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This article proposes a new approach to the robust estimation of a mixed autoregres-
sive and moving average (ARMA) model. It is based on the indirect inference method that
originally was proposed for models with an intractable likelihood function. The estimation
algorithmproposedis based on an auxiliaryautoregressiverepresentationwhoseparameters
are � rst estimated on the observed time series and then on data simulated from the ARMA
model. To simulate data the parameters of the ARMA model have to be set. By varying
these we can minimize a distance between the simulation-basedand the observation-based
auxiliary estimate. The argument of the minimum yields then an estimator for the param-
eterization of the ARMA model. This simulation-based estimation procedure inherits the
properties of the auxiliary model estimator. For instance, robustness is achieved with GM
estimators.An essential feature of the introducedestimator, compared to existing robust es-
timators for ARMA models, is its theoretical tractabilitythat allows us to show consistency
and asymptotic normality. Moreover, it is possible to characterize the in� uence function
and the breakdown point of the estimator. In a small sample Monte Carlo study it is found
that the new estimator performs fairly well when compared with existing procedures. Fur-
thermore, with two real examples, we also compare the proposed inferential method with
two different approachesbased on outliers detection.

Key Words: Breakdown point; Indirect inference; In� uence function; GM-estimator; Ro-
bustness; Time series.

1. INTRODUCTION

The concept of robustness in statistics is usually de� ned as the lack of sensitivity of
a particular inferential procedure to departures from the model assumptions. A theory of
robustness(Huber 1981;Hampel, Ronchetti,Rousseeuw,and Stahel1986)has developedfor
departures arising from contaminated observations—called outliers—present in a “clean”
dataset; that is, generated from a known model. Typically maximum likelihood and least
squares estimators have poor robustness properties and several alternative robust estimators
have been proposed, such as M estimators (Huber 1981) and L1-based estimators. Robust
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estimation in the time series context is a dif� cult task because different types of outliers may
occur. For instance, outliers can replace, or be added to, some observations of the stochastic
process. They can also be found in the innovations driving the process. Furthermore, the
con� guration of time points where the contaminations occur becomes important: isolated
and patchy outliers can have different effects and both have been observed in practice. In
the last two decades, the subject of robust estimation for time series models has developed
quickly;see Martin and Yohai (1985) for a survey. The earlier works put particularemphasis
on autoregressive (AR) processes. In this case, M estimators were shown to be nonrobust,
and were generalized to GM estimators in order to obtain the desired robustness properties
(Künsch 1984). Estimators based on residual autocovariances, RA estimators, were later
proposed by Bustos and Yohai (1986) as alternatives.Unfortunately,GM and RA estimators
are not robust for movingaverage or mixed autoregressivemovingaverage (ARMA) models,
since a single outlier at a certain time in� uences all subsequent terms in the estimation
equations. Several ad hoc methods have been proposed to overcome this dif� culty. For
example, estimators based on truncated residual autocovariances (TRA estimators) were
also introducedby Bustos and Yohai (1986). More recently, Allende and Heiler (1992) have
proposed the use of recursive GM estimators, denoted RGM estimators. They performed
a Monte Carlo study, showing that their proposal outperforms all other existing methods.
Unfortunately, due to the complexity of the algorithm, neither an asymptotic distribution
nor theoretical robustness results are available to date. Moreover, computation of RGM
estimators is costlybecauseit involvesseveralGM estimations.This article proposesa robust
estimation method based on simulated data and on a single GM estimation. An essential
feature of the introduced estimator, compared to existing robust estimators for ARMA
models, is its theoretical tractability that allows us to show consistency and asymptotic
normality,as well as to characterize the correspondingin� uence functionand the breakdown
point.

This novel robust estimator is inspired from the indirect inference method introduced
by Gouriéroux, Monfort, and Renault (1993). Indirect inference is part of an increasingly
growing tool-kit of simulation-based inference procedures. These are often proposed with
the purpose of dealingwith complex modelswhose likelihoodfunction is intractable;Diggle
and Gratton (1984) is an early reference. The indirect inference allows for the estimation of
the parameter, say ³ , of a model of interest whose likelihoodor any other classic estimating
criterion is not available neither in closed form nor algorithmically. The indirect inference
consists in using an auxiliary model with parameterization º , whose estimation is feasible.
This auxiliary model is � tted to the observed data, yielding ˆº , as well as to data simulated
from the model of interest with a given value of ³ , giving º ¤ . Then, ˆº and º ¤ are calibrated
by choosing a value for ³ , the � nal estimate.

We borrow the indirect inference estimation algorithm and modify it in order to obtain
a robust device for the adjustment of ARMA models. The idea is to use an autoregressive
representation of an ARMA process as an auxiliary model. Indeed, while existing robust
inference methods for ARMA models are not satisfactory because of their essentially ad
hoc nature, the robust GM estimation of AR models is well mastered both from a theoretical
and a practical point of view.

This article is arrangedas follows. Section2 presentsdifferent contaminationmodels for
ARMA processes, and Section 3 describes in detail the robust simulation-based estimation
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algorithm. Section 4 analyzes the asymptotic properties of our method. In particular, known
asymptotic results for the GM estimation of AR models are readily “transmitted” to the
simulation-based estimator for the ARMA parameters. Section 5 demonstrates a Monte
Carlo experiment, where small sample ef� ciency and robustness are studied and compared
with existing estimators. Section 6 presents two case studies. Section 7 summarizes our
main conclusions.

2. CONTAMINATION MODELS

Let fXt; t 2 Zg be a stationary stochastic process. We call it an autoregressive and
moving average process of order p and q, ARMA(p; q), if it admits the representation

Xt ¡ · =

pX

i = 1

¬ i(Xt¡i ¡ · ) +

qX

j = 1

 jZt¡j + Zt: (2.1)

The so called innovation process fZtg is assumed to be independently and identically
distributed with mean zero and � nite variance ¼ 2.

Subsequently, we assume that ¬ 1; : : : ; ¬ p and  1; : : : ;  q are such that the process is
causal and invertible. Brockwell and Davis (1991) is a general reference on causal and
invertible ARMA processes. Note that fXtg is called autoregressive process when q = 0
and moving average process when p = 0.

As noted in Section 1, robustness is typically more dif� cult with dependent than with
independentdata, because in the former there is a need to consider several different possible
types of contamination.The three main types of outliers generally considered for dependent
data are: innovationoutliers (IO), which affect all subsequentobservations,additiveoutliers
(AO), and replacement outliers (RO), which have both no effect on subsequentobservations.

The ARMA(p; q) process fXt; t 2 Zg is said to have innovation outliers (IO) if it
satis� es (2.1) and the innovation process fZtg has a heavy-tailed distribution; for instance,
F" = (1 ¡ ")F + "H, where " is small and H is an arbitrary distribution with greater
dispersion than F . The important characteristic of this kind of outliers is that the contam-
inated time series comes from a perfectly observed ARMA(p; q) process. For that reason,
naive robust estimators, such as M estimators, and even maximum likelihood estimators
can typically cope with IO.

The process fYt; t 2 Zg is said to have additive outliers (AO) when de� ned by Yt =

Xt + BtWt, where fXtg is an ARMA(p; q) process satisfying (2.1), fBtg is a Bernoulli
process with P (Bt = 1) = ", and fWtg is an independent sequence of random variables,
independentof thesequencesfXtg andfBtg. The processfXtg is observedwith probability
1 ¡ ", whereas the process fXtg plus an error fWtg is observed with probability ". fYtg
is therefore not an ARMA process. AO are known to be much more dangerous than IO.
Note also that additive outliers have a similar effect to replacement outliers (RO), where the
contaminated process is de� ned as Yt = (1 ¡ Bt)Xt + BtWt. This means that the process
fXtg is observed with probability 1 ¡ ", and replaced by an error fWtg with probability
". Here again, fYtg does not admit representation (2.1). Isolated or patchy outliers can be
modeled with respectively an independent or strongly dependent process fBtg.
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3. ESTIMATION METHOD

3.1 SIMULATION-BASED ESTIMATION ALGORITHM

Maximum likelihood estimators and alikes are known to be very sensitive to the pres-
ence of AO or RO. We therefore propose an alternative estimation method of the parameter
µ = ( · ; ¬ 1; : : : ; ¬ p;  1; : : : ;  q; ¼ 2)0, which uses the auxiliaryrepresentationof the stochas-
tic process fXtg:

Xt ¡ · =

rX

i = 1

º i(Xt¡i ¡ · ) + Ut; (3.1)

where º i, i = 1; : : : ; r, are de� ned such that E(UtVt) = 0, with Vt = (Xt¡1 ¡
· ; : : : ; Xt¡r ¡ · )0. Then, fUtg is a process with mean zero and variance ¼ 2

r. We call
¼ = ( º 1; : : : ; º r ; ¼ 2

r)0 the auxiliary parameter. Note that the parameter ¼ is solution of
r + 1 Yule–Walker equations; see, for example, Brockwell and Davis (1991, sec. 8.1). For
instance, if the process is ARMA(0,1) and for r = 1, we have º 1 =  1=(1 +  2

1) and
¼ 2

1 = ¼ 2(1 +  2
1)(1 ¡ º 2

1). We assume in the sequel that the nontrivial case q > 0 applies.
In the case q = 0, the robust estimation of µ can be done with GM estimators as described
in Section 3.2. Finally note that, because q > 0, fUtg is a correlated process, although Ut

is uncorrelated with Vt by de� nition.
Remark 1. In this article, we talk about auxiliary autoregressive representation AR(r)

when referring to (3.1) and about autoregressive process when referring to (2.1) with q = 0.
In particular, when q > 0, fXtg admits an auxiliary AR(r) representation although it is not
an autoregressive process.

Assume that the realization y = (y1; : : : ; yn)0 of fYtg, a possibly contaminated
ARMA(p; q) stochastic process, is observed. The estimator of µ proposed in this article
is based on the following algorithm:
Step 0: Estimate · with ˆ· such that

nX

t = 1

Á(yt ¡ ˆ· ) = 0; (3.2)

where Á(¢) is a real valued function.
Step 1: Estimate the auxiliary parameter ¼ with ¼̂ = ( ˆº 1; : : : ; ˆº r ; ˆ¼ 2

r)0 such that

nX

t= r + 1

² (vt; ut= ˆ¼ r)vt = 0; (3.3)

nX

t= r + 1

À (ut= ˆ¼ r) = 0; (3.4)

where vt = (yt¡1 ¡ ˆ· ; : : : ; yt¡r ¡ ˆ· )0, ut = (yt ¡ ˆ· ) ¡ ˆº 1(yt¡1 ¡ ˆ· ) ¡ ¢ ¢ ¢ ¡
ˆº r(yt¡r ¡ ˆ· ) and ² (¢) and À (¢) are suitable real valued functions.

Step 2: Simulate m = sn independent pseudo-realizations from the standard normal dis-
tribution, where s is a strictly positive integer.
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Figure 1. Schematic Illustration of the Simulation-BasedEstimation Algorithm.

Step 3: Use the simulated random sample in Step 2 as innovations and a given value of µ

(with · = 0) to generate a sequence x̃ = (x̃1; : : : ; x̃m) from model (2.1). Estimate
¼ with an ef� cient (when possible) estimator denoted ¼ ¤ ; when innovationsare nor-
mally distributed, maximum likelihood, least squares, and Yule–Walker estimators
are asymptotically equivalent, see, for example, Brockwell and Davis (1991).

Step 4: The estimator µ̂ of the parameter µ is obtainedby minimizingthe quadraticdistance
between ¼ ¤ , which is a function of µ by construction, and ¼̂:

(¼̂ ¡ ¼ ¤ )0«(¼̂ ¡ ¼ ¤ ); (3.5)

where « is a weighting matrix, whose optimal choice is discussed later. Note that
criterion (3.5) is minimized by letting µ vary in Step 3 while the simulated innova-
tions in Step 2 are kept � xed throughout. The latter point is important to ensure the
success of the estimation algorithm; see Gouriéroux, Monfort, and Renault (1993).

A schematic illustration of the algorithm is given in Figure 1.
When the estimator ¼̂ and ¼ ¤ are based on the same criterion—for example, both

are least squares estimators—we obtain the indirect inference estimator introduced by
Gouriéroux et al. (1993). We obtain a robust estimator µ̂ by using a robust estimation
procedure in Steps 0 and 1. On the other hand, in Step 3 no robusti� cation is needed be-
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cause the data are simulated and therefore outliers-free. In this article we study the use of
GM estimation in Step 1.

Remark 2. Note that the simulation-based algorithm has been described for normally
distributed innovations (Step 2) for convenience of exposition. The normal distribution
is also the most natural choice and corresponds to the widespread use of the Gaussian
likelihood.However, while maximum likelihoodestimation is generally intractablefor non-
Gaussian processes, the simulation-based estimation algorithm is easily adaptable to other
innovations distributions as long as they allow for the generation of pseudo-realizations
in Step 2. The choice of an adequate distribution should as usual be based on scienti� c
knowledge of the problem at hand and/or on data exploration.

3.2 GM ESTIMATION OF AN AR MODEL

The GM estimator for the parameter of an AR model has been described and justi� ed
extensively in the literature; see, for example, Denby and Martin (1979), Martin (1980),
Bustos (1982), Künsch (1984), and Bustos and Yohai (1986). Therefore, we here only
succinctlydescribe the GM estimator and refer the interested reader to the above-mentioned
literature. For Step 0 and 1 to be robust against the AO and RO types of outliers, the
functions Á(¢) and À (¢) must be bounded and ² must be such that ² (v; u)v is bounded.
This is not the case, for instance, for the least squares estimator, where ² (v; u) = u,
or classical M estimators, where ² (v; u) = ² (u). Several proposals for ² of the form
² (v; u) = w1(v)Á(w2(v)u), for appropriate functions Á : R ! R and weight functions
w1; w2 : Rr ! R + , can be found in the literature. The choice of functions Á, À and ²

are further restricted by the consistency requirement, see Section 4.3. There are two classic
choices for ² . The � rst de� nes the Mallows GM estimator (Mallows 1976), and is such that
w1(x) = Á1(kxk)=kxk and w2(x) = 1, for an appropriate norm k ¢ k. The second is the
Hampel–Krasker–Welsch GM estimator de� ned with w1(x) = 1=kxk and w2(x) = kxk,
see, for example, Martin and Yohai (1985). More details can also be found in Section 5.1
where particular examples of GM estimators are described and used.

4. ASYMPTOTIC THEORY

4.1 PRELIMINARIES

Without loss of generality we assume that · = 0 in the following theoretical develop-
ments. We need to de� ne the function h : M » Rp+ q + 1 ! A » Rr + 1 such that h(µ) = ¼

for µ 2 M and ¼ 2 A; that is, the function binding the parameterization of representation
(3.1) and model (2.1). The subspaces M and A are de� ned by the causality and invertibil-
ity assumptions on model (2.1). Standard asymptotic results for the estimation algorithm
proposed in Section 3.1 can be deduced when the function h(¢) is locally injective around
¼0 = h(µ0), where µ0 denotes the unknown unique value for µ for which model (2.1) holds,
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and the matrix of the � rst partial derivatives (Jacobian matrix) D(µ0) = @h(µ)=@µ0j³ ³³ = ³ ³³ 0

exists. The � rst property holds when r ¶ p + q. Note that there is a one-to-one mapping
between A and G » Rr + 1 the space de� ned by the vector ° = ( ® 0; ® 1; : : : ; ® r)0 of autoco-
variances up to order r of the causal ARMA process fXtg. This mapping is actually de� ned
by the Yule–Walker equations. These equations remain valid for (3.1). The function h is
then injectivewhen r ¶ p+q because there is an injectivemapping between M and G . This
latter assertion is a consequence of the equations linking ° and µ given by Brockwell and
Davis (1991, p. 93). We, therefore, assume in the sequel that r ¶ p+q. Finally, the existence
of the Jacobian matrix D(µ0) is a straightforward consequence of ¼ being differentiable
with respect to ° and ° being differentiable with respect to µ.

Note that when p = 0, the function ¼ = h(µ) has a known analytical form; as an
example we gave the function for the ARMA(0,1) case in the text after Equation (3.1).
However, when p > 0, only an algorithmic characterization of the function h(¢) is available
(Brockwell and Davis 1991, p. 93). The main consequence is that the inverse of the function
h(¢) is not retrievable in general, and an estimate of µ cannot be constructed as h¡1(¼̂),
thereby justifying the use of the simulation step in our proposal.

4.2 INFLUENCE FUNCTION AND BREAKDOWN POINT

The in� uence function (Hampel 1974) is a tool to describe the robustness properties
of an estimator. Its importance lies in its appealing heuristic interpretation: it measures the
asymptotic bias caused by an in� nitesimal contamination of the observations. Hampel’s
original de� nition was aimed at the independent and identically distributed case. Its ex-
tension to the time series setting has given raise to two different approaches proposed by
Künsch (1984) and Martin and Yohai (1986).

Künsch’s (1984) in� uence functionis boundedwhen the GM estimationof the auxiliary
AR representationis performed and Xt is a causal and invertibleARMA process. Martin and
Yohai’s (1986) de� nition requires the ² function to be based on a redescending Á to ensure
boundednessof the in� uence function. This is not the case when using our simulation-based
estimation algorithm.

Both Künsch’s and Martin and Yohai’s in� uence functions can be derived for the
simulation-based estimator of µ from the in� uence function of the estimator of ¼. Denote
by ¦ and £ the statistical functionalscorrespondingrespectively to the estimators ¼̂ de� ned
by Equations (3.3) and (3.4), and µ̂ de� ned by Equation (3.5). Let IFAR( ¸ ; ¦; F ) be the
vector in� uence function of the estimator of ¼, and IFARMA( ¸ ; £; F ) be the vector in� uence
function of the simulation-basedestimator of µ. Here F is the (r+1)-dimensional marginal
of the joint distribution of the process, and ¸ is the probability measure de� ning the con-
tamination process. The function h de� ned in the previous section sends £ on ¦ = h(£).
The relation between the two in� uence functions is (Genton and de Luna 2000, theorem 1):

IFARMA( ¸ ; £; F ) = P (£(F )) IFAR( ¸ ; ¦; F ); (4.1)

where P (£(F )) =
£
D(£(F ))0«D(£(F ))

¤¡1
D(£(F ))0«. Thus, these two in� uence

functions are proportional so that the boundedness of IFAR implies the boundedness of
IFARMA.
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The breakdown point is another important feature of reliability of an estimator (Huber
1981, 1984; Hampel et al. 1986). It indicates how many data points need to be replaced by
arbitrary values to destroy the estimator, i.e. to bring the estimator to the boundaries of the
parameter space. This concept can be applied to a dependent data setting; see, for example,
Genton (1998) for a spatial random � eld situation. It is important to note, however, that
the effect of a fraction of outliers may be different, depending upon whether they occur
in isolation or in patches (Ma and Genton 2000). For AR models, it turns out that least
squares and M estimators both have zero breakdown point. Martin and Jong (1977), Martin
(1980), and Martin and Yohai (1985) studied the breakdown point of GM estimators for AR
models. They argue that in this case, the breakdown point is positive, but bounded above
by 1=(r + 1), where r is the order of the autoregression. The simulation-based estimator
of µ has the same positive breakdown point, bounded above by 1=(r + 1). Once again, the
reason is that in Step 3 of our algorithm, the simulated data are outliers-free.

Finally, one can expect that other robustness properties of GM estimators for the aux-
iliary autoregressive representation will be transmitted to the simulation-based estimator of
µ. For instance, the concept of qualitative robustness has been generalized to the time series
context by Boente, Fraiman, and Yohai (1987), by de� ning weak and strong resistance. In
particular, they showed the strong resistance of GM estimators for autoregressive models.

4.3 CONSISTENCY AND ASYMPTOTIC NORMALITY

Bustos(1982)showed for a fairly wide class of ergodicprocesses—includingcausaland
invertible ARMAs—that the GM estimation of ¼, de� ned by (3.3) and (3.4), is consistent
and asymptotically normal. We thus have, when n tends to in� nity,

p
n(¼̂ ¡ ¼0) ¹ N (0; V #); (4.2)

where V # can be found in Bustos (1982, theorem 2.2). For this asymptotic result to hold,
regularity conditions on the functions ² and À , in (3.3) and (3.4) respectively, need to be
imposed; see again Bustos (1982) for more details.

Because the binding function h(µ) is injective, the estimator µ̂ de� ned in Section 3.1
inherits the consistency and asymptotic normality from ¼̂. More speci� cally, when (4.2)
holds, for a given matrix « and s � xed,

p
n(µ̂ ¡ µ0) ¹ N (0; V ); (4.3)

when n tends to in� nity. Here

V = P (µ0)V #P (µ0)
0 +

1
s

P (µ0)V ¤ P (µ0)
0; (4.4)

where V ¤ is the asymptotic variance of ¼ ¤ . Result (4.3) is a direct consequence of Propo-
sition 4.2 in Gouriéroux and Monfort (1996).

Note that µ̂ is consistent for any s > 0 while its ef� ciency is improved when increasing
s. For s large enough,we obtain the best ef� ciency with « = V #¡1. The matrix V simpli� es
then to

V ¹=
£
D(µ0)0V #¡1D(µ0)

¤¡1
:
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Remark 3. In practice, « = V #¡1 has to be expressed as a function of µ or need to
be estimated. However, choosing « = Id simpli� es the computation effort while, from
practical experience, the loss of ef� ciency is often limited. For those cases where the matrix
V #¡1 is far from being diagonal—strong correlation structure in the components of the sum
of squares (3.5) to be minimized—it is sometimes possible and convenient to use a slight
modi� cation of (3.5) to improve on the ef� ciency; see next section for details.

Remark 4. A consistent estimator for V can be obtained by replacing D(µ0) by a
numerical approximation of @º ¤ (µ)=@µ0j

³ ³³ = ˆ³ ³³
(see Genton and de Luna 2000), and using a

consistent estimator for V #, see Gouriéroux et al. (1993, appendix 2).

Remark 5. Asymptotic properties have been derived for any value of r ¶ p + q

� xed. Increasing r may improve the ef� ciency if there is structure left in the process Ut

(noise of the auxiliary autoregression) although only marginally after a given level. Thus, a
heuristic approach to the choice of r is to use an information criterion such as the Akaike
information criterion (AIC) or the Bayesian information criterion (BIC); see, for example,
de Luna (1998), ensuring thus that as little structure as possible remains in the process Ut.
One may then repeat the procedure for a few other values of r to ensure that the estimation
is not sensitive to an increase in r. In fact the ef� ciency performances of the estimator will
in general be similar for a fairly wide range of values of r, see Section 5.2.

5. MONTE CARLO STUDY

5.1 COMPUTATION

The computationof GM estimators (Step 1) can be done with an iterative weighted least
squares algorithm; see Martin (1980). This is implemented in the widely spread statistical
package S-Plus; the built-in command is ar.gm.

In the MonteCarlo study reported in this section,we have used the minimizationroutine
E04FDF (Gauss–Newton) from the Fortran NAG library to perform Step 4. The starting
values were chosen as the true valuesfor the simulationstudy and as the ML estimates for the
illustrative examples of Section 6. Pseudo-random numbers for Step 2 were obtainedvia the
algorithm of linear congruences; see Rubinstein (1981). The Durbin–Levinson algorithm
(see Brockwell and Davis 1991) solving the Yule–Walker equations is used in Step 3.
Here maximum likelihood and least squares could also have been used without implying
signi� cant change for large samples. The GM estimation was performed with the ar.gm

command. The latter is based on the Mallows type ² function and allows the user to choose
between the two following Á functions: the Huber family ÁH (x) = minfjxj; cgsign(x) and
the bi-square family ÁB(x) = x(1 ¡ (x=c)2)2, for 0 µ x µ c, zero otherwise. Here c is
a tuning parameter which regulates the trade-off between robustness and ef� ciency under
the noncontaminated model. The command ar.gm allows us to start the iterations of the
weighted least squares algorithmwith ÁH(x) (Equation(3.3) has then a uniquesolution)and
to � nish with ÁB(x). Two strategies are adopted in this study. The � rst uses three iterations
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with ÁB (denoted IGM-a in the sequel). It corresponds to setting the ar.gm parameters
iterh=0 and iterb=3. The second estimator (IGM-b) is obtained with four iterations
with ÁH and one with ÁB , corresponding to iterh=4 and iterb=1. The values for c are
automatically set once the user has chosen the value of the parameter effgm, controlling
the ef� ciency, in ar.gm; we have used throughouteffgm=0.7 . For the innovationsscale
estimation, Huber’s proposal 2 is used: À (x) = Á2(x) ¡ E © [Á2], where © is the standard
normal distribution.

For ARMA(p; q) processes with p; q > 0, we use a computational modi� cation of the
algorithm described in Section 3. For the clarity of the exposition we specialize here to
the ARMA(1,1) with zero mean process: Xt ¡ ¬ Xt¡1 =  Zt¡1 + Zt. Note that fDtg =

fXt ¡ ¬ Xt¡1g is a moving average process. We use this fact to simplify the computation.In
Step 3 we can simulate a sample path from fDtg rather than fXtg, and then � t the auxiliary
AR representation

Dt =

r¡1X

i = 1

˜º iDt¡i + Ut: (5.1)

yielding the estimator ¼̃ ¤ = ( ˜º ¤
1 ; : : : ; ˜º ¤

r¡1; ¼ 2¤
r )0. Comparing (5.1) with (3.1) we see that

º 1 = ¬ + ˜º 1; º 2 = ˜º 2 ¡ ¬ ˜º 1; : : : ; º r¡1 = ˜º r¡1 ¡ ¬ ˜º r¡2, and º r = ¡ ¬ ˜º r¡1. Hence,
¼ ¤ in (3.5) is computed from ¼̃ ¤ . This manner of proceeding has several advantages.
A moving average and not a more complex mixed autoregressive and moving average
sample path has to be simulated. From our experience the minimization of (3.5) is faster to
converge with the above modi� cation. Moreover, when the components of ¼̂ are strongly
correlated the computation of a weighting matrix (see Remark 4) can be spared with the
use of ˜º ¤

1 ; : : : ; ˜º ¤
r¡1 as some kind of instrumental variables; that is, calibrating ¼̂ with ( ¬ +

˜º ¤
1 ; ( ˜º ¤

2 ¡ ¬ ˜º ¤
1 ) ˜º ¤

1 ; : : : ; ( ˜º ¤
r¡1 ¡ ¬ ˜º ¤

r¡2) ˜º ¤
r¡2; ¡ ¬ ˜º ¤ 2

r¡1; ¼ 2 ¤
r )0 instead of ¼ ¤ can dampen the

correlation structure of the componentsof the sum of squares (3.5) to be minimized, without
addingmuch extracomputationalburden.This modi� ed Step 3 togetherwith the instruments
are used in the experiments described below concerning the ARMA(1,1) processes.

The computational time to obtain a simulation-based estimate is reasonable since the
actual simulation of random numbers is performed only one time (Step 2 of the algorithm).
For the models and sample sizes considered in the next sections, the computational time to
obtain the estimator µ̂ varied typically between less than one second and 40 seconds on a
Silicon Graphics computer using a 200 MHZ processor. The variation was mainly due to
slower or faster convergence when minimizing (3.5).

5.2 DESIGN OF THE STUDY

We have chosen to perform a Monte Carlo experiment which allows for comparison
with Allende and Heiler’s (1992) published results. We therefore follow partially their
design but consider also other situations such as different types of outliers. Thus, the study
is based on three ARMA(0,1) processes, Xt =  Zt¡1 + Zt, with  = ¡ 0:5, ¡ 0:8, and
0:5, and one ARMA(1,1), Xt = ¬ Xt¡1 +  Zt¡1 + Zt, with ¬ = 0:8 and  = 0:5. The
innovationsare simulated from the normal distributionwith variance ¼ 2 = 1 in all cases. To
study the robustness properties of different estimation methods we consider AO processes,
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Yt = Xt + BtWt, and RO processes, Yt = (1 ¡ Bt)Xt + BtWt (as de� ned in Section
2), with P (Bt = 1) = " = 0:05, var(Wt) = ½ 2var(Xt) with ½ 2 = 9; 100. Time series
of length n = 100 were generated with S-Plus. The estimation methods studied are the
maximum likelihood (ML)—the S-Plus built-in command is used—and three versions of
the simulation-basedalgorithm of Section 3: the � rst (denoted ILS for indirect least squares)
uses least squares in Step 1; the two others are IGM-a and IGM-b as described previously.
The simulation-based algorithm was used with s = 30 for ARMA(0,1) cases and s = 90
for ARMA(1,1) cases. While consistency is independent of s, ef� ciency is improved by
increasing its value. Increasing s over the chosen values did not, however, bring signi� cant
ef� ciency improvement in the experiments reported here. Another tuning parameter of the
algorithm is r, the order of auxiliary AR representation. It needs to be large enough for the
representation (3.1) to be a good approximation of (2.1), depending on the values of the
parameters ¬ and  . We have used the following values: r = 5 when j j = 0:5 and r = 10
for  = ¡ 0:8, adding one when p = 1. From nonreported experiments, we have noticed
that too large values for r do not have much in� uence on the ef� ciency of the estimators
under the uncontaminated model but weakens the robustness properties.

5.3 RESULTS AND COMMENTS

Results are displayedin Tables 1–3. The tables contain the average of the 500 estimators
obtained for ¬ and  , the corresponding mean squared errors (MSEs) as well as relative
ef� ciencies (eff), de� ned as the ratio of the MSE of the ML estimator to the MSE of the
estimator under consideration. Where applicable Allende and Heiler’s (1992) results are
put in parallel. We report only the ef� ciencies they obtained with RGM, because the latter
estimator was the best performer; in particular, RGM estimators were superior to RA and
TRA estimators. Because they consider eight different RGM estimators Tables 1–3 give,
in a row labeled RGM, the worst and best ef� ciencies Allende and Heiler (1992) obtained.
These can be directly compared with our own ef� ciency results.

In the up-coming comments we use the words “ef� cient” and “robust” for the same
conceptof performance; that is, an ef� cient (or robust) estimator is called so when its sample
MSE is low (always in comparison with one or several other estimator). We, however,
systematically talk about ef� ciency in the noncontaminated situations while robustness
always refers to the presence of outliers, either AO or RO.

Table 1 and 2 report the results of our experiments concerning the purely moving
average models. We � rst comment on the difference between ML and ILS estimation which
is of interest per se. Both are nonrobust with ML being asymptotically ef� cient. ILS was
advocated by Gouriéroux et al. (1993) as an alternative to ML. They showed that the ILS
estimator, which is faster to compute, can have similar small sample ef� ciency to ML.
These results are con� rmed here by our experiments although for a positive  , here 0.5 (see
Table 1), the loss of ef� ciency when using ILS is not negligible.Finally, it is apparent when
looking at biases and MSEs that both ML and ILS are not able to cope with contaminated
situations, neither AO nor RO.

When replacing least squares with GM estimation in Step 2 we gain a great deal in
robustness when both AO or RO are present as can be seen in Tables 1 and 2. Both versions
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Table 1. Monte Carlo Results for the ARMA(0,1) Case With  = ¡0.5

Clean data With AO With RO
Estimator Mean MSE eff Mean MSE eff Mean MSE eff

ML ¡0.519 0.87 1.00 ¡0.122 16.07 1.00 ¡0.117 16.46 1.00
ILS ¡0.518 0.88 0.98 ¡0.145 14.28 1.13 ¡0.115 16.73 0.98
IGM-a ¡0.518 0.96 0.91 ¡0.491 1.55 10.38 ¡0.495 1.57 10.51
IGM-b ¡0.518 0.96 0.91 ¡0.493 1.54 10.42 ¡0.492 1.58 10.39
RGM¤ 0.76/0.86 11.18/17.41 ¡/¡

NOTES: Means and MSE are calculated on 500 replicate time series of length 100. Relative ef� ciencies (column eff)
are ratios of the ML MSE to the estimator given in the line entrance. MSEs � gures are multiplied by 100. See text for
keys to symbols.
¤ Worst/best ef� ciencies obtained in Allende and Heiler’s (1992) experiments with RGM estimators.

(IGM-a and IGM-b) happen to be robust to the contaminated situations considered with a
slight advantage to IGM-a. Robustness is usually achieved at the cost of a loss of ef� ciency,
although, in all the cases considered, this cost stays within reasonable limits. In Table 1 it
can be seen that results under AO and RO are very similar so that only AO are considered
in the remaining experiments. Finally, IGM performances are within the range of the one
obtained by Allende and Heiler (1992) with RGM estimators.

Table 3 contains the results of the experiments performed with the ARMA(1,1) model.
Results are, on the whole, similar to the ARMA(0,1) experiments.We note, however, a larger
loss of ef� ciency from using ILS instead of ML estimation mainly for the autoregressive
coef� cient ¬ . In nonreported experiments, much heavier loss was obtained when not using

Table 2. Monte Carlo Results for the Two ARMA(0,1) Cases

Clean data With AO

Estimator Mean MSE eff Mean MSE eff

 = ¡0.8

ML ¡0.823 0.57 1.00 ¡0.151 44.66 1.00
ILS ¡0.804 0.61 0.93 ¡0.173 41.80 1.07
IGM-a ¡0.788 0.70 0.81 ¡0.678 3.65 12.23
IGM-b ¡0.789 0.69 0.82 ¡0.669 4.26 10.47
RGM¤ 0.79/0.98 11.58/24.44

 = 0.5

ML 0.500 0.86 1.00 0.096 18.13 1.00
ILS 0.462 1.07 0.80 0.061 21.17 0.86
IGM-a 0.458 1.19 0.73 0.420 2.17 8.34
IGM-b 0.458 1.19 0.73 0.417 2.21 8.20

NOTES: Means and MSE are calculated on 500 replicate time series of length 100. Relative ef� ciencies (column eff)
are ratios of the ML MSE to the estimator given in the line entrance. MSEs � gures are multiplied by 100. See text for
keys to symbols.
¤ Worst/best ef� ciencies obtained in Allende and Heiler’s (1992) experiments with RGM estimators.
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Table 3. Monte Carlo Results for the ARMA(1,1) Case With ¬ = 0.8 and  = 0.5

Clean data With AO and ½ 2 = 9 With AO and ½ 2 = 100

Estimator Mean MSE eff Mean MSE eff Mean MSE eff

Autoregressive parameter ( ¬ = 0.8)
ML 0.766 0.63 1.00 0.748 1.27 1.00 0.628 11.27 1.00
ILS 0.785 1.01 0.63 0.666 3.69 0.34 0.314 29.45 0.38
IGM-a 0.786 1.07 0.59 0.783 1.44 0.88 0.782 1.65 6.81
IGM-b 0.786 1.07 0.59 0.782 1.43 0.89 0.781 1.70 6.61
RGM¤ 0.67/1 3.07/5.80 ¡/¡

Moving average parameter ( = 0.5)
ML 0.513 1.00 1.00 ¡0.017 31.93 1.00 ¡0.319 78.12 1.00
ILS 0.470 1.23 0.82 0.039 23.53 1.36 ¡0.027 29.84 2.62
IGM-a 0.466 1.33 0.75 0.344 5.14 6.21 0.418 3.17 24.67
IGM-b 0.467 1.34 0.75 0.341 5.22 6.12 0.418 3.13 24.98
RGM¤ 0.70/0.91 5.10/17.16 ¡/¡

NOTES: Means and MSE are calculated on 500 replicate time series of length 100. Relative ef� ciencies (column eff)
are ratios of the ML MSE to the estimator given in the line entrance. MSEs � gures are multiplied by 100. See text for
keys to symbols.
¤ Worst/best ef� ciencies obtained in Allende and Heiler’s (1992) experiments with RGM estimators.

the instrumental variables described in Section 5.1. The ef� ciency loss for IGM remains
here, however, within tolerable limits while the gain in robustness is important in most cases.
An exception arises when estimating ¬ in the AO case with ½ 2 = 9. We � nd it dif� cult
to interpret the poor performance of IGM with respect to RGM in this particular case. A
possible explanation might be the surprisingly robust estimate obtained with ML. This is
not the case anymore when ½ 2 = 100. Note that in both of these cases ILS is much less
robust than ML. Finally, we see that both IGM estimators are robust for ¬ and  .

6. ILLUSTRATIVE EXAMPLES

We analyze two real time series, whose choice is motivated by the existence of previ-
ously published studies. This gives us ground for comparison of the proposed inferential
method with approaches based on the detection of outliers. We do not tackle the model
building issue in this article, and therefore simply use the models proposed in the previous
available studies.

6.1 SAVING RATES SERIES

A time plot of the series on saving rates (saving as percent of income) in the United
States from the � rst quarter of 1955 to the fourth quarter of 1979 is displayed in Figure 2.
In Pankratz (1991, chap. 8) an outliers detection procedure inspired by Chang, Tiao, and
Chen (1988) was applied to the series.

Chang et al.’s approach was based on an iterative procedure based on likelihood ratio
tests to check the presence of IO, AO, or level shifts. These phenomenaare then adjusted for
(using intervention regressors) and the tests repeated. The procedure stops when tests are
unable to detect any outliers. A similar procedure was proposed by Tsay (1986). This type
of approach is most valuable if one is interested in the actual existence and nature of outliers
in the time series. Such information may be used for historical analysis for instance. Thus,
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Figure 2. Time plot of the saving rates in the United States, from the � rst quarter of 1955 to the fourth quarter of
1979. A triangle highlights the 82nd (second quarter of 1975) observation.

Pankratz’s (1991) analysis identi� ed six time points with possible outlying phenomena,
leading him to propose the following model for the saving rates series:

Yt = · + w82I1;t + w99I2;t + w43I3;t + w89I6;t + Wt; (6.1)

where Wt = ¬ 1Wt¡1 + Xt ¡  2Xt¡2, Xt = w62I4;t + w55I5;t + Zt, and I1;t, I3;t, I4;t, I5;t,
and I6;t are binary pulse variable equal to one at t = 82, 43, 62, 55, and 89, respectively,
and zero elsewhere; I2;t is a binary step variable equal to zero for t < 99 and one for
t ¶ 99. The innovation process fZtg is normally distributed with mean zero and variance
¼ 2. Model (6.1) is basically an ARMA(1,2) model with  1 = 0, to which six interventions
have been added to take into account detected outlying phenomena.

Our interest lies in the ARMA(1,2) actual parameters, ¬ 1,  2, · , and ¼ 2. Table 4 reports
the estimates obtained by Pankratz (1991) using model (6.1). However, Pankratz himself
recognized that, for illustration purposes, he had used a hypersensitive outliers detection
procedure. The probable consequence is that the estimate of the scale parameter ¼ 2 is
overde� ated.

Looking at the saving rates series plot, it may be apparent that the 82nd observation
(second quarter of 1975) is exceptionally large. Indeed, at that time the Congress passed a
law granting a one-time tax rebate. This, according to some economic theories (see Pankratz
1991,chap. 7), may have caused the saving rates to rise. The 82ndobservationmay therefore
be considered as an AO or RO. To adjust for this single event, Pankratz used the model (6.1)
with w43 = w55 = w62 = w89 = w99 = 0, and obtained a larger estimate of ¼ 2 (see Table
4).
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Table 4. ARMA(1,2) Parameters Fitted to the Saving Rates Data

ˆ¬ 1 ̂ 2 ˆ· ˆ¼ 2

six interventions 0.80 (12.07) 0.38 (3.68) 6.16 0.23
one intervention 0.81 (11.76) 0.25 (2.23) 6.07 0.34
IGM 0.82 (7.71) 0.40 (2.39) 6.15 0.34
ML 0.74 (9.58) 0.34 (3.31) 6.11 0.44

NOTES: In parentheses are given absolute t values for the coef�cients. The mean · was clearly signi�cant in all
cases. The row entries indicate the estimation methods; from top to bottom, ML with six interventions, ML with a
single intervention on the 82nd observation, the simulation-based estimation as described in the text, and ML without
intervention. The t values for IGM are based on the variance estimator described in Remark 4.

An alternative inferential approach to the issue of � tting an ARMA(1,2) model to the
saving rates series is to use a robusti� ed procedure such as the one presented in this article.
For this purpose, we used the simulation-based algorithm with normal pseudo-realizations
in Step 2 and a GM estimator in Step 3 (S-Plus function ar.gm with iterh=0, iterb=3

and effgm=0.7), r = 3 (AIC choice), and s = 30. The resulting estimates are reported
in Table 4 together with estimates obtained with ML (S-Plus was used). Except for the
scale parameter ¼ 2, we obtain similar results to Pankratz’s estimates without the need of
identifying the presence and nature of outliers. Maximum likelihoodestimates of ¬ 1 and  2

are smaller in absolute value although not by much. The in� uence of the suspected outliers
is most obvious with the ML estimate of ¼ 2, which seems overin� ated. In this respect,
the estimate of ¼ 2 obtained with our robust procedure is close to the one obtained with
the single intervention model, while the coef� cients (¬ 1 and  2) estimates are similar to
the ones obtained with model (6.1). A tentative interpretation is that model (6.1) has, as
noted previously, too many interventions leading to an overde� ated scale estimate, while
intervening too little, as with the single intervention model, lead to nonrobust coef� cients
estimators.

6.2 EXPORTS SERIES

We study here the monthly unadjusted series on exports from the USA to Latin-
American republics between January 1966 and December 1983. This series has the in-
teresting feature of containing patchy outliers. A plot of the logarithm of the series is given
in Figure 3.

This dataset was used by Bruce and Martin (1989) to illustrate yet a different approach
for the identi� cation and treatment of outliers.Leave-k-out diagnosticswere used to identify
outlierswhile � ttingan ARMA(0,2) model (normally distributedinnovationswere assumed)
to the � rst differences of the logarithm of the series. Identi� ed outliers were then deleted
and treated as missing observations. The procedure is iterative in the sense that outliers are
not all identi� ed simultaneously, see Bruce and Martin (1989) for details.

For the export series their � nal analysis identi� ed ten outliers at times 1/69–2/69 (for
January 1969–February 1969), 9/71–11/71, 12/76–2/77,and 1/78–2/78. The � rst two groups
of outliers (1/69–2/69 and 9/71–11/71) correspond to dock strikesand forestalling.The other
groups of outliers have no known cause. The estimates obtained by ML when considering
these time points as missing values are given in Table 5. In the same table, ML estimates
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Figure 3. Time plot of the logarithm of monthly exports to Latin-America; starting January 1966 and ending
December 1983.

based on all the observations are given, as well as estimates obtained with the herein pro-
posed simulation-basedalgorithm.ML was performed with S-Plus and the simulation-based
estimator used normal pseudo-realizations in Step 2 and a GM estimator in Step 3 (S-plus
function ar.gm with iterh=0, iterb=3 and effgm=0.7), r = 2 (AIC choice), and
s = 30. We comment Table 5 by � rst noting that the simulation-based estimator (which
avoids the cumbersome identi� cation of outliers) gives almost identical results to the ML
where Bruce and Martin’s (1989) identi� ed outliers are treated as missing observations.
This is interesting for instance as a con� rmation that no in� uential outlier has been omitted
in Bruce and Martin’s analysis. The results are also encouraging by showing a situation
where the simulation-based estimator is robust to outliers occurring in groups. Note � nally,
that the ML estimator is strongly in� uenced by the outliers; a signi� cant  2 coef� cient is
obtained and the estimate of ¼ 2 is almost twice as large as the robust variants.

Table 5. ARMA(0,2) Parameters Fitted to the First Differences of the Logarithm of the Export Series

̂ 1 ̂ 2 ˆ· ˆ¼ 2

outliers deleted 0.43 (6.12) 0.08 (1.14) 0.008 0.0056
IGM 0.47 (6.87) 0.09 (0.97) 0.010 0.0060
ML 0.37 (5.11) -0.16 (2.38) 0.008 0.0114

NOTES: In parentheses are given absolute t values for the coef� cients. The mean · was clearly nonsigni� cant in
all cases. The row entries indicate the estimation methods; from top to bottom, ML with outliers treated as missing
observations, the simulation-basedestimation as described in the text, and ML without deletion of outliers. The t values
for IGM are based on the variance estimator described in Remark 4.
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7. DISCUSSION

A robust estimation method for the parameters of an ARMA model has been proposed
in this article. A major advantage of the novel estimator over existing procedures, is that
its asymptotic properties (distribution and in� uence function) can be derived. Moreover, a
small sample study shows that the new estimator compares well with previously proposed
methods.With two real examples,we have also been able tocompare the proposed inferential
method with two different approaches based on outliers detection.

The estimation algorithm as it is proposed in this article is essentially open in its
structure; several of its components may be modi� ed. For example, improvement of the
robustness properties may be achieved by reconsidering the method with which the � t of
the auxiliary model is performed. We have used the GM estimator in this article because it
has been well studied in the literature. Possible alternatives to GM estimation could be the
use of highly robust covariance estimators (Ma and Genton 2000) in conjunction with the
Yule–Walker estimation equations, and the least median of squares estimator for regression
parameters (Rousseeuw and Leroy 1987).

Moving average models are not speci� c to time series data but are of interest as models
for any nonindependentlydistributed datasets. For instance, ARMA models are used to rep-
resent random � elds in spatial statistics applications,see Cressie (1993). Thus, the proposed
estimation algorithm could be adapted to such similar situations. More generally, the par-
ticular simulation-based estimation algorithm proposed and studied in this paper implicitly
introduces a general robustifying framework for models for which no robust estimation cri-
terion is available neither in closed form nor algorithmically; see also Genton and de Luna
(2000) for general results concerning the in� uence function of robust simulation-based
estimators.

Finally, we have not addressed the model selection stage although it is essential in the
ARMA modeling of a time series. Model selection consists here in choosing the orders p

and q in (2.1). For that purpose, automatic order selection via criteria such as AIC and BIC,
which are basically penalized likelihoods (e.g., Brockwell and Davis 1991), is the common
practice. By � rst evaluating the likelihoodat the robust estimates of the parameters and then
penalizing it, either as AIC or BIC, one should obtain a robust model selection criterion;
see also Martin (1980) and Martin and Yohai (1986, rejoinder) for further discussion on
this issue.
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