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Variogram Model Selection via Nonparametric
Derivative Estimation1

David J. Gorsich and Marc G. Genton2

Before optimal linear prediction can be performed on spatial data sets, the variogram is usually
estimated at various lags and a parametric model is fitted to those estimates. Apart from possible
a priori knowledge about the process and the user’s subjectivity, there is no standard methodology
for choosing among valid variogram models like the spherical or the exponential ones. This paper
discusses the nonparametric estimation of the variogram and its derivative, based on the spectral
representation of positive definite functions. The use of the estimated derivative to help choose among
valid parametric variogram models is presented. Once a model is selected, its parameters can be
estimated—for example, by generalized least squares. A small simulation study is performed that
demonstrates the usefulness of estimating the derivative to help model selection and illustrates the
issue of aliasing. MATLAB software for nonparametric variogram derivative estimation is available at
http://www-math.mit.edu/˜gorsich/derivative.html. An application to the Walker Lake data set is also
presented.

KEY WORDS: nonparametric, variogram fitting, derivative estimation, generalized least squares,
model selection, aliasing.

INTRODUCTION

In optimal linear spatial prediction, or kriging, the choice of weights is completely
determined by the choice of the variogram model. Therefore, choosing the vari-
ogram model as closely as possible to the underlying variogram that defines the
dependence of the data is crucial. Current geostatistical practice in selecting a var-
iogram model is often rather subjective. Sometimes,a priori knowledge about the
underlying stochastic process can be helpful. For example, topography is fairly
smooth and might easily be modeled by a Gaussian variogram, whereas some
geologic processes are cyclical in nature and could suggest a hole effect model.
However, when such information is not available or not relevant enough, one has
to rely on some empirical guidelines (e.g., Journel and Huijbregts, 1978; Clark,
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1979), related to the range, sill, and nugget effect of the variogram. These rules
are often lacking because the shape of some variogram models is very similar: for
instance, compare the exponential, Gaussian, and spherical models. The new tool
this paper presents is a nonparametric variogram derivative estimator shown to be
helpful in the discrimination of variogram models. Effectively, although variogram
models look similar, their derivatives are often quite different. This paper starts
by giving an example of the subjectivity involved in the selection of a parametric
variogram model, and its effect on kriging. Next the use of the nonparametric esti-
mator of the variogram to determine its derivative is discussed: the nonparametric
estimator is introduced so that the estimated variogram is conditionally negative
definite. MATLAB software is written that performs the nonparametric estimates
for both the variogram and derivative. Results are displayed using a graphical user
interface so that the closest parametric model can be selected easily. In the end,
a small simulation study is performed to test the new tool on four different vari-
ogram models that look similar but have dissimilar derivatives. An application to
the Walker Lake data set is also presented.

The importance of the variogram model on the kriging weights can be seen
by studying one of the simplest stochastic processes. Consider a spatial stochas-
tic process{Z(x): x∈ D}, whereD is a fixed subset ofRd, d≥ 1. The process
is assumed to be isotropic, and intrinsically stationary, i.e., for allx andx+ h
in D:

E[Z(x)] = µ = constant

Var[Z(x+ h)− Z(x)] = 2γ (h)

γ (h) = γ (‖h‖)

Consider a realization ofZ at a finite number of points{Z(xi ): xi ∈ D} for i =
1, . . . ,n. The optimal linear predictor forZ(x0), x0∈ D, in a mean squared error
sense, can be found using a linear combination of the knownZ values:

Ẑ (x0) =
n∑

i=1

λi Z(xi ) (1)

The weightsλi are constrained so that
∑n

i=1 λi = 1, which guarantees uniform un-
biasedness and are chosen to minimize E(Z(x0)−Ẑ (x0))2. This gives the following
minimization problem:

E

(
Z(x0)−

n∑
i=1

λi Z(xi )

)2

− 2ξ

(
n∑

i=1

λi − 1

)
(2)

whereξ is the Lagrange multiplier. Working through the algebra and differentiating
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gives the following set of equations to solve:

−
n∑

j=1

λ j γ (xi − x j )+ γ (x0− xi )− ξ = 0 (3)

for i = 1, . . . ,n and with the restriction that
∑n

i=1 λi = 1. In this way Cressie
(1993) arrives at the following formula for the weights:

λT =
(
γ + 1n

1− 1T
n0
−1γ

1T
n0
−11n

)T

0−1 (4)

where λ= (λ1, . . . , λn)T ,γ= (γ (x0− x1), . . . , γ (x0− xn))T , 1n= (1, . . . ,1)T ,
and0 is a symmetric matrix with0(i, j )= γ (xi − x j ) for i = 1, . . . ,n and j =
1, . . . ,n, 0(i, j )= 1 for i = n+ 1 and j = 1, . . . ,n, 0(i, j )= 1 for j = n+ 1 and
i = 1, . . . ,n, and0(n+ 1, n+ 1)= 0. The prediction varianceσ 2 of the estimator
at pointx0 is given by

σ 2(x0) = γT0−1γ −
(
1T

n0
−1γ − 1

)2
1T

n0
−11n

(5)

The weights and the prediction variance can not be solved for without esti-
mating the variogramγ from the data. The equations for both the weights and the
prediction variance only depend on the variogram function. In situations when the
data set is small, incorrectly modeling the variogram can have a significant effect
on the new predicted values. For an example of the importance of choosing the
correct variogram model for fitting, consider a stochastic processZ of 256 points
on a 16 by 16 grid inR2. Let Z be generated using an exponential variogram with a
sill of 1, a nugget of 0 and a range of 9 (where 95% of the sill is reached). Figure 1
is a plot of one realization of such a stochastic process.

To estimate the variogram points from this realization, Matheron’s classical
estimator is used (Matheron, 1962). This unbiased estimator is given by

2γ̂M (h) = 1

Nh

∑
N(h)

(Z(xi )− Z(x j ))
2

whereN(h)={(xi , x j ) | xi − x j = h} andNh is the cardinality ofN(h). Since the
estimated points do not necessarily satisfy the conditionally negative definiteness
requirement for the variogram, a valid model is fitted to them by least squares.
Figure 2 shows three variogram models, an exponential, a Gaussian, and a spheri-
cal, fitted to Matheron’s estimates by ordinary least squares. Even though the data
were generated from an exponential variogram, it is not clear that the exponential
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Figure 1. One realization of an isotropic stochastic processZ consisting of 256 regularly spaced
points, with a mean of zero. The process is defined by an exponential variogram model with a range
of 9, a sill of 1, and a nugget of 0.

variogram should be chosen instead of the Gaussian or the spherical. In fact, based
on the residual sum of squared error of the exponential, Gaussian and spherical
model least squares fits (0.2397, 0.2213, and 0.2158 respectively), the best model
to choose for the variogram is not the exponential variogram which generated
the data.

Although the three variograms fit Matheron’s points closely, the effects on
newly predicted points and on the predictor’s variance can be large. Consider
15× 15 newly predicted values at the midpoints of the knownZ values. Should
the exponential model be chosen, the maximum predictor variance is 0.210. In
the case of the spherical model, the maximum variance is 0.506 and is 0.537 for
the Gaussian model. Although the spherical and Gaussian models fit closer to
Matheron’s estimates, the predicted points for those models have a much larger
variance.

Assume Matheron’s variogram estimates are fitted with the Gaussian model.
This gives a different set of predicted values than the exponential model would.
The absolute value difference between the exponential prediction and the Gaussian
prediction is shown in Figure 3. The average absolute difference is 0.290, and the
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Figure 2. Matheron’s variogram estimates are determined from the stochastic process in
Figure 1. Exponential, spherical, and Gaussian variogram models are fitted equally well by
ordinary least squares to the variogram points.

maximum difference is 1.156. Even though the fits between the Gaussian and
exponential variograms are close in Figure 2, the predicted values at the midpoints
are quite different. Even worse is the fact that the confidence bands are different.
The 95% confidence bands for the Gaussian model areZ(x0)± 1.96σ (x0), which
are on averageZ(x0)± 1.436. The exponential 95% confidence bands are only
Z(x0)± .897 on average so that the real confidence intervals are much tighter.

Although the choice of the variogram model is critical for small data sets,
misspecification of the model is not as important for larger data sets. Stein (1988,
1990) showed in a series of papers that an incorrect variogram model can be used to
still achieve an optimal estimator in the asymptotic case where the number of data
points realized becomes dense in the domainD (infill asymptotics). Unfortunately,
it is rarely the case that the number of spatial locations is dense in the domain given,
and we are interested in small data sets. Notice also that should the geometry of
the data’s spatial locations be changed, misspecification of the variogram could
give even larger errors in confidence bands and predicted values.

The Gaussian, exponential, and spherical variogram models are only three of
several commonly used models, depicted in Figure 4. Formulas for these parametric
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Figure 3. The absolute value of the difference between the predicted surfaces determined with the
Gaussian and exponential variograms. The peak difference between the two surfaces is 1.156.

models can be found in Journel and Huijbregts (1978) and Cressie (1993). Their
corresponding derivatives are shown in Figure 5. Most of the variogram models
appear very similar, but their derivatives with respect to the lags are not. The
main idea of this paper is to differentiate the nonparametric variogram estimates
to help determine which parametric model is most suitable. Then, a least squares
technique can be used to fit the selected parametric model, for example weighted
least squares (Cressie, 1985) or generalized least squares (Cressie 1993; Genton
1998b). The parametric model can then give an estimate of the nugget, sill, and
range, which are not well defined in the nonparametric fit. The next two sections
discuss the nonparametric estimation of the variogram and its derivative.

NONPARAMETRIC VARIOGRAM ESTIMATION

In order to estimate the derivative without assuming a prior model, a non-
parametric estimator is needed for the variogram that guarantees its conditional
negative definiteness. Standard derivative estimators cannot be used directly since
they are not guaranteed to be derivatives of a conditionally negative definite func-
tion. Nonparametric approaches to variogram estimation first appeared in Shapiro
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Figure 5. Derivatives of some variogram models.
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and Botha (1991), and then later in Cherry and others (1996), and Cherry (1997).
Barry and Ver Hoef (1996) fit a mixture of piecewise-linear variogram models to
the empirical variogram. They prove that inR1, any continuous variogram with a
sill can be approximated arbitrarily closely by piecewise-linear variograms. Ecker
and Gelfand (1997) discuss variogram modeling in a Bayesian framework using
an expected utility function (to be maximized) as a model choice criterion. The
key idea behind a nonparametric estimator for the variogram is Bochner’s theorem
(Bochner, 1955). His theorem gives the spectral representation for any positive
definite function. In particular, a covariance functionC(h) is positive definite if
and only if it has the following form:

C(h) =
∫ ∞
−∞
· · ·
∫ ∞
−∞

cos(uTh)F(du) (6)

where F(du) is a positive bounded symmetric measure. IfC(h) is isotropic,
Bochner’s theorem can be written as (Cressie, 1993)

C(h) =
∫ ∞

0
Är (ht)F(dt) (7)

whereÄr is a basis for functions inRr given by

Är (x) = (2/x)(r−2)/20(r/2)J(r−2)/2(x) (8)

whereF(dt) is a nondecreasing bounded function,0(r/2) is the gamma function,
andJv is the Bessel function of the first kind of orderv. Some familiar examples
of Är areÄ1(x)= cos(x), Ä2(x)= J0(x), andÄ3(x)= sin(x)/x. There is a con-
siderable amount of freedom in the choice ofr . The only requirement to maintain
positive definiteness is thatr ≥ d, whered is the dimension of the spatial domain
D. The effects of choosing differentr on the estimator will be discussed later.

A spectral representation of the variogram is derived from Equation (7) by
means of the relation:

γ (h) = C(0)− C(h) (9)

To solve forγ (h), we choose a vectort, which represents the locations of the jump
points in a discretization ofF(t). Let the length oft, i.e., the number of jump points,
bem and the size of each jump pointpj for j = 1, . . . ,m. For the simulations that
follow we choose 260 jump points ast= [π/600 :π/130 : 2π ]T , where [a : b : c]T

is a column vector starting ata, ending atc, and with increments ofb. The vectort
should be chosen very carefully. The smallest value oft is critical, and so is the
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largest one. The best jump points will depend on the problem, and the lagsh that
accompany it. More details on howt is chosen follows in the next section.

In order to find ˆγ (h) from γ̂M , let F(t)= ∑m
j=1 pj1(t − t j ), where1 is the

step function:

1(t − t j ) =
{

1, if t ≥ t j ,

0, otherwise
(10)

Givent= (t1, . . . , tm)T andF(t), the nonparametric estimator has the form

γ̂ (hi ) =
m∑

j=1

pj (1−Är (hi t j )) (11)

wherei = 1, . . . , l is the lag number and the estimate ofC(0), the sill, is
∑m

j=1 pj .
This is a discrete version of the variogram giving its values only athi , thei th lag
value found using Matheron’s estimator. Assuming Equation (11) can be used to
estimate the variogram at any lag, we have

γ̂ (h) =
m∑

j=1

pj (1−Är (htj )) (12)

To find the jumpspj we estimate the empirical variogram points from a realiza-
tion of Z using Matheron’s estimator. Therefore, using the points ˆγM (hi ), pj is
estimated by minimizingSgiven by

S[p]=
l∑

i=1

wi

(
γ̂M (hi )−

m∑
j=1

pj (1−Är (hi t j ))

)2

(13)

or equivalently in matrix notation,

S[p] = (γ̂M − Mp)T W(γ̂M − Mp) (14)

whereMi j = 1− Är (hi t j ), γ̂M = (γ̂M (h1), . . . , γ̂M (hl ))T, p = (p1, . . . , pm)T ,
andW= diag(w1, . . . , wl ) is a weighting matrix that we assume to be the identity
for simplicity. The estimator ˆγ (h) can now be differentiated as is done in non-
parametric kernel estimation (H¨ardle, 1989; Wand and Jones, 1995), or estimated
with some other standard derivative estimators. In the next section, the problem of
aliasing is shown to be a serious issue for the differentiation of the kernelÄr (ht).
Finite differences of the nonparametric estimator avoid this problem.
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NONPARAMETRIC VARIOGRAM DERIVATIVE ESTIMATION

A classical approach to estimate the derivative is to use the same jumpsp and
differentiate the kernelÄr (x) (Härdle, 1989; Wand and Jones, 1995). A standard
derivative estimator would therefore be:

γ̂ ′ = M ′p (15)

whereM ′, the derivative of the matrixM with respect toh is defined byM ′ij =
−Ä′r (hi t j ) andp is the same vector as before. The derivative estimate ˆγ ′ is a vector
giving derivative estimates only at discrete lagshi , i = 1, . . . , l . The way in which
Är is differentiated is very important near the origin where we are dividing 0/0.
The most stable way to perform the differentiation is to use the following relation:

∂

∂x

Jv(x)

xv
= − Jv+1(x)

xv
(16)

Therefore,

∂

∂x
Är (x) = −

(
x

r

)
Är+2(x) (17)

For example, forÄ2(x) the derivative is−J1(x). If standard chain rules are used
instead, the estimate ofÄ′r does not go to zero at the origin due to numerical
roundoff errors.

In almost all cases, the differentiation of the kernel does not work well for esti-
mating the variogram’s derivative because of the basisÄr . For most data sets,D will
contain irregularly spaced locations and there will typically not be enough samples
per period to avoid aliasing. The basis functionsÄr (x) are oscillatory in nature,
and there will be an aliasing problem since the Nyquist sampling rate (Oppenheim
and Schafer, 1989) will not normally be achieved. Assume the variogramγ is
a bandlimited function that is sampled everyT lags or with sampling frequency
1/T in samples per unit distance. This meansγ (hi ) = γc(iT ), i = 1, . . . , l where
γc is the continuous version of the variogram defined by Equation (12). Sinceγ

is bandlimited, its does not contain frequencies aboveω. To avoid aliasing, the
function must be sampled with a sampling frequency ofωs given by the Nyquist
sampling theorem (Oppenheim and Schafer, 1989):

ωs > 2ω (18)

whereωs= 2π/T . If this inequality does not hold, high frequency artifacts known
as aliasing are introduced into the estimation. As an example, consider the function
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cos(ωx). It does not contain frequencies aboveω. In fact, it only contains the
frequencyω. Let the sampling period beT so that sampling is regular. Ifω= 1,
then there must be at least two samples within lags ofπ . The Fourier transform
of cos(ωx) is just two impulses at±ω. When cos(ωx) is sampled at discrete lags,
the Fourier transform of the sampled function becomes shifted repeated copies of
the original transform of cos(ωx), i.e., shifted repeated copies of two impulses.
If ωs< 2ω then repeated copies overlap causing aliasing and values ofγc(h) at
locations other thanhi cannot be found. With aliasing, the reconstructed function
from its samples is not cos(ωx), but instead cos((ωs−ω)x). The original function
cannot be recovered. This means the function of higher frequency, cos(ωx), is
now the same as the lower frequency function of cos((ωs−ω)x). In general, since
the lags are not regularly spaced, the Fourier transform of the sampled variogram
function will not be periodic, but aliasing will still occur.

The basis functions for the nonparametric estimator of the variogram are
in fact asymptotically equivalent to a weighted cos(x) with some phase amount.
The frequencies of the basis functions in Equation (8) can be seen through the
asymptotics of the Bessel functions of orderv, wherev= (r − 2)/2. For large
x, xÀ ( 1

2v
2− 1

8) (Arfken, 1985):

Jv(x) ≈
√

2

πx
cos

(
x −

(
v + 1

2

)
π

2

)
(19)

Therefore, for anyr and alli , we require samples within lags of length (hi+1−hi )t j

to be less thanπ . Of course, there is no way to force lags to always be underπ .
The values ofhi are fixed from Matheron’s estimator. To prevent aliasing for the
derivative, it is required for alli and j thathi+1t j −hi t j < π . Unfortunately,t can
rarely be chosen to satisfy this. The largest value oft must be at leastπ in order
that the higher frequency variations inγ can be fitted.

The aliasing issue does not appear in the nonparametric fitting, because the
vectorp is found using the aliased vectors, which still provide a valid basis for
the variogram. However, this vector does not correspond to the aliased columns in
the matrixM ′, and aliasing now becomes important.

As an example, consider bounded linear variograms of ranges 5, 10, 15,
and lags [0.5:1:39.5]T . Now to avoid aliasing,t j<π for all j must be satisfied.
Assume that Matheron’s estimator has given the variogram values perfectly, with
sill= 1 and no nugget. This variogram is valid inR1 so the basisÄ1(x)= cos(x)
can be used. Now the discussion of aliasing immediately applies with regularly
spaced lags. The jump pointst must be chosen sufficiently small to capture the
low frequency content of the variogram. Variograms with larger ranges require
smaller values oft. With a range of 15, the linear bounded variogram requires at
least some values oft smaller thanπ/26, whereas for ranges 10 and 5 the values
areπ/23 andπ/20, respectively. Witht1 larger than those values, the sum squared
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error in the nonparametric fit jumps by a factor of 10, and the error in the derivative
will become much worse. Smaller values oft1 only improve slightly on the error
as long as the last value oft is held fixed. Note thatt1 must be larger than zero to
avoid singular matrices. The fit works well for jumps att= [π/40:π/320:π/2]T ,
but there are still small variations in the fit which are amplified by the derivative.
To improve the fit further, higher frequencies are needed andtmax must be greater
thanπ/2, which is not a problem for the nonparametric variogram at fixedhi . For
variograms like pure nugget, the maximum node value must be around 2π . For
the bounded linear variogram example, the derivative is

∂

∂h
γ (h) =

{
sill/range, if h< range,
0, otherwise.

(20)

To approximate the jump from sill/range to 0, high frequencies aboveπ/2 are
needed. The key thing to notice is thatt j plays the same role asω, and in general,
there will be aliasing inM . The two things that needs to be taken care of are
choosing smallt1 andtmax in order that low frequencies are fitted and aliasing is
reduced, and to havetmax large enough to provide a good fit to Matheron’s points.
Cherry and others (1996) choosetmax= 20 for their simulations.

When the derivative is taken, high frequencies are amplified, and the need for
largertmax becomes more urgent. The magnitude of the frequency response of an
ideal differentiatorH is (Oppenheim and Schafer, 1989):

|H (ω)| = |ω| (21)

for |ω|<π/T and zero otherwise. Convolution in time is the same as multiplication
in the frequency domain. The higher frequencies that get amplified are exactly the
columns with the worst aliasing inM and in generalM ′p will not provide a good
fit to the derivative.

To avoid the aliasing problem, a new matrixM̃
′
can be used that reflects the

fact that only samples ofγ have been estimated. Now, finite differences along every
column of M are used instead. This is another approximation, but it reflects the
true basis that was used to calculatep given the irregularly sampled points, and is
minor in comparison to the aliasing.M̃

′
is calculated by taking centered differences

along every column ofM and forward and backward differences for the first and
last two rows ofM . The matrixM̃

′
more closely resembles the derivative of the

basis that has been chosen and in general:

M̃
′ 6= M ′ (22)

except in the first few columns wherehi+1t j − hi t j ¿π . Figure 6 shows the
sum squared error between the columns ofM̃

′
and M ′. The error begins to

jump significantly due to aliasing aroundπ/2.
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Figure 6. The squared error between columns ofM ′ and M̃
′

is displayed. Error comes from
two sources: aliasing and the finite difference approximation. Error comes mainly from the finite
differences.

Another good reason to use finite differences onM is that the basisÄ′r goes
to zero very strongly near small lags. Because of Equation (7), the value of the
estimators at lag zero must be zero. At lag zero,Är (0)= 1 andÄ′r (0)= 0. Finite
differences avoid this problem by only relying onÄr . For most data sets the
nugget will not be zero. However, the derivative estimates close to the origin will
not be affected because finite differences rely only on the first few lags, not on the
nugget.

Since there is a great amount of freedom in the choice ofr , and therefore
the smoothness of the solution, there is no need to smooth the data by binning in
Matheron’s estimator. It is better to have more points to estimate ˆγ so the bins are
taken to be small. As long asr ≥ d, the nonparametric variogram estimate will
be conditionally negative definite, and will be the best fit to the points in a least
squares sense. Choosing largerr gives smoother fits to the data. The reason for
this was first proved by Schoenberg (1938) by demonstrating that Equation (7) is
(r −1)/2 times differentiable. This implies that in higher dimensional spaces, there
is a smoothing effect caused by the positive definiteness condition. Whenr =∞
thenÄ∞(x)= e−x2

. An example of the behavior of the estimator forr between 2
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Figure 7. The nonparametric derivative estimation of a spherical variogram withr between 2 and
8. Asr increases, the fit becomes smoother and the value of the derivative near zero decreases.

and 8 is shown in Figure 7. The nonparametric derivative fits quickly approach
the smoothest fit, given by usingÄ∞ as a basis. Here the original data set was
simulated with a spherical variogram, and the derivative in fact is very close to the
true spherical derivative. Notice, asr increases from 2–8, the small scale variation
near zero lag is lost and the derivative begins to look like it could be an exponential
one. The derivative near small lags begins to increase with increasingr , but even
at r = 8 the derivative falls off quickly at larger lags making it still closer to a
spherical variogram model. It was found that values ranging fromd+ 1 to d+ 4
were optimal for the simulations that were performed in this paper.

Another advantage to takingr ≥ d is that aliasing is reduced. Asr increases,
the basis becomes less like a periodic function and more like a Gaussian. The
asymptotic approximation in Equation (19) holds for only larger and larger lags as
r increases. Thereforer can be chosen to take the basis out of the range of the lags
in a given problem. Although choosingr somewhat larger thand helps smooth out
the estimates, takingr too large causes the matricesM andM ′ to become more and
more singular, and also wipes out smaller variations in the data as seen in Figure 7.
Oversmoothing can easily blur the distinction between variogram derivatives.



P1: FMN

Mathematical Geology [mg] PL093-884 January 12, 2000 14:47 Style file version June 30, 1999

264 Gorsich and Genton

THE MATLAB SOFTWARE

For a tool to be useful, it should also be easy to use as well as an aid in
the selection of a model. MATLAB has built in graphical user interface (GUI)
tools that were used to build pop-up windows. One window for the estimates of
the variogram, and the other for the estimates of the derivative. These estimates
are displayed above some parametric models and their derivatives. Figures 8 and
9 display the GUI for the data presented in the introduction (Figures 1 and 2),
simulated with an exponential variogram. Two windows appear, one with the

Figure 8. The graphical user interface displays the nonparametric fit for three
values ofr in the larger plot. The four smaller plots show the shapes or four
parametric models of variograms.
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Figure 9. This graphic displays the nonparametric derivative estimates
in the larger plot and shows the derivatives of four variogram models.
The derivative estimates most closely follow the characteristics of an
exponential variogram derivative.

nonparametric fits forr = 4, 5, and 6, and the other with the derivatives of those
nonparametric fits. The derivative window also displays the fit forr =∞. Four
smaller windows below give a reference to the user of what the derivatives should
look like for particular models. Recall that the selection of the variogram model
was quite difficult in this case, and that one would not choose the exponential
model. It can be seen in Figure 9 that the estimated derivative of the variogram
suggests the exponential model and rules out the other ones. This is an example
of the help that the variogram derivative can provide for model selection.
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SIMULATIONS

In order to test our method, a small simulation study was performed inR2 with
Gaussian, exponential, pure nugget and spherical variograms at various ranges,
and using different values ofr . A linear bounded variogram was not compared
since it is only valid inR1. The Cholesky method was used to simulate the data
on 20× 20 grids inR2. The grids were regular with a total of 400 grid points.
The covariance matrix6 is factorized into two matrices:6= LLT . Using this
factorization,z= (Z(x1), . . . , Z(xn))T is given by

z= µ+ Lε (23)

whereε is a vector of independent and identically distributed (i.i.d.) Gaussian
random variables andµ=µ1n with 1n the column vector of ones.

Whether or not the estimated derivative could discriminate the variogram
model correctly is determined by visual inspection. To determine if there is a
benefit of having a derivative estimate, the computer first displays Matherons’s
points along with the nonparametric fits and asks the user what variogram was used
to generate that particular stochastic process. The user responds without knowing
what the underlying variogram is. After recording the results for 200 stochastic
processes, the user again looks at the nonparametric fits of Matheron’s points, but
also has the derivative estimate displayed forr = 3 and 4. The computer again
asks what the user thinks the underlying variogram is and the results are recorded.
There are three key ways used to classify the differences between the models from
the derivative. The first way is to observe whether the derivative is increasing or
decreasing at small lags. This characteristic clearly separates the Gaussian model
from the rest. The next characteristic to classify variograms is to observe how
quickly the derivative falls to zero. The derivative of the spherical model falls off
quickly, whereas the one of the exponential falls off very slowly. The derivative of
the spherical model tends to be flat at small lags, whereas the one of the exponential
model is rising towards lag zero. Note also that the derivative of the spherical model
is concave, whereas the one of the exponential is convex. Finally for a pure nugget
variogram, the derivative is close to zero and flat, which is easily distinguished
from the others. These characteristics can be seen in Figure 5.

For the simulations,t is given byt= [π/600 :π/130 : 2π ]T for the 260 jump
points. Choosing more than 300 jump points slows down simulations considerably,
and only slightly improves the results. The simulation of 200 random processes
is conducted with the variogram randomly chosen using a uniform distribution.
There were a total of 53 spherical, 61 exponential, 46 Gaussian, and 40 nugget
variograms used. The mean ofz was fixed to zero, and the variograms all had a
sill of 1 and a nugget of 0 except for the pure nugget variogram.



P1: FMN

Mathematical Geology [mg] PL093-884 January 12, 2000 14:47 Style file version June 30, 1999

Variogram Model Selection 267

Table 1. Percentage of Correct Selections of Variogram Modelsa

Variogram type Without derivative With derivative

Exponential 16/28= 57% 24/28= 86%
Spherical 14/24= 58% 19/24= 79%
Gaussian 7/17= 41% 15/17= 88%
Pure nugget 31/31= 100% 31/31= 100%

aVariograms other than pure nugget have a sill of 1, a nugget of 0,
and a range (or equivalent range) of 9. The pure nugget is 1. Each
percentage is based on simulations.

Table 1 shows the percentage of correct classifications determined from the
key characteristics of the four variograms with and without the derivative available.
The range for the spherical variogram and the equivalent range for the exponential
and Gaussian to reach 95% of the sill were chosen to be 9. In all cases except
for the nugget, the derivative estimate aided in the selection of the underlying
variogram model. Without the derivative the correct model was chosen only 54%
of the time. When the derivative was used, the classification rate went to 84%,
an increase of 30%. The nugget model is not included in these numbers since
it is easy to distinguish from either the derivative or the nonparametric fits. For
other ranges, the improvement in classification with the derivative is similar. The
derivative does very well at helping the user’s ability to classify the three variogram
models correctly. If the model is not classified correctly with the derivative, it was
rarely classified correctly without the derivative.

Althoughr = 2 could be used, there was too much variation in the estimates.
Since no binning was performed on Matheron’s estimates, ar = 3 or higher was
used to smooth the estimates. Raisingr greater than 6 only makes the small lag
variation deteriorate. In a different simulation study it was found that varyingr
from 3 to 5 did not change the classification results much. The method can work
better if there are data points between lags of length 1, but then matrices larger
than 900× 900 would be required that would take much more simulation time.
The use of a highly robust variogram estimator (Genton, 1998a) can also improve
the results. The derivative estimate usingM ′ fails almost 75% of the time for all
cases, but improves slightly on increasingr . Using large values ofr , around 30 or
40, with M or M ′ was problematic due to numerical errors.

APPLICATION TO THE WALKER LAKE DATA SET

Our technique was also tested on a variogram from the Walker Lake data set.
The Walker Lake area is in Nevada, in the western United States. The data set
consists of elevation data over 260× 300 grid. A complete analysis on a subset of
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Figure 10. Matheron’s variogram estimates on a subset of the Walker data set given
by Isaaks and Srivastava (1989). The nonparametric variogram fits the points for
bothr = 3, r = 4, andr =∞.

Figure 11. The nonparametric variogram derivative estimates for the Walker Lake data
set for bothr = 3, r = 4, andr =∞. The derivative estimates most closely follow the
characteristics of an exponential variogram derivative.
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this data set can be found in Isaaks and Srivastava (1989). They randomly sampled
the data set in the east-west direction at about 5 m apart and with an angular
tolerance of 20◦. Matheron’s estimator was then used to generate 11 variogram
estimates and are given in a table in the book. These points are plotted in Figure 10
along with the nonparametric estimates atr = 3, r = 4, andr =∞. Figure 11
then shows the resulting derivative estimates that are shaped as an exponential
derivative. The exponential model coincides with the model judged by the authors
to be the best model to use for kriging.

CONCLUSIONS

In this paper, it has been shown that the derivative of the nonparametric
variogram estimator can be used as a tool to aid in variogram model selection. In
estimating the derivative, key issues of nonparametric estimation and aliasing were
addressed. Simulations were performed with Gaussian, exponential, pure nugget,
and spherical variograms, on two-dimensional grids. The Gaussian, exponential,
and spherical variograms can be hard to distinguish unless the derivative is es-
timated, which makes the choice of the variogram model easier. The variogram
model was selected correctly approximately 30% more often with the help of the
derivative than without. A graphical user interface was developed as a tool to be
used by practitioners who need additional insight for interpreting the estimated
variogram points. MATLAB software for the GUI is available at http://www-
math.mit.edu/˜gorsich/derivative.html. Finally, an application to the Walker Lake
data set was presented.
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