1
...

... O
1 −1

−1 2 −1
...

...
...

−1 2 −1
−1 1

O
...

...
−1 1


.

For data on a regularly spaced multidimensional grid inRd, d > 1, the spatial
design matrixA(h) can be split along each axis of the grid and described by
Kronecker products of matrices (Genton, 1998b). An important issue is to un-
derstand the statistical properties of the variogram estimator (2). For data with a
Gaussian distribution, the mean and variance (Cressie, 1993) of 2 ˆγ (h), as well as
its correlation structure (Genton, 1998b), are easily computed. The next theorem
summarizes their results.

Theorem 1. Let z be a random vector with expectation E(z) = µ1n and covari-
ance matrix Var(z)=6. Then, the expectation of Matheron’s classical variogram
estimator is

(a) E(2γ̂ (h)) = tr[ A(h)6].

Moreover, ifz is Gaussian, then

(b) Var(2γ̂ (h)) = 2 tr[ A(h)6A(h)6],
(c) Cov(2γ̂ (h1), 2γ̂ (h2)) = 2 tr[ A(h1)6A(h2)6],

(d) Corr(2γ̂ (h1), 2γ̂ (h2)) = {tr[ A(h1)6A(h2)6]}
{
√

tr[ A(h1)6A(h1)6] tr[ A(h2)6A(h2)6]} ,

where tr[·] is the trace operator.
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Although gaussianity is a nice assumption that makes many mathematical prob-
lems tractable, it is not always met in practice, or sometimes only approximately.
This problem is addressed in this paper by considering elliptically contoured distri-
butions, a wide class of multivariate distributions, which generalizes the Gaussian
one. The correlation structure of Matheron’s classical variogram estimator is com-
puted under elliptically contoured distributions in the next section. It is shown to
depend on the spatial design matrixA(h), the covariance matrix6 of the data,
and kurtosis parameterκ. The second section presents a subclass of elliptically
contoured distributions, with a particular family of covariance matrices6, that
yields exactly the same correlation structure as for the multivariate independent
Gaussian distribution. In the last section, the correlation structure is computed and
depicted with graphics for a covariance matrix6 based on a spherical underlying
variogram. The effects of the range of this variogram and of the kurtosis parameter
κ on the correlation structure are pointed out. The consequences on the generalized
least squares method with an explicit covariance structure (GLSE) for variogram
fitting (Genton, 1998b) are discussed.

ELLIPTICALLY CONTOURED DISTRIBUTIONS

Recall some concepts on elliptically contoured distributions (Fang, Kotz, and
Ng, 1989; Fang and Zhang, 1990; Fang and Anderson, 1990). A random vector
z ∈ Rn is said to have an elliptically contoured distributionECn(µ, 6∗, φ) if its
characteristic function has the form

ei tTµφ(tT6∗t), (3)

wherei = √−1, t ∈ Rn,µ ∈ Rn, 6∗ ∈ Rn×n is a positive definite matrix, andφ
a real function such that (3) be a characteristic function. The expectation ofz is
E(z) = µ and its covariance matrix is Var(z)= 6 = −2φ′(0)6∗. This is a general
class of distributions whose contours of equal density have the same elliptical shape
as the multivariate Gaussian, but that contains long-tailed and short-tailed distri-
butions. Some important subclasses of elliptically contoured distributions are the
Kotz type, Pearson type, multivariatet , multivariate Cauchy, multivariate Bessel,
logistic, scale mixture, and of course the multivariate Gaussian withφ(u)= e−u/2.
If µ = 0 and6∗ = In, thenz has a spherical distribution, and the contours of
equal density have a circular shape. Recently, some Q–Q probability plots were
proposed (Li, Fang, and Zhu, 1997) to test spherical and elliptical symmetry in the
data. Muirhead (1982) defines the kurtosis parameterκ of an elliptically contoured
distributionECn(µ, 6∗, φ) as

κ = φ′′(0)

(φ′(0))2
− 1, (4)
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whereφ′(0) andφ′′(0) are the first and the second derivatives ofφ, evaluated
at zero. In particular, the kurtosis parameter is equal to zero for the multivariate
Gaussian distribution. Subsequently, it will be shown that Matheron’s classical
variogram estimator (2) has the same correlation structure for elliptically contoured
distributions with kurtosis parameterκ = 0 as for the multivariate independent
Gaussian distribution. First, the general correlation structure is established in the
following theorem.

Theorem 2. Let z∼ ECn(µ, 6∗, φ) be a random vector with elliptically contou-
red distribution, whereµ = µ1n and the kurtosis parameter isκ. Then, the cor-
relation structure of Matheron’s classical variogram estimator2γ̂ (h) = zT A(h)z
is

Corr(2γ̂ (h1), 2γ̂ (h2)) = T(κ, h1, h2, 6
∗)√

T(κ, h1, h1, 6∗)T(κ, h2, h2, 6∗)
,

where

T(κ, h1, h2, 6
∗) = κ tr[ A(h1)6∗] tr[ A(h2)6∗] + 2(κ + 1) tr[ A(h1)6∗A(h2)6∗].

Proof. This result is derived from multivariate analysis of quadratic forms
for elliptically contoured distributions (Li, 1987):

Cov(zTC1z, zTC2z)

= 4(φ′′(0)− φ′(0)2) tr[C16
∗] tr[C26

∗] + 8φ′′(0) tr[C16
∗C26

∗]
− 2φ′(0)µT (C16

∗C2+ 3C26
∗C1)µ,

whereC1 andC2 are real symmetric matrices. SettingC1 = A(h1),C2 = A(h2),
and using the propertyA(h)µ = 0, ∀h, as well as the definition of the kurtosis
parameterκ, yields:

Cov(zT A(h1)z, zT A(h2)z)

= 4κφ′(0)2 tr[ A(h1)6∗] tr[ A(h2)6∗] + 8(κ + 1)φ′(0)2 tr[ A(h1)6∗A(h2)6∗],

and thus proves this theorem after simplification by 4φ′(0)2 in the formula for the
correlation. ¥

Corollary 2.1. Let z∼ECn(µ, 6∗, φ) be a random vector with elliptically
contoured distribution, whereµ = µ1n and the kurtosis parameter isκ = 0.
Then, the correlation structure of Matheron’s classical variogram estimator



P1: FNN/FJQ P2: FLF

Mathematical Geology [mg] PL091-872 December 16, 1999 23:29 Style file version June 30, 1999

Matheron’s Variogram Estimator 131

2γ̂ (h) = zT A(h)z is

Corr(2γ̂ (h1), 2γ̂ (h2)) = tr[ A(h1)6∗A(h2)6∗]√
tr[ A(h1)6∗A(h1)6∗] tr[ A(h2)6∗A(h2)6∗]

.

Theorem 2 gives the general formula for the correlation structure, which de-
pends on the spatial design matrixA(h), the covariance matrix6 of the data,
and the kurtosis parameterκ. Positive values ofκ correspond to long-tailed dis-
tributions, whereas negative values correspond to short-tailed ones. However,
note thatκ has a greatest lower bound (Bentler and Berkane, 1986) given by
κ > −2/(n + 2) in order to ensure positive definiteness of the covariance ma-
trix 6. Corollary 2.1 presents the correlation structure when the kurtosis param-
eter isκ = 0. In particular, this is true for the multivariate Gaussian distribution.
Note furthermore that the matrix6∗ in the correlation formula of Theorem 2 and
Corollary 2.1 can be replaced by6 without any change, thus being in agreement
with Theorem 1.

A PARTICULAR CLASS OF COVARIANCE MATRICES

Suppose that the covariance matrix6 of the data belongs to the particular
family S of matrices:

S = {6 ∣∣6 = α In + 1naT + a1T
n

}
, (5)

whereα ∈ R anda = (a1, . . . ,an)T ∈ Rn are defined in such a way that6 is
positive definite. For instance, simple computations show that the eigenvalues of
a covariance matrix6 ∈ S areα with multiplicity n− 2 and

α +
n∑

i=1

ai ±
(

n
n∑

i=1

a2
i

)1/2

.

Therefore, for any vectora = (a1, . . . ,an)T ∈ Rn, one can chooseα > 0 such
that

α >

(
n

n∑
i=1

a2
i

)1/2

−
n∑

i=1

ai , (6)

in order to ensure positive definiteness of6. For this particular familySof matrices,
the formula of Theorem 2 for the correlation reduces to the expression given in
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the next theorem, which does not depend on the matrix6 (i.e., does not depend
on the vectora, nor on the constantα).

Theorem 3.Letz∼ ECn(µ, 6∗, φ) be a random vector with elliptically contoured
distribution, whereµ = µ1n, 6 = −2φ′(0)6∗ ∈ S and the kurtosis parameter
is κ. Then, the correlation structure of Matheron’s classical variogram estimator
2γ̂ (h) = zT A(h)z is

Corr(2γ̂ (h1), 2γ̂ (h2)) = 2κ + (κ + 1) tr[ A(h1)A(h2)]√
(2κ + (κ + 1) tr[ A2(h1)])(2κ + (κ + 1) tr[ A2(h2)])

.

Proof. First compute

tr[ A(h1)6∗A(h2)6∗]

= 1

4φ′(0)2
tr
[
A(h1)

(
α In + 1naT + a1T

n

)
A(h2)

(
α In + 1naT + a1T

n

)]
= 1

4φ′(0)2
tr
[(
αA(h1)+ A(h1)1naT + A(h1)a1T

n

)(
αA(h2)+ A(h2)1naT

+ A(h2)a1T
n

)]
= 1

4φ′(0)2
tr
[(
αA(h1)+ A(h1)a1T

n

)(
αA(h2)+ A(h2)a1T

n

)]
= α2

4φ′(0)2
tr[ A(h1)A(h2)],

by using the fact thatA(h)1n = 0, ∀h. Second, notice that as a special case, we
have

tr[ A(h)6∗] = α

−2φ′(0)
tr[ A(h)].

Combining these two formulas yields:

T(κ, h1, h2, 6
∗) = α2

4φ′(0)2
[κ tr[ A(h1)] tr[ A(h2)] + 2(κ + 1) tr[A(h1)A(h2)]] ,

from which the formula for the correlation in the theorem’s statement follows,
using tr[A(h)] = 2, ∀h. ¥
Corollary 3.1. Let z ∼ ECn(µ, 6∗, φ) be a random vector with elliptically
contoured distribution, whereµ = µ1n, 6 = −2φ′(0)6∗ ∈S and the kurtosis
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parameter isκ = 0. Then, the correlation structure of Matheron’s classical vari-
ogram estimator2γ̂ (h) = zT A(h)z is

Corr(2γ̂ (h1), 2γ̂ (h2)) = tr[ A(h1)A(h2)]√
tr[ A2(h1)] tr[ A2(h2)]

.

The correlation in Theorem 3 depends on the spatial design matrixA(h) and the
kurtosis parameterκ, but not on the covariance matrix6 ∈ S. Corollary 3.1 is a
special case withκ = 0, yielding a correlation that depends only on the spatial
design matrixA(h). Genton (1998b) has a simple explicit formula for this latter
case with data inR1, as well as inRd, d > 1, by using Kronecker products of
matrices (Fang and Zhang, 1990).

The familyS contains several interesting structures. In particular, the uncor-
related case is obtained by lettingα = σ 2 anda = 0, thus yielding6 = σ 2In.
Note that “uncorrelated” becomes “independent” for the multivariate Gaussian
distribution. The equicorrelation case is also a member ofS obtained by letting
α = 1− ρ anda= (ρ/2)1n, thus yielding

6 =


1 ρ · · · ρ

ρ 1
...

...
... ρ

ρ · · · ρ 1

 .

Other choices ofa = (a1, . . . ,an)T ∈ Rn andα > 0 satisfying (6) yield a wide
range of dependency structures. In all these cases, the correlation structure of
Matheron’s classical variogram estimator depends only on the spatial design matrix
A(h), but not on the vectora, nor on the constantα.

THE CORRELATION STRUCTURE

We start by describing the correlation structure of Matheron’s classical vari-
ogram estimator, and afterwards discuss its effect on variogram fitting.

Let z = (Z(x1), . . . , Z(xn))T be the data vector, with unidimensional and
regular support for simplicity, i.e.,xi ∈ R1, i = 1, . . . ,n. The case whenxi ∈ Rd,

i = 1, . . . ,n, d > 1, is very similar as shown by Genton (1998b), using Kronecker
products of matrices (Fang and Zhang, 1990) to describe the spatial design matrix
A(h). Consider a spherical variogram model given by

γ (h,a, b, c) =


0 if h = 0,

a+ b
(

3
2

(
h
c

)− 1
2

(
h
c

)3)
if 0 < h ≤ c,

a+ b if h > c,

(7)
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wherea, b, andc are nonnegative real numbers. Suppose the data vectorz has an
elliptically contoured distributionEC n(µ, 6∗, φ),with µ = µ1n, and covariance
matrix6 based on the spherical variogram (7), i.e.,6i j = a+b− γ (|i − j |). The
correlation between Matheron’s classical variogram estimator at two different lags
is given by the formula in Theorem 2, and represented in Figure 1 for a sample
sizen = 50. The first column corresponds toc = 1 (pure nugget), and the second
one to a rangec = 10, both with a sill ofa+ b = 1. The three rows correspond
to a kurtosis parameterκ of 0, 0.5, and 1, respectively.

The differences between the two columns describe the effect of the range on
the correlation structure, and the differences between the three rows describe the
effect of the kurtosis parameter. Whenκ increases, the correlation becomes larger,
i.e., the variogram estimates become more and more dependent. Note thatκ > 0
indicates more heavy-tailed distributions. Negative values ofκ have the lower
bound−2/(n + 2) and therefore tend to zero when the sample sizen increases,
leading to plots similar to the caseκ = 0. The use of other variogram models did
not show significant differences from the plots in Figure 1.

Variogram fitting is the second crucial stage of spatial prediction because it
determines the kriging weights. Because variogram estimates at different spatial
lags are correlated, variogram fitting by ordinary least squares is not satisfactory.
Genton (1998b) describes variogram fitting by generalized least squares with an
explicit formula for the covariance structure (GLSE). It consists in finding the
estimatorθ̂ which minimizes:

G(θ) = (2γ̂ − 2γ(θ))TÄ−1(2γ̂ − 2γ(θ)), (8)

where 2 ˆγ = (2γ̂ (h1), . . . ,2γ̂ (hk))T ∈ Rk is the random vector with covariance ma-
trix Var(2γ̂) = Ä, with hi = i h/‖h‖, i = 1, . . . , k, and 2γ(θ) = (2γ (h1,θ), . . . ,
2γ (hk,θ))T ∈ Rk is the vector of a valid parametric variogram. Journel and
Huijbregts (1978) suggest usingk= K/2, whereK is the maximal possible dist-
ance between data in the directionh. Genton (1998b) proposes using the matrix
Ä defined by

Äi j = Corr(2γ̂ (hi ), 2γ̂ (h j ))γ (hi ,θ)γ (h j ,θ)/
√

Ni Nj , (9)

whereNi is the number of differences at laghi , and the correlation Corr(2 ˆγ (hi ),
2γ̂ (h j )) is computed with an explicit formula in the multivariate independent
Gaussian case, i.e., with6 = σ 2In. Corollary 3.1 extends the validity of this
formula, showing that it is still true for elliptically contoured distributions with
kurtosis parameterκ = 0, and covariance matrix6 ∈ S. In particular, the formula
is valid for all multivariate Gaussian distributions with covariance matrix6 ∈ S.

Figure 1 shows that the correlation structure of Matheron’s classical variogram
estimator under elliptically contoured distributions still depends on the kurtosis
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Figure 1. These plots show the dependence of the correlation structure Corr(2 ˆγ (h1), 2γ̂ (h2))
of Matheron’s classical variogram estimator on the lagsh1 (horizontal axis) andh2 (vertical
axis), for data with an elliptically contoured distribution and sample sizen = 50. The covariance
matrix6 is based on a spherical variogram with rangec = 1 (pure nugget),c = 10, and the
kurtosis parameter isκ = 0, 0.5, 1. The plots show the contour lines for correlations between
0 and 0.1, between 0.1 and 0.2, etc.
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parameterκ. Therefore, the formula for the correlation Corr(2 ˆγ (hi ), 2γ̂ (h j )) in
Equation (9) can be improved by using Theorem 3 and estimatingκ from the
data. For instance, a consistent estimator ˆκ can be found in Waternaux (1976), or
Muirhead and Waternaux (1980). Note that in this situation, the covariance ma-
trix Ä is positive definite because the correlation matrix defined by Corr(2 ˆγ (hi ),
2γ̂ (h j )) is positive definite. This is a direct consequence of Schur’s theorem (Horn
and Johnson, 1991), as is shown by Genton (1998b) for the multivariate Gaussian
case.

For other variogram estimators that cannot be expressed as a quadratic form
of the data, like the one proposed by Cressie and Hawkins (1980), or the highly
robust one proposed by Genton (1998a), closed forms of the correlation structure
are not available. However, simulations like the ones in Genton (1998b) show
that these correlation structures are not very different from the one of Matheron’s
classical variogram estimator. This is especially true for the highly robust vari-
ogram estimator. Therefore, one can still use the results of the previous theorems
and corollaries as approximations for the correlation structure of other variogram
estimators.

CONCLUSIONS

In this paper, the correlation structure of Matheron’s classical variogram es-
timator has been computed when data have an elliptically contoured distribution.
In general, this correlation structure depends on the spatial design matrix, the co-
variance matrix, and the kurtosis. However, for a subclass of elliptically contoured
distributions with a particular family of covariance matrices, the correlation struc-
ture depends only on the spatial design matrix. Moreover, it is exactly the same
as for the multivariate independent Gaussian distribution. This result allows one
to extend the validity of the method of variogram fitting proposed by Genton
(1998b), which is based on generalized least squares with an explicit formula for
the covariance structure (GLSE).
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