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Abstract

In this paper, we derive the moments of random vectors with multivariate skew-normal distribution and their quadratic
forms. Applications to time series and spatial statistics are discussed. In particular, it is shown that the moments of the
sample autocovariance function and of the sample variogram estimator do not depend on the skewness vector. c© 2001
Elsevier Science B.V. All rights reserved
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1. Introduction

The skew-normal distribution is a family of distributions including the normal one, but with an extra
parameter to regulate skewness. It allows for a continuous variation from normality to non-normality, which
is useful in many situations. Azzalini (1985, 1986) introduced the univariate skew-normal distribution and
studied the properties of this class of density functions. The class of the multivariate skew-normal distributions
represents a mathematically tractable extension of the multivariate normal distribution with the addition of a
vector parameter to regulate skewness. The probabilistic properties of the multivariate skew-normal distribu-
tions were discussed by Azzalini and Dalla Valle (1996), whereas Azzalini and Capitanio (1999) emphasized
statistical applications.
An n-dimensional random vector z is said to have a multivariate skew-normal distribution, denoted by

SNn(�; 
; �), if it is continuous with density function

2�n(z; �; 
)�(�T(z − �)); z ∈ Rn; (1)
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where �n(z; �; 
) is the n-dimensional normal density with mean � and correlation matrix 
, �(·) is the
standard normal N(0; 1) distribution function and � is an n-dimensional vector. When � = 0, density (1)
reduces to the one of the multivariate normal distribution Nn(�; 
). Thus, the parameter � is referred to as a
“shape parameter”. Note that if �T is replaced by �T!−1 in (1), where != diag(!1; : : : ; !n)T, then a general
covariance matrix 
 is allowed (see Azzalini and Capitanio, 1999, p. 584). Azzalini and Capitanio (1999)
showed that if(

X0
x

)
∼Nn+1(0; 
∗); 
∗ =

(
1 �T

� 


)
;

where X0 is a scalar component, 
∗ is a correlation matrix and

�=

�

(1 + �T
�)1=2
;

then

z =

{
x if X0¿0;

−x otherwise;

has a skew-normal distribution SNn(0; 
; �) where

� =

−1�

(1− �T
−1�)1=2
:

This provides an easy way to generate skew-normal random samples in applications. It also shows that � (and
thus also �) regulates the skewness of the distribution.
The paper is organized as follows. In Section 2, we compute the �rst four moments of a random vector z

with multivariate skew-normal distribution SNn(�; 
; �) and the �rst two moments of its quadratic form

zTAz; (2)

for a symmetric matrix A. In Section 3, we discuss applications of our results to the estimation of the
autocovariance function in time series and the estimation of the variogram in spatial statistics. In particular,
we show that the moments of these estimators do not depend on the skewness vector � (nor on �).

2. Moments

Azzalini and Dalla Valle (1996) studied the multivariate skew-normal distribution and gave the moment
generating function M (t) for the case when � = 0:

M (t) = 2
∫
Rn
exp(tTz)�n(z; 0; 
)�(�Tz) dz

= 2exp{ 12 (tT
t)}�(�Tt): (3)

From here, we can calculate the partial derivatives of M (t) which are directly related to the moments of the
skew-normal distribution with � = 0:

@M (t)
@t

= 2exp{ 12 tT
t}[
t�(�Tt) + ��(�Tt)]; (4)

@2M (t)
@t@tT

= 2 exp{ 12 tT
t}{�(�Tt)[
 + (
t)⊗ (
t)T]

+�(�Tt)[(
t)⊗ �T + �⊗ (
t)T − �⊗ �T(�Tt)]}; (5)
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@3M (t)
@t@tT@t

= 2exp{ 12 (tT
t)}�(�Tt){(
t)⊗ 
 + vec(
)(
t)T + (In ⊗ (
t))[
 + (
t)(
t)T]}

+2exp{ 12 (tT
t)}�(�Tt){�⊗ 
 + vec(
)�T + (In ⊗ (
t))[�⊗ (
t)T + (
t)⊗ �T

− (�⊗ �T)(�Tt)] + (In ⊗ �)[
 + (
t)⊗ (
t)T − (�⊗ (
t)T)(�Tt)− �⊗ �T

− ((
t)⊗ �T)(�Tt) + (�⊗ �T)(�Tt)2]}; (6)

where �(·) is the standard normal density, In is the identity matrix of size n × n, and ⊗ and vec are the
Kronecker product and vectorizing operator, respectively (e.g. Fang and Zhang, 1990). See the appendix for
details about calculations of the partial derivatives. Letting t=0 in (4)–(6), we obtain the �rst three moments
of the skew-normal distribution:

M1 =

√
2
��; M2 = 
;

M3 =

√
2
� [�⊗ 
 + vec(
)�

T + (In ⊗ �)
 − (In ⊗ �)(�⊗ �T)]:
To �nd the fourth moment, since we only need the value of M (4)(t) at t= 0, we do not need to compute the
complete expression of

M (4)(t) =
@M (t)

@t@tT@t@tT
=
@M (3)(t)
@tT

: (7)

Instead, we can simply single out all the terms in (7) that do not contain the factor t or tT. By doing that,
we �nd

M (4)(0) = 2 exp{ 12 (tT
t)}�(�Tt){
 ⊗ 
 + vec(
)vec(
T) + Un;n(
 ⊗ 
)}|t=0
= (In2 + Un;n)(
 ⊗ 
) + vec(
)vec(
T): (8)

Here, Un;n is the permutation matrix associated with an n× n matrix (its size is n2× n2). See Graham (1981,
p. 32–36) for details about permutation matrices. The above moments are for the case when �= 0, and it is
straightforward to derive the case when � 6= 0.

Proposition 1. Let z be a random vector with a skew-normal distribution SNn(�; 
; �). Then the four �rst
moments of z are

(a) M1 = �z = � +

√
2
��;

(b) M2 = 
 + ��T +

√
2
� (��

T + ��T);

(c) M3= 
 ⊗ � + � ⊗ 
 + vec(
)⊗ �T + � ⊗ �T ⊗ � +
√
2
� [�⊗ 
 + vec(
)�

T

+ (In ⊗ �)
 − �⊗ �T ⊗ �+ �⊗ �T ⊗ � + � ⊗ �T ⊗ � + � ⊗ �T ⊗ �];
(d) M4= 
 ⊗ � ⊗ �T + � ⊗ 
 ⊗ �T + vec(
)⊗ �T ⊗ �T + � ⊗ �T ⊗ � ⊗ �T + 
 ⊗ 


+vec(
)vec(
)T + Un;n(
 ⊗ 
) + �T ⊗ 
 ⊗ � + � ⊗ � ⊗ vec(
)T + � ⊗ �T ⊗ 


+

√
2
� [�⊗ 
 ⊗ �T + vec(
)⊗ �T ⊗ �T + ((In ⊗ �)
)⊗ �T + �⊗ �T ⊗ � ⊗ �T

+� ⊗ �T ⊗ � ⊗ �T + � ⊗ �T ⊗ �⊗ �T + �T ⊗ 
 ⊗ � + �⊗ vec(
)T ⊗ �
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+(
(In ⊗ �T))⊗ � + �T ⊗ �⊗ 
 + �T ⊗ (vec(
)�T) + �T ⊗ ((In ⊗ �)
)
+� ⊗ �T ⊗ 
 + � ⊗ �⊗ vec(
)T + � ⊗ (
(In ⊗ �T)) + � ⊗ �T ⊗ �⊗ �T

− �⊗ �T ⊗ �⊗ �T − �T ⊗ �⊗ �T ⊗ � − �T ⊗ �⊗ �T ⊗ �− � ⊗ �T ⊗ �⊗ �T]:

Proof. Let E(g(z)) and E0(g(z)) denote the expectations of g(z) when the distribution of z is SNn(�; 
; �) and
SNn(0; 
; �) respectively. The two expectation functions are related by the relationship E(g(z))=E0(g(z+�)).
The proposition then follows directly from the moments of the � = 0 case.

With the �rst four moments of the random vector z given in Proposition 1, we can compute the �rst two
moments of its quadratic form.

Proposition 2. Let z be a random vector with a multivariate skew-normal distribution SNn(�; 
; �). Let A; B
be two symmetric n× n matrices. Then

(a) E(zTAz) = tr[A
] + �TA� + 2

√
2
��

TA�;

(b) Var(zTAz) = 2 tr [(A
)2] + 4�T(A
A)(� + 2

√
2
��)− 2

√
2
�

[
2(�TA�)(�TA�) + 2

√
2
� (�

TA�)2
]
;

(c) Cov(zTAz; zTBz)=2 tr[A
B
] + 2�T(A
B+ B
A)

(
� + 2

√
2
��
)

− 2
√
2
�

[
(�TA�)(�TB�) + (�TA�)(�TB�) + 2

√
2
� (�

TA�)(�TB�)

]
:

where tr[ · ] denotes the trace of a matrix.

Proof. These results are derived from Proposition 1 and the following relations (e.g. Li, 1987):

E(zTAz) = tr(AM2);

E((zTAz)(zTBz)) = tr((A⊗ B)M4):

When �= 0 (or equivalently �= 0), formulas of Proposition 2 reduce to those obtained in the multivariate
normal case (e.g. Muirhead, 1982, p. 47).

3. Applications to time series and spatial statistics

Quadratic forms of random vectors appear in various applications, and a �rst example comes from the
time-series context. Consider a second-order stationary time-series {Zt : t ∈ Z} and let �(h) = Cov(Xt+h; Xt),
∀ t; h ∈ Z, be the autocovariance function of Zt at lag h (e.g. Brockwell and Davis, 1991). The classical
estimator for the autocovariance function, based on the method-of-moments, is

�̂(h) =
1
n

n−h∑
i=1

(Zi+h − �Z)(Zi − �Z); 06h6n− 1; (9)
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where �Z=(1=n)
∑n

i=1 Zi. The simple form of this estimator allows us to write (9) as a quadratic form. In fact,
if z = (Z1; : : : ; Zn)T is the data vector and D(h) is the time design matrix of the data at lag h, then estimator
(9) has a quadratic form as in (2) with

A=
1
n
MD(h)M; (10)

where M = In − (1=n)1n1Tn is a symmetric matrix satisfying M 2 = M , and 1n = (1; : : : ; 1)T ∈ Rn. The time
design matrix D(h), of size n× n is symmetric and de�ned by D(h) = 1

2 (P(h) + P(h)
T), 06h6n− 1, where

P(h) is an n× n matrix with ones on the hth upper diagonal and zero elsewhere, 16h6n− 1 and P(0)= In.
The size of the upper or lower diagonal of ones is n − h. Note that the expectation vector of z is constant,
�z = �z1n, due to stationarity, and thus the matrix A de�ned by (10) satis�es

A�z = 0: (11)

As a second example, consider the estimation of the variogram in spatial statistics (e.g. Cressie, 1993). Let
{Z(x): x ∈ D⊂Rd}, d¿1, be a spatial stochastic process, intrinsically stationary. Matheron’s (1962) classical
variogram estimator, based on the method-of-moments, is

2̂(h) =
1
Nh

∑
N (h)

(Z(xi)− Z(xj))2; h ∈ Rd; (12)

where N (h) = {(xi ; xj): xi − xj = h} and Nh is the cardinality of N (h). Again, the simple formulation of this
estimator allows (12) to be written as a quadratic form. In fact, if z = (Z(x1); : : : ; Z(xn))T is the data vector
and A(h) is the spatial design matrix of the data at lag h, then estimator (12) has a quadratic form as in (2)
with

A=
1
Nh
A(h): (13)

The spatial design matrix A(h) is a symmetric matrix of size n×n, derived from (12). For regularly spaced data
in R1; A(h) has three possible forms depending on h (h¡n=2; h=n=2, and h¿n=2). For data on a regularly
spaced multidimensional grid in Rd, d¿ 1, the spatial design matrix A(h) is based on the spatial design
matrix for unidimensional data, and described by Kronecker products of matrices (Genton, 1998; Gorsich
et al., 2001). Here again, the matrix A de�ned by (13) satis�es (11). We now have the following result.

Proposition 3. Let z be a random vector with a multivariate skew-normal distribution SNn(�; 
; �); with
�z = �z1n. Then; the sample autocovariance function (9) with A = Ai = (1=n)MD(hi)M and the sample
variogram estimator (12) with A= Ai = (1=Nhi)A(hi), i = 1; 2; satisfy:
(a) E(zTAz) = tr[A
];
(b) Var(zTAz) = 2 tr[A
A
];
(c) Cov(zTA1z; zTA2z) = 2 tr[A1
A2
],

(d) Corr(zTA1z; zTA2z) =
tr[A1
A2
]√

tr[A1
A1
]tr[A2
A2
]
.

Proof. These results are automatic by-products from Proposition 2 and property (11) that A�z = 0.

Note that although the mean �z and the covariance matrix �z = 
 − (2=�)��T depend on the skewness
vector �, the moments described in Proposition 3 do not depend on � or �. As a consequence, the statistical
properties of the autocovariance or variogram estimates do not depend on the skewness vector describing the
multivariate distribution of the data. This is important, for example when �tting a valid parametric model to
variogram estimates by generalized least squares (Genton, 1998).
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Assume that the matrix 
 belongs to the particular family of covariance matrices S={
 |
=�In+1naT +
a1Tn}, where � ∈ R and a = (a1; : : : ; an)T ∈ Rn are de�ned in such a way that 
 is positive de�nite. Then,
explicit formulas for the quantities (a)–(d) of Proposition 3 have been computed, see Genton (1998) for
the variogram case and Genton (1999) for the autocovariance case. In particular, they do not depend on the
vector a.
Similar results as those in Propositions 1 and 2 can be found in Li (1987) for random vectors with

elliptically contoured distributions, i.e. allowing for kurtosis, but not for skewness. Applications to variogram
and autocovariance estimates have been discussed by Genton (1999, 2000), respectively. A further extension
would be to consider moments of quadratic forms from multivariate skew-elliptical random vectors, thus
allowing for both skewness and kurtosis. Research is currently conducted towards this direction.
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Appendix

Calculation of the partial derivatives of M (t)

The procedure we used to obtain the partial derivatives of M (t) is lengthy but not di�cult. The following
facts were used in the calculations:

(1)
@tTAt
@t

= 2At;
@aTt
@t

= a;
@At
@tT

= A and
@At
@t

= vec(A);

for constant n× n matrix A and n-vector a

(2)
@(XY )
@Z

=
@X
@Z
(Iq ⊗ Y ) + (Ip ⊗ X )@Y@Z

X; Y and Z are matrices of size m× n, n× v and p× q, respectively.

(3)
@(X ⊗ Y )
@Z

=
@X
@Z

⊗ Y + (Ip ⊗ U1)
(
@Y
@Z

⊗ X
)
(Iq ⊗ U2)

X; Y and Z are matrices of size m× n, u× v and p× q, respectively. U1 is the permutation matrix associated
with a m× u matrix and U2 is the permutation matrix associated with a n× v matrix.
For proof of those formulas, see Graham (1981, Chapter 6). The derivatives we computed follow directly

from those facts. Note that we also double-checked the correctness of our results via simulations using the
method mentioned in the introduction.
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