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Abstract

This paper presents the computation of the change-of-variance function of M-estimators of
scale under general contamination for dependent observations. In this context, several results of
robustness are established, and the links between B-robustness, V -robustness and V♦-robustness
are studied. Some more speci2c properties are derived for Gaussian distributions. These results
are then applied to variogram estimation, which is a crucial stage of spatial prediction. The
change-of-variance function is shown to be a tool to explore the e'ects of dependencies on the
variance of variogram estimators. ARMA models are used in order to model unidirectional spatial
dependencies. It is shown that the shape of the change-of-variance function under dependence
is characteristic of the type of variogram estimator. However, this shape depends also on the
underlying dependency structure, its intensity, as well as the lag distance of the variogram
estimates. Therefore, statistical insight is provided into the sensitivity and the behavior of the
variance of the variogram estimator at di'erent spatial lags. For instance, this variance plays
an important role when 2tting a parametric variogram model by weighted or generalized least
squares. c© 2001 Published by Elsevier Science B.V.
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1. Introduction

The purpose of this article is twofold. First, we compute the change-of-variance
function of M-estimators of scale under general contamination for dependent data
and study the corresponding robustness properties. Second, we discuss the use of the
change-of-variance function as a tool to explore the e'ects of dependencies in spa-
tial statistics on variogram estimators: it will produce insight into the sensitivity and
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the behavior of the variance of these estimators in dependent situations. This can be
best done by means of a simple example, involving ARMA models as in time-series
analysis. As an introduction, let us recall some concepts of spatial statistics.

Spatial statistical methods widely known under the name kriging are intended to
predict unobserved values of a variable in a spatial domain, on the basis of observed
values (e.g. Journel and Huijbregts, 1978; Isaaks and Srivastava, 1989; Haining, 1990;
Cressie, 1993). These techniques are based on a function which describes the spatial
dependence, the so-called variogram. Estimation of the variogram is a crucial stage
of spatial prediction, because it determines the kriging weights, which are used to
draw maps of the variable under study. Let us consider a spatial stochastic process
{Z(x): x ∈ D}, where D is a 2xed subset of Rd; d¿1. Assume that this process is
ergodic and satis2es the hypothesis of intrinsic stationarity (e.g. Cressie, 1993, p. 60)
given by

(a) E(Z(x)) = � = constant ∀x ∈ D,
(b) Var(Z(x+ h) − Z(x)) = 2�(h) ∀x; x+ h ∈ D;

where 2�(h) is the variogram. This is a very simple model which can be used in
practice after detrending the data or in some cases even directly. Let {Z(x1); : : : ; Z(xn)}
be a sample of such a spatial process. The classical variogram estimator proposed by
Matheron (1962), based on the method-of-moments, is

2�̂(h) =
1
Nh

∑
N (h)

(Z(xi) − Z(xj))2; h ∈ Rd; (1)

where N (h) = {(xi ; xj): xi − xj = h} and Nh is the cardinality of N (h). This estimator
is unbiased, but behaves poorly if there are outliers in the data. One single outlier
can make this estimator arbitrarily large. For that reason, Cressie and Hawkins (1980)
proposed a more “robust” estimator in the case of Gaussian independent data:

2�̂(h) =

[
1
Nh

∑
N (h)

|Z(xi) − Z(xj)|1=2
]4/(

0:457 +
0:494
Nh

)
; h ∈ Rd ;

where the denominator corrects for bias under a Gaussian distribution. However, this
estimator can also be made arbitrarily large by a single outlier in the data and is,
therefore, not really a solution to the problem.

To view variogram estimation as a problem of identifying the scale at various lags
is intuitively appealing and opens up new perspectives. By an estimator of the scale
of a sample V1; : : : ; Vn we mean any function Sn(V1; : : : ; Vn) which satis2es

Sn(�V1 + �; : : : ; �Vn + �) = |�| Sn(V1; : : : ; Vn)

∀� ∈ R; ∀� ∈ R. In e'ect, the stochastic process of di'erences at lag h; V (h) =Z(x+
h) − Z(x), has zero expectation and a variance of 2�(h). Thus, if V1(h); : : : ; VNh(h) is
the sample of V (h) corresponding to the sample Z(x1); : : : ; Z(xn) of Z , the variogram
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estimator (1) takes the form

2�̂(h) =
1
Nh

Nh∑
i=1

Vi(h)2; h ∈ Rd; (2)

i.e. it is simply the classical estimator of the sample variance of V1(h); : : : ; VNh(h). The
use and properties of a new, highly robust, variogram estimator based on a highly robust
scale estimator is discussed by Genton (1998a). We now use the theory of M-estimators
of scale, in order to derive robustness properties for a wide class of corresponding
variogram estimators. Note that although variograms are in fact variances, we here
focus on scale estimators because most results in the literature are formulated for scale
(e.g. Hampel et al., 1986). However, conclusions are similar for variances, i.e. for
variograms, because a scale Sn is simply the square root of a variance S2

n .

2. M-estimators of scale

Recall the de2nition of an M-estimator of scale (Hampel et al., 1986). Suppose we
have one-dimensional observations X1; : : : ; Xn which are independent and identically
distributed according to a distribution from the parametric model {F�; �¿ 0}, where
F�(x) = F(x=�). We need the following regularity conditions on F :

(F1) F has a twice continuously di'erentiable density f which is symmetric around
zero and is everywhere positive.

(F2) The mapping �=−f′=f=(−lnf)′ satis2es �′(x)¿ 0; ∀x ∈R, and
∫
�′(x)f(x)dx

= − ∫ �(x)f′(x) dx¡∞.

An M-estimator Sn(X1; : : : ; Xn) of � is de2ned by the implicit equation

1
n

n∑
i=1

�(Xi=Sn) = 0;

and corresponds asymptotically to the statistical functional S de2ned by∫
�(x=S(F)) dF(x) = 0; (3)

where � is a real, symmetric, and suKciently regular function. Denote by

A(�; F) =
∫

�2(x=S(F)) dF(x); (4)

B(�; F) =
∫

(x=S(F))�′(x=S(F)) dF(x): (5)

We assume that � belongs to the class � of all functions satisfying the following four
regularity conditions:

(R1) � is well-de2ned and continuous on R \D(0)(�), where D(0)(�) is 2nite. In each
point of D(0)(�) there exist 2nite left and right limits of � which are di'erent.
Also �(−x) = �(x) if {−x; x}⊂R \ D(0)(�), and there exists �¿ 0 such that
�(x)60 on (0; �) and �(x)¿0 on (�;∞).
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(R2) The set D(1)(�) of points in which � is continuous but in which �′ is not de2ned
or not continuous, is 2nite.

(R3)
∫
�(x) dF(x) = 0, i.e. S(F) = 1 at the model (Fisher consistency), and 0¡

A(�; F)¡∞.
(R4) 0¡B(�; F) =

∫
(x�(x) − 1)�(x) dF(x)¡∞.

The inLuence function IF(u; S; F) of a statistical functional S at a distribution F is
de2ned as the kernel of a 2rst-order von Mises (1937, 1947) derivative∫

IF(u; S; F) dG(u) =
@
@j [S((1 − j)F + jG)]j=0;

where G ranges over all distributions (including point masses). The inLuence function
of an M-estimator of scale S at F is well known (Hampel et al., 1986)

IF(u; S; F) =
�(u)

B(�; F)
:

An important summary value of the inLuence function is the gross-error sensitivity of
S at F , de2ned by

�∗ = sup
u

|IF(u; S; F)|:

This quantity measures the worst inLuence that a small amount of contamination can
have on the value of the estimator. It is desirable that �∗ be 2nite, in which case
S is called B-robust (bias-robust) at F . Analogously, the change-of-variance function
(Rousseeuw, 1981) is de2ned by∫

CVF(u; S; F) dG(u) =
@
@j [V (S; (1 − j)F + jG)]j=0; (6)

where V (S; F) is the asymptotic variance of S at F . The change-of-variance sensitivity
!∗ is de2ned as +∞ if a delta function with positive factor occurs in the CVF, and
otherwise as

!∗ = sup
u

CVF(u; S; F)
V (S; F)

:

Note that large negative values of the CVF merely point to a decrease in V , indi-
cating a better accuracy of the estimator. If !∗ is 2nite then S is called V -robust
(variance-robust) at F . Hampel et al. (1986) simpli2ed (6) for M-estimators of scale
by considering only contaminating distributions G with S(G) = S(F) = 1. The case of
general contaminating distributions G was studied by Genton and Rousseeuw (1995)
and yields

CVF(u; S; F) =
A(�; F)
B2(�; F)

[
1 +

�2(u)
A(�; F)

− 2
u �′(u)
B(�; F)

+ C(�; F)
�(u)

B(�; F)

]
; (7)

where

C(�; F) = 4 − 2
A(�; F)

∫
x �(x) �′(x) dF(x) +

2
B(�; F)

∫
x2 �′′(x) dF(x):

Note that (7) di'ers from the expression in Hampel et al. (1986) by the addition of
the last term, the integral of which is zero when S(G) = 1. In the case of Gaussian
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observations, an alternative formula for C(�; #), which does not involve any derivative
of �, has been obtained (Genton and Rousseeuw, 1995).

Another important robustness property is the breakdown point j∗ of a scale estimator.
This indicates, how many data points need to be replaced by arbitrary values to make
the estimator explode (tend to in2nity) or implode (tend to zero). In the case of
M-estimators of scale, it has been shown (Huber, 1981) that

j∗ = min
( −�(0)
�(+∞) − �(0)

;
�(+∞)

�(+∞) − �(0)

)
6

1
2
:

The special choice �(x) = |x|q − ∫ |x|q dF(x), q¿ 0, leads to the so-called Lq

M-estimators of scale (Genton and Rousseeuw, 1995), which are neither B-robust,
nor V -robust, for every value of q¿ 0, that is to say, �∗ =∞ and !∗ =∞. Moreover,
it is easily seen that j∗ = 0, for any value of q¿ 0. A closer look at Eq. (2) and the
corresponding equation for the Cressie and Hawkins estimator shows that they corre-
spond to the L2 and L1=2 estimators, respectively. Thus, these two estimators are neither
robust in the sense of the inLuence function nor in the sense of the change-of-variance
function and the breakdown point.

The previous results are all based on the hypothesis that the observations are in-
dependent of each other. This assumption of independence is prevalent in classical
statistical theory and makes much of it tractable. However, models that involve statis-
tical dependence are often more realistic, and are a necessity in spatial statistics where
the dependence is often present in all directions and becomes weaker as data locations
become more distanced. In fact, any discipline that works with data collected from
di'erent spatial locations, such as soil science, geology, mining, hydrology, forestry,
atmospheric or soil pollution, meteorology, astronomy, must develop models that indi-
cate when there is dependence between measurements at di'erent locations.

In this paper, we intend to study the e'ects on the estimator resulting from dependen-
cies between observations. Intuitively, dependence between observations is not going to
modify the expectation of an estimator. On the other hand, its variance should increase
because dependence expresses the fact that observations are more alike. Thus, we study
the way this variance changes under dependence, i.e. the change-of-variance function
under dependence. Note that the variability of variogram estimates plays an important
role when 2tting a parametric variogram model by weighted least squares (Cressie,
1985, 1993) or generalized least squares (Cressie 1993; Genton, 1998b, 2000). It is
therefore worth understanding how this variance can be a'ected by outliers and by the
underlying dependency structure.

3. The change-of-variance function under dependence

The behavior of robust estimators for independent and identically distributed ob-
servations has been extensively studied in the past. The case of dependent data re-
ceived much less attention. It seems that pioneers in this 2eld were Gastwirth and
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Rubin (1975), with a paper investigating the e'ect of serial dependence in the data
on the eKciency of some robust location estimators. This theme was followed up by
Portnoy (1977, 1979), who studied approximately optimal estimators, in the asymptotic
minimax sense of Huber (1964, 1972, 1981), in dependent situations. He also showed
that the inLuence function remains unchanged for dependent observations and must
be computed with the marginal distribution. HOossjer (1991) was the 2rst to study the
change-of-variance function for dependent observations. However, he restricted atten-
tion to the location model and his context is radically di'erent from the one of spatial
statistics. He considers an independent and identically distributed (i.i.d.) process and
is interested in perturbations from a dependent process. His model is for replacement
outliers and allows di'erentiating isolated from grouped perturbations. In fact, he is
interested in the e'ect of unexpected correlations in the data. In spatial statistics, the
data are fundamentally considered as being dependent and we rather want to study the
e'ect of punctual, i.i.d. perturbations.

In this section, we compute the change-of-variance function under general contam-
ination and dependent observations for M-estimators of scale. Let V1; : : : ; VNh be a
realization of the process of di'erences V , with a joint distribution in RNh denoted
by FNh

V . We suppose that each di'erence Vi, i = 1; : : : ; Nh, is identically distributed
according to a marginal distribution FV , with zero expectation and variance equal to
the variogram 2�(h). We assume that for all k = 1; : : : ; Nh − 1, the bivariate distri-
bution of the pairs (Vi; Vi+k) are the same for all i = 1; : : : ; Nh − k. We then denote
this bivariate distribution by F (k)

V . Note that this assumption only makes sense if the
original data are equally spaced along a line. An M-estimator SNh(V1; : : : ; VNh) of the
scale of the stochastic process V corresponds asymptotically to the statistical functional
of scale S(FV ), implicitly de2ned by Eq. (3) with F = FV . Under some regularity

conditions, the M-estimator SNh is consistent, i.e. SNh
Nh→∞→ S(FV ) in probability. More-

over,
√
Nh(SNh − S(FV )) is asymptotically normal, with zero expectation and variance

V♦(S; FV ), given by (Portnoy, 1977)

V♦(S; FV ) =
A(�; FV ) + 2

∑∞
k=1 A

♦(�; F (k)
V )

B2(�; FV )
S2(FV ); (8)

where A and B are de2ned by Eqs. (4) and (5), and

A♦(�; F (k)
V ) =

∫ ∫
�(x1=S(FV ))�(x2=S(FV )) dF (k)

V (x1; x2):

Throughout this paper, the diamond (♦) notation is used to emphasize situations
with dependencies. Regularity conditions for consistency and asymptotic normality are
given by Huber (1967) for the independent case and by Portnoy (1977, 1979) and
Bustos (1982) for the dependent case. In this latter situation, mixing conditions such
as �-mixing or '-mixing are typically considered (Billingsley, 1968; Doukhan, 1994).

Let us now describe the contaminating process. We contaminate V by an independent
and identically distributed process H . Although one could suspect that H should also be
a lag h process of di'erences, from some other i.i.d. process contaminating the original
Z process, this approach would not be tractable. The main reason is that the spatial
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location of a contamination in Z has a crucial importance on its e'ect on di'erences
V , as noted by Genton (1998c) when trying to de2ne a spatial breakdown point. For
instance, on a regular bidimensional grid, a contamination in Z can generally a'ect 1, 2,
3, or 4 di'erences V , depending on its spatial location and the lag h considered. Thus,
by contaminating the process of di'erences V directly, we avoid this diKculty. Let
H1; : : : ; HNh be a realization of the process H and B1; : : : ; BNh a realization of a Bernoulli
stochastic process, where Bi; i = 1; : : : ; Nh, are i.i.d. random variables according to a
Bernoulli distribution with parameter j, i.e.

P(Bi = 1) = j and P(Bi = 0) = 1 − j; (9)

for i = 1; : : : ; Nh, with 06j61. The contaminating process, describing replacement
outliers, is then de2ned by

Vj; i = (1 − Bi)Vi + BiHi;

for i = 1; : : : ; Nh. We denote by

• FVj , FV , and FH the univariate marginal distributions of Vj; i, Vi, and Hi, respectively.
• F (k)

Vj , F (k)
V , and F (k)

H the bivariate distributions of the pairs (Vj; i ; Vj; i+k), (Vi; Vi+k),
and (Hi; Hi+k), respectively.

• F (k)
VH , and F (k)

HV the bivariate distributions of the pairs (Vi; Hi+k) and (Hi; Vi+k),
respectively.

We suppose that FV satis2es the conditions (F1) and (F2), and � ∈ � satis2es the
regularity conditions (R1)–(R4), given in the previous section. Moreover, we assume
that S(FV ) = 1 at the model and we add the two following assumptions:

(H1) The stochastic processes V , H and B are mutually independent.
(H2)

∑∞
k=1 |A♦(�; F (k)

V )|¡∞:

From Eq. (9), we have

P(Bi = Bi+k = 1) = j2 = O(j2);

P(Bi = Bi+k = 0) = (1 − j)2 = 1 − 2j+ O(j2);

and thus

A♦(�; F (k)
Vj ) = P(Bi = Bi+k = 0)A♦(�; F (k)

V ) + P(Bi = 0; Bi+k = 1)A♦(�; F (k)
VH )

+P(Bi = 1; Bi+k = 0)A♦(�; F (k)
HV ) + P(Bi = Bi+k = 1)A♦(�; F (k)

H )

= (1 − 2j)A♦(�; F (k)
V ) + O(j2);

using A♦(�; F (k)
VH )=A♦(�; F (k)

HV )=0 by (H1). The numerator of the asymptotic variance
(8) of the contaminated process is

A(�; FVj) + 2
∞∑
k=1

A♦(�; F (k)
Vj )

=(1 − j)A(�; FV ) + jA(�; FH ) + 2(1 − 2j)
∞∑
k=1

A♦(�; F (k)
V ) + O(j2);
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using A♦(�; F (k)
H ) = 0 and (H2), and its derivative evaluated at j= 0 is

@
@j

[
A(�; FVj) + 2

∞∑
k=1

A♦(�; F (k)
Vj )
]
j=0

=A(�; FH ) − A(�; FV ) − 4
∞∑
k=1

A♦(�; F (k)
V )

− 2
S(FV )

(∫
(x=S(FV ))�(x=S(FV ))�′(x=S(FV )) dFV (x)

+2
∞∑
k=1

C♦
1 (�; F (k)

V )
)∫

IF(x; S; FV ) dFH (x);

where

C♦
1 (�; F (k)

V ) =
∫ ∫

(x1=S(FV ))�′(x1=S(FV ))�(x2=S(FV )) dF (k)
V (x1; x2):

In the same way, the denominator of the asymptotic variance (8) of the contaminated
process is

B2(�; FVj) = ((1 − j)B(�; FV ) + jB(�; FH ))2;

and its derivative evaluated at j= 0 is

@
@j [B2(�; FVj)]j=0 = 2B(�; FV )

[
B(�; FH ) − B(�; FV ) −

∫
IF(x; S; FV ) dFH (x)

×
(∫

(x2=S2(FV ))�′′(x=S(FV )) dFV (x)

+
1

S(FV )

∫
(x=S(FV ))�′(x=S(FV )) dFV (x)

)]
:

Thus, the change-of-variance function CVF♦(u; S; FV ) under dependence is∫
CVF♦(x; S; FV ) dFH (x)

=
[(

2S(FV )
(
A(�; FV ) + 2

∞∑
k=1

A♦(�; F (k)
V )
)∫

IF(x; S; FV ) dFH (x)

+S2(FV )
@
@j

[
A(�; FVj) + 2

∞∑
k=1

A♦(�; F (k)
Vj )
]
j=0

)
B2(�; FV )

−S2(FV )
(
A(�; FV ) + 2

∞∑
k=1

A♦(�; F (k)
V )
)

@
@j [B2(�; FVj)]j=0

]
B−4(�; FV ):

Finally, we insert the previous expressions for the derivatives in the last equation and
use the fact that S(FV ) = 1 at the model. Choosing H =*u, the Dirac distribution with
jump at u, and normalizing the change-of-variance function such that its integral with
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respect to FV is zero in order to impose uniqueness, i.e.
∫

CVF♦(x; S; FV ) dFV (x) = 0,
we obtain

CVF♦(u; S; FV ) = V♦(S; FV )

[
1 +

�2(u) + 2
∑∞

k=1 A
♦(�; F (k)

V )

A(�; FV ) + 2
∑∞

k=1 A
♦(�; F (k)

V )
− 2

u �′(u)
B(�; FV )

+C♦(�; FV )
�(u)

B(�; FV )

]
; (10)

where

C1(�; FV ) =
∫

x�(x)�′(x) dFV (x);

C2(�; FV ) =
∫

x2�′′(x) dFV (x);

C♦
1 (�; F (k)

V ) =
∫ ∫

x1�′(x1)�(x2) dF (k)
V (x1; x2);

C♦(�; FV ) = 4 − 2
C1(�; FV ) + 2

∑∞
k=1 C

♦
1 (�; F (k)

V )

A(�; FV ) + 2
∑∞

k=1 A
♦(�; F (k)

V )
+ 2

C2(�; FV )
B(�; FV )

:

From now on, we also suppose that (H3)
∑∞

k=1 C
♦
1 (�; F (k)

V )¡∞. If the process V is in-
dependent, then A♦(�; F (k)

V )=C♦
1 (�; F (k)

V )=0, which yields the usual change-of-variance
function under general contamination (Genton and Rousseeuw, 1995) given by (7).

4. V♦-robustness

The change-of-variance function of an M-estimator of scale under dependence is a
tool which allows us to study the e'ects of dependencies on the asymptotic variance
of the estimator, as well as its variations. By analogy with the independent case, we
de2ne the notion of change-of-variance sensitivity under dependence.

De�nition 1. The change-of-variance sensitivity under dependence, !♦, of an M-esti-
mator of scale S at FV is equal to +∞ if a delta function with positive factor occurs
in the CVF♦, and otherwise as

!♦ = sup
u

CVF♦(u; S; FV )
V♦(S; FV )

;

the supremum being taken on all u where CVF♦(u; S; FV ) exists.

If !♦ is 2nite then S is called V♦-robust, i.e. robust with respect to the vari-
ance under dependence. A closer look at the change-of-variance function under depen-
dence (10) indicates that V -robustness and V♦-robustness are equivalent. However, the
change-of-variance sensitivity in the dependent case is di'erent from the one in the
independent case.
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The following theorem shows that the concept of V♦-robustness is stronger than
the concept of B-robustness, and the next one, that sometimes these two notions
are equivalent. A corollary gives a lower bound for the change-of-variance sensi-
tivity under dependence !♦. Let us de2ne �− = supu∈(0; �) (−IF(u; S; FV )) and �+ =
supu∈(�;+∞) IF(u; S; FV ). In the theorems below we will suppose that �+¿�− (and
hence �∗ = �+). This is a very natural requirement for scale estimators (Genton and
Rousseeuw, 1995). For instance Huber (1981), when discussing breakdown proper-
ties, notes that �+¿�− in the more interesting cases. The opposite situation leads
to implosion of the scale estimator, as well as to lower eKciency. The expression
denoted by

G♦(�; FV ) =
2
∑∞

k=1 A
♦(�; F (k)

V )

A(�; FV ) + 2
∑∞

k=1 A
♦(�; F (k)

V )
;

plays an important role in the following theorems. All proofs can be found in the
appendix.

Theorem 1. For all �∈� with �+¿�− and C♦(�; FV )¿0; V♦-robustness implies
B-robustness. We have

�∗6 1
2 [(V♦2(S; FV )C♦2(�; FV ) + 4V♦(S; FV )(!♦ − 1 − G♦(�; FV )))1=2

−V♦(S; FV )C♦(�; FV )]:

Theorem 2. For all �∈� with �+¿�−; C♦(�; FV )¿0; and � nondecreasing for x¿0,
V♦-robustness and B-robustness are equivalent. We have

!♦ = 1 + G♦(�; FV ) +
(�∗)2

V♦(S; FV )
+ C♦(�; FV )�∗:

Corollary 2.1. For all �∈� with �+¿�−; C♦(�; FV )¿0; and � nondecreasing for
x¿0; we have

!♦¿2 + C♦(�; FV )�∗:

Stronger results can be proved, when the spatial stochastic process Z is assumed to
be Gaussian. Denote by # the standard Gaussian distribution and by #+, −1¡+¡ 1,
the Gaussian bivariate distribution with mean zero and covariance matrix

, =

(
1 +

+ 1

)
:

A further restriction on + may be necessary in order to insure positive de2niteness of the
complete covariance matrix of the stochastic process V . In this situation,
Genton (1998d) shows that A♦(�; #+)¿0, and consequently V♦(S; #)¿V (S; #), i.e.
the asymptotic variance of an M-estimator of scale must necessarily increase along
with the dependence. Note that this result is not necessarily true if the underlying
distribution is not Gaussian, with negatively correlated observations. Nevertheless, the
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Gaussian assumption on the spatial stochastic process Z allows some more accurate
results than those of Theorem 2 and its corollary. We need the following lemma.

Lemma 1. For all M-estimator of scale S; de7ned by some �∈�; and based on
dependent data with marginal distribution FV = # and bivariate distributions F (k)

V =
#+k ; k¿1; we have

06G♦(�; FV )¡ 1:

Theorem 3. Let S be an M-estimator of scale; de7ned by some �∈�; and based on
dependent data with marginal distribution FV = # and bivariate distributions F (k)

V =
#+k ; k¿1. If �+¿�−; C(�; #)¿C♦(�; #)¿0; and � nondecreasing for x¿0; then we
have

!♦ ¡!∗ + 1:

Thus, in that particular case, we are able to specify the relation between the change-
of-variance sensitivity under dependence !♦ and under independence !∗. The analysis
of some examples shows that for the same estimator, !♦ can be larger or smaller than
!∗, depending on the kind of underlying dependency structure. However, these two
quantities are generally close to each other, because it is the asymptotic variance in
Eq. (10) which su'ers quite a large variation due to dependencies.

5. Application to variogram estimation

In this section we model the dependency structure of the spatial stochastic pro-
cess Z and study its e'ect on variogram estimators. We analyze the behavior of
the change-of-variance function by using the family of autoregressive moving aver-
age (ARMA) stationary processes, de2ned on a unidimensional and equally spaced
support. In spatial statistics, the variogram is often computed in one or several uni-
dimensional directions. Therefore, we assume that observations on such a section are
drawn from an ARMA process. Note that bidimensional dependency structures could
also be considered, for example by using spatial autoregressive and moving average
(SARMA) models, see Cressie (1993). Consider an ARMA(p; q) stationary process Z ,
i.e. for every location i

'(B)Zi = .(B)Yi; (11)

where ' and . are the pth and qth degree polynomials '(z) = 1 − '1z − · · · − 'pzp

and .(z) = 1 + .1z + · · · + .qzq, B is the backward shift operator BhZi = Zi−h, and Y
is an uncorrelated process, with expectation zero and variance �2. Subsequently, we
assume that the parameters of the ARMA process are such that the process is causal
and invertible (Brockwell and Davis, 1991). The process of di'erences V (h) is de2ned
by Vi(h) = (1−Bh)Zi. De2ning .i = 0 for i¿q and i¡ 0, and .0 = 1, it follows from
Eq. (11) that the process of di'erences V (h) is an ARMA(p; q+ h) process with new
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coeKcients .̃i = .i − .i−h and .̃i = 0 for i¿q + h. The dependency structure of the
process of di'erences V (h) changes with each value of h, and consequently also the
behavior of the variogram estimator, its variance and change-of-variance function.

Let 2Zk be the lag k covariance of the ARMA process Z and 2V (h)
k of the process of

di'erences V (h). They are related by 2V (h)
k =−(2Zk−h−22Zk +2Zk+h). Hence the correlation

+k of F (k)
V is given by

+k = −2Zk−h − 22Zk + 2Zk+h

2(2Z0 − 2Zh )
: (12)

In order to study the e'ects of dependencies, we can choose simple models for the
spatial stochastic process Z from (11), like the AR(1) process with 2Zk = 'k

1, or the
MA(1) process with 2Z0 = 1, 2Z±1 = .1=(1 + .2

1), and 2Zk = 0 otherwise.
The e'ects of dependencies are now studied on the variogram estimator (1), which

is the square of the L2 scale estimator. Cressie and Hawkins’ variogram estimator,
as well as other more robust variogram estimators based on M-estimators of scale,
have the same kind of behavior, although their change-of-variance functions have a
di'erent characteristic shape which depends on the function �. Let us 2rst present an
interesting property shared by the Lq scale estimators, q¿ 0, which is the same as in
the independent case (Genton and Rousseeuw, 1995).

Lemma 2. For every marginal distribution FV and bivariate distributions F (k)
V ; k¿1;

the Lq scale estimator; q¿ 0; satis7es

C♦(�; FV ) = 2:

As we already mentioned, the robustness properties of the Lq estimators are poor.

Theorem 4. The Lq scale estimator is neither B-robust; V -robust; nor V♦-robust;
at any marginal distribution FV ; and bivariate distributions F (k)

V ; k¿1; i:e: �∗ = ∞,
!∗ = ∞; and !♦ = ∞.

From the delta technique, the asymptotic variances under dependence of variogram
and scale estimators satisfy the following relation:

V♦(S2; FV ) = 4S2(FV )V♦(S; FV ):

Therefore, using Eq. (10), the change-of-variance function under general contamination
and dependence for variogram estimators is

CVF♦(u; S2; FV ) = V♦(S2; FV )

[
1 +

�2(u) + 2
∑∞

k=1 A
♦(�; F (k)

V )

A(�; FV ) + 2
∑∞

k=1 A
♦(�; F (k)

V )
− 2

u �′(u)
B(�; FV )

+(C♦(�; FV ) + 2)
�(u)

B(�; FV )

]
; (13)

Note that Eq. (13) di'ers from (10) by the addition of the constant 2 in the last
term, and the factorized asymptotic variance V♦(S2; FV ). In particular, for variogram
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Fig. 1. The standardized change-of-variance function CVF♦(u; (L2)2; #)=V♦((L2)2; #) of the variogram es-
timator (1) for h= 1, when Z is an AR(1) process. The dashed curves correspond to '1 = 0:4 and '1 = 0:8
(in increasing length of the dashes), whereas the solid one correspond to '1 = 0, i.e. independence of Z .
The curves will vary with the lag h too.

estimators based on Lq scale estimators:

CVF♦(u; (Lq)2; FV ) = V♦((Lq)2; FV )

[
�2(u) + 2

∑∞
k=1 A

♦(�; F (k)
V )

A(�; FV ) + 2
∑∞

k=1 A
♦(�; F (k)

V )

+(4 − 2q)
�(u)

B(�; FV )
− 1

]
; (14)

using u�′(u) = q�(u) + B(�; FV ) and Lemma 2. The variogram estimator (1) corre-
sponds to q = 2, i.e. �(x) = x2 − 1, in which case straightforward computations yield
A(�; #) = B(�; #) = 2 and A♦(�; #+) = 2+2. Note that when q = 2, the middle term of
Eq. (14) is zero. Thus, the change-of-variance function under general contamination
and dependence for Matheron’s variogram estimator is

CVF♦(u; (L2)2; #) = V♦((L2)2; FV )
[
u4 − 2u2 − 1

2 + 4s

]
; (15)

where s =
∑∞

k=1 +
2
k¿1. For instance, consider an AR(1) process (11), where Y is

Gaussian with �2 = 1. From Eq. (12), it follows that s = (1 − '1)=(1 + '1)=4 when
h= 1. For this situation, Fig. 1 illustrates the standardized change-of-variance function
CVF♦(u; (L2)2; #)=V♦((L2)2; #) of the variogram estimator (1). The dashed curves
correspond to '1 = 0:4 and '1 = 0:8 (in increasing length of the dashes), whereas the
solid one corresponds to '1 = 0, i.e. independence of Z . It is interesting to note that
the accuracy of the estimator, for contaminations close to the origin, increases with in-
creasing dependence '1. For contaminations far from the origin, the accuracy decreases
with increasing dependence '1. This simple example shows that the change-of-variance
function under dependence has the same characteristic shape, depending on the type
of variogram estimator. However, its behavior can vary, according to the underlying
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Fig. 2. Schematic illustration of the sensitivity of the asymptotic variance of the variogram estimator (1)
to outliers by the standardized change-of-variance function CVF♦=V♦ under dependence. This sensitivity
depends on the underlying dependence and the value of the lag h. The dashed arrow illustrates the vertical
variability of a particular variogram estimate.

dependency structure and the value of the lag h. The change-of-variance function can
therefore be used to explore the e'ects of dependencies on variogram estimators, as is
schematically illustrated in Fig. 2. In this picture, variogram estimates for 16 lags are
represented (black dots), as well as a possible 2t of a valid variogram model (solid
line). These variogram estimates are correlated because the same observation is used
for di'erent lags (Cressie, 1993; Genton, 1998b). Therefore, each of them has a vertical
variability (dashed arrow) which can be described by the asymptotic variance under
dependence of the variogram estimator. Expressions for the vertical variability of each
variogram estimate in situations with Gaussian, elliptically contoured, or skew-normal
observations can be found in Genton (1998b, 2000), and Genton et al. (2001), re-
spectively. Moreover, for each variogram estimate, the sensitivity of the asymptotic
variance to outliers can be assessed by the standardized change-of-variance function
CVF♦=V♦ under dependence. This sensitivity depends on the underlying dependence
and the value of the lag h. This means that outliers will a'ect the variability of vari-
ogram estimates in di'erent ways. Thus, robust variogram estimators should be used,
as suggested by Genton (1998a), in order to reduce the sensitivity of their variance to
outliers.
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Appendix

Proof of Theorem 1. Suppose that !♦ is 2nite and that there exists some x0 for which
|IF(x0; S; F)| is strictly greater than

1
2 [(V♦2(S; FV )C♦2(�; FV ) + 4V♦(S; FV )(!♦ − 1 − G♦(�; FV )))1=2

−V♦(S; FV )C♦(�; FV )]:

Without loss of generality, put x0 �∈ D(1)(�) and x0 ¿d. It follows that �(x0) is strictly
greater than

b =
1
2



((

Ã(�; FV )C♦(�; FV )
B(�; FV )

)2

+ 4Ã(�; FV )(!♦ − 1 − G♦(�; FV ))

)1=2

− Ã(�; FV )C♦(�; FV )
B(�; FV )


 ;

where Ã(�; FV ) = A(�; FV ) + 2
∑∞

k=1 A
♦(�; F (k)

V ).
If �′(x0)60 then

1 + G♦(�; FV ) +
�2(x0)

Ã(�; FV )
− 2

x0�′(x0)
B(�; FV )

+
C♦(�; FV )
B(�; FV )

�(x0)

¿1 + G♦(�; FV ) +
b2

Ã(�; FV )
+

C♦(�; FV )
B(�; FV )

b = !♦;

a contradiction. Therefore, �′(x0)¿ 0. Since we have �(x0)¿ 0, there exists 5¿ 0
such that �′(t)¿ 0 for all t in [x0; x0 + 5), so �(x)¿�(x0) for all x in (x0; x0 + 5]. It
follows that �(x)¿�(x0)¿b for all x¿x0; x �∈ D(0)(�) because only upward jumps
of � are allowed for positive x. As D(0)(�) ∪ D(1)(�) is 2nite, we may assume that
[x0;+∞) ∩ (D(0)(�) ∪ D(1)(�)) is empty. It holds that

1 + G♦(�; FV ) +
�2(x)

Ã(�; FV )
− 2

x�′(x)
B(�; FV )

+
C♦(�; FV )
B(�; FV )

�(x)6!♦:

Therefore

�2(x) − 2x�′(x)
Ã(�; FV )
B(�; FV )

6Ã(�; FV ) (!♦ − 1 − G♦(�; FV )) − Ã(�; FV )C♦(�; FV )
B(�; FV )

�(x)
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6Ã(�; FV ) (!♦ − 1 − G♦(�; FV )) − Ã(�; FV )C♦(�; FV )
B(�; FV )

b

= b2;

and thus, for all x¿x0; �2(x) − 2x �′(x) Ã(�; FV )=B(�; FV )6b2. Hence

�′(x)
�2(x) − b2¿

B(�; FV )

2Ã(�; FV )

1
x
:

Putting

R(x) = −1
b

coth−1
(
�(x)
b

)
and P(x) =

B(�; FV )

2Ã(�; FV )
ln(x);

it follows that R′(x)¿P′(x) for all x¿x0. Hence R(x)−R(x0)¿P(x)−P(x0), and thus

coth−1
(
�(x)
b

)
6b

[
P(x0) − R(x0) − B(�; FV )

2Ã(�; FV )
ln(x)

]
:

However, the left member is positive because �(x)¿b and the right member tends to
−∞ for x → ∞, a contradiction. This proves the desired inequality.

Proof of Theorem 2. One of the two inequalities follows from Theorem 1. For the
other, assume that S is B-robust. Because � is monotone, the CVF♦ can only contain
negative delta functions, which do not contribute to !♦. For all x¿0 it holds that
�′(x)¿0, so

1 + G♦(�; FV ) +
�2(x)

Ã(�; FV )
− 2

x�′(x)
B(�; FV )

+
C♦(�; FV )
B(�; FV )

�(x)

61 + G♦(�; FV ) +
(�∗)2

V♦(S; FV )
+ C♦(�; FV )�∗:

It follows that S is V♦-robust.

Proof of Corollary 2.1. The asymptotic variance is

V♦(S; FV ) = V (S; FV ) +
2
∑∞

k=1 A
♦(�; F (k)

V )
B2(�; FV )

6(�∗)2 +
2
∑∞

k=1 A
♦(�; F (k)

V )
B2(�; FV )

:

Thus, the change-of-variance sensitivity under dependence is

!♦ = 1 + G♦(�; FV ) +
(�∗)2

V♦(S; FV )
+ C♦(�; FV )�∗

= 1 +
1

V♦(S; FV )

(
2
∑∞

k=1 A
♦(�; F (k)

V )
B2(�; FV )

+ (�∗)2

)
+ C♦(�; FV )�∗

¿ 2 + C♦(�; FV )�∗:
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Proof of Lemma 1. This result is a direct consequence of V♦(S; #)¿V (S; #) in
Genton (1998d).

Proof of Theorem 3. Using Lemma 1 and V♦(S; #)¿V (S; #) in the result of Theorem
2, we obtain

!♦ = 1 + G♦(�; FV ) +
(�∗)2

V♦(S; #)
+ C♦(�; #)�∗

¡ 1 + 1 +
(�∗)2

V♦(S; #)
+ C♦(�; #)�∗

6 1 + 1 +
(�∗)2

V (S; #)
+ C♦(�; #)�∗

6 1 + 1 +
(�∗)2

V (S; #)
+ C(�; #)�∗ = 1 + !∗:

Proof of Lemma 2. From the function �(x) = |x|q − ∫ |x|q dFV (x) and its derivative
�′(x) = q|x|q−1 sign(x), we deduce the relations

x�′(x) = q�(x) + B(�; FV ) and x2�′′(x) = (q− 1)x�′(x):

Therefore, we have

C1(�; FV ) =
∫

x�(x)�′(x) dFV (x)

= q
∫

�2(x) dFV (x) + B(�; FV )
∫

�(x) dFV (x)

= qA(�; FV );

C2(�; FV ) =
∫

x2�′′(x) dFV (x)

= (q− 1)B(�; FV );

A♦(�; F (k)
V ) =

∫ ∫
�(x1)�(x2) dF (k)

V (x1; x2);

C♦
1 (�; F (k)

V ) =
∫

x1�′(x1)�(x2) dF (k)
V (x1; x2)

=
∫ ∫

(q�(x1) + B(�; FV ))�(x2) dF (k)
V (x1; x2)

= q
∫ ∫

�(x1)�(x2) dF (k)
V (x1; x2)

+B(�; FV )
∫ ∫

�(x2) dF (k)
V (x1; x2)

= qA♦(�; F (k)
V ):
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Inserting these relations in the expression of C♦(�; FV ) yields

C♦(�; FV ) = 4 − 2
qA(�; FV ) + 2q

∑∞
k=1 A

♦(�; F (k)
V )

A(�; FV ) + 2
∑∞

k=1 A
♦(�; F (k)

V )

+2
(q− 1)B(�; FV )

B(�; FV )
= 2:

Proof of Theorem 4. As � is unbounded, the Lq estimator is not B-robust. Moreover,
as the CVF♦ behaves like x2q with a positive factor when x → ∞, it is not bounded
from above. Therefore, the Lq estimator is neither V -robust nor V♦-robust.
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