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In estimating the variogram of a spatial stochastic process, we use a spatial
design matrix. This matrix is the key to Matheron’s variogram estimator. We show
how the structure of the matrix for any dimension is based on the one-dimensional
spatial design matrix, and we compute explicit eigenvalues and eigenvectors for all
dimensions. This design matrix involves Kronecker products of second order finite
difference matrices, with cosine eigenvectors and eigenvalues. Using the eigenvalues
of the spatial design matrix, the statistics of Matheron’s variogram estimator are
determined. Finally, a small simulation study is performed. © 2001 Elsevier Science
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1. INTRODUCTION

We study the structure of spatial design matrices that occur in several
applications related to spatial statistics. Kriging is an established technique
(Cressie [ 3], Wackernagel [22]) for estimating unknown values of a spa-
tial stochastic process by a weighted average of known values. To deter-
mine these weights in an optimal linear spatial prediction, we estimate a
variogram from the data. That empirical variogram comes directly from the
spatial design matrix.

Consider a spatial stochastic process {Z(x):xe D}, where D is a fixed
subset of R? The process is assumed to be intrinsically stationary and
isotropic: for all x and x + hin D,

E[ Z(x)] = u =constant,
Var[ Z(x +h) — Z(x)] =2y(h),

y(h) = y([[h[}).
138

0047-259X/01 $35.00
© 2001 Elsevier Science
All rights reserved.



EIGENSTRUCTURES OF SPATIAL DESIGN MATRICES 139

The variogram, 2y, is typically estimated by Matheron’s classical technique
(Matheron [14]). His unbiased estimator, 2f,,, is computed from values
Z(x;) at a discrete set of locations x; € D with separation h,

20 Y (Zx)— Z(x)) (1)

Nh N(h)

where N(h)={(x;,x;)e D | x,—x;=h} and N, is the cardinality of N(h).
Note that if data are 1rregu1ar1y spaced, “tolerance” regions around h are
often used (see, e.g., Cressic [3]). Some distributional properties of the
estimator (1) were first discussed by von Neumann et al. [ 21], Shah [16],
and Davis and Borgman [4, 5].

To understand the properties and performance of Matheron’s estimator,
we start by expressing it as a quadratic form,

2TAD e h)z

2957(h) =N, (2)

where it is assumed that the points lie on a uniform grid in R¢, a hyper-
cube. The spatial design matrix A“(n¢ h) is a difference matrix that
depends on the distance 4 = |h|| and the dimension d. (In d dimensions, the
matrix combines differences in directions that share the same /.) The vector
z=(Z(x,), .., Z(x,4))T gives the data at n? points in the domain D. The
properties of Matheron’s variogram estimator can be determined from the
eigenstructure of the matrix 49 (n% h).

A second application is spatial tests, or tests for generalized time series.
Examples are Durbin—Watson tests (Durbin and Watson [6]) for nonzero
lag autocorrelations and randomness. These tests have been generalized by
Ali [1], Vinod [20], and Wallis [23]. Ali [2] generalized the Durbin—
Watson tests using the matrices A(n, ) for autocorrelations at lag A.
This paper will primarily focus on the application to the variogram using
Matheron’s estimator (2).

In Section 2 we describe the structure of the matrix A (s, h) in one
dimension. Its eigenvalues and eigenvectors are found in Section 3. The
matrix is permuted into a direct sum of second order finite difference
matrices whose eigenvectors form the type 2 discrete cosine transform,
DCT?2. The general structure of the spatial design matrix for R is deter-
mined in Section 4. In Section 5, we show how the eigenstructure changes
for grids in R? considering only differences in non-diagonal (coordinate)
directions. In Section 6, properties of the matrix with diagonal directions
are studied. Then in Section 7, our results are combined to determine the
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properties of Matheron’s variogram estimator. Finally, Section 8 discusses
a small simulation study for illustration of these properties.

2. THE SPATIAL DESIGN MATRIX IN R!

In this section we introduce the one-dimensional spatial design matrix
A(n, h) =AW (n, h). In Section 4 we will define the matrix for any dimen-
sion d.

The matrix comes directly from the quadratic form (2); see Genton [8].
For distance h<n/2 there will be 24 points affected by the boundary.
Therefore the first 4 and last & diagonal entries of A(n, i) will have unit
weight. The rest have weight 2 because there are two neighbors for each of
those interior points. All row sums are zero (so that constant Z(x) makes
no contribution). The matrix then has entries —1 along an upper and a
lower diagonal, separated by /& columns or rows from the main diagonal:

1 —1

A(n, h) = n—2h

—1 1

When 5 =n/2, the matrix has all ones along the diagonal; the upper and
lower diagonals are at distance n/2. If 4> n/2, the matrix has 24 —n zeros
at the center of the main diagonal. The rest of the diagonal entries are 1.
Again the diagonals with —1 are 4 columns above and below the center
diagonal. The upper diagonal starts at column %+ 1 and ends in column #,
and the lower diagonal goes from column 1 to column n —A.

A(n, h) is the key spatial design matrix. The matrices 4/ (n%, h) will all
be derived from Kronecker products of these one-dimensional design
matrices. In practice, the spatial design matrix is not often used for 4 >n/2
(Journel and Huijbregts [ 12]), and our paper will focus on the case when
h<n/2, as illustrated above.
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3. EIGENSTRUCTURES IN R!

We start by describing the eigenstructure of the spatial design matrix in
R!. This will later be used to prove several properties of Matheron’s
estimator. The WTW factorization and the eigenstructure of A(n, i) are
particularly simple.

When / <n/2 the matrix has the form A(n, h)= W7¥(n, h) W(n, h) (Ali
[2]) where W(n, h) is a first order finite difference matrix. This (n — /) xn
matrix has W;=1 and W, ,,,= —1. Then A(n, h) has h zero eigenvalues

A

(and we could add % zero rows to ). As an example with n=5 and h=2,

1 0-1 0 0
W(5,2)=|0 1 0 —1 0]and (3)
0 0 1 0—1

1 0-1 0 0
0 1 0-1 0

A(5,2)=| -1 0 2 0 —1 |. (4)
0-1 0 1 0
0 0-1 0 1

When h=1, A4 is the standard tridiagonal second order difference matrix.
Its eigenvectors yield the discrete cosine transform (DCT2) and its eigen-
values are 2 — 2 cos(kn/n), 0 <k <n (Strang [19]). What happens when &
increases and the diagonals in A are separated?

The key is a permutation of the rows and columns of A. The permuta-
tion turns A into a direct sum of s smaller matrices, each one in the simple
tridiagonal form (with separation 2 =1). That form is completely under-
stood. In our 5x5 example we take rows and columns in the order
1, 3,5, 2, 4. This ordering jumps over the spaces between diagonals (=2
in this case) to produce a block tridiagonal matrix:

1 -1 0 0 0
-1 2-1 0 0

PTA(5,2)P=| 0 -1 1 0 0 | (5)
0 0 0 1-—1
0 0 0—-1 1
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The corresponding W has the same 1, 3, 5, 2, 4 permutation applied to its
columns:

1 -1 0 0 0
W(5,2)P={0 1 -1 0 0] (6)
0 0 0 1 -1

Then (WP)T(WP)=PT(WTW) P=PTAP as desired.

To describe this permutation for the general matrix A(n, i), we express
the order n as ph+g¢ with remainder 0 <g<h. The permutation will
produce ¢ tridiagonal matrices of order p + 1 and /& — ¢ tridiagonal matrices
of order p. (The example had 5 =2(2) + 1, so there was one matrix of order
p+1=3 and one of order p=2.) The permutation jumps /4 columns at a
time, until the next column number would exceed n, and then restarts:

Ll4+h .., 1+ph 2,240 .,2+ph,.,q q+h,.. q+ ph,

G+ 1, g+ 1+h g+ 1+(p—1)h, s h, 2h, ... (p—1) .

There are ¢ sets of p+1 columns in the first group and 4 —gq sets of p
columns in the second group. This permutation of the rows and columns
rearranges A into the direct sum of / tridiagonal submatrices:

h—gq
PTA(n, h) P <(—B Alp+1, 1>®<@ A(p,l)) (7)

i=1 i=1

The matrix WP splits into a similar combination of submatrices
W(p+1,1) and W(p, 1).

The eigenvalues of PTAP (and of the original A) are 2 — 2 cos(kn/(p + 1))
each with multiplicity ¢, and 2 — 2 cos(kz/p) each with multiplicity /& —gq.
The total count is (p+1) g+ p(h—q)=n.

The eigenvectors of the matrix A(n, i) of order n are the columns of the
discrete cosine matrices of order p + 1 or p, completed to length »n by zeros.
If & divides n then the eigenvector matrix is a direct sum of / type 2 discrete
cosine transforms C(p) of size p=n/h. These matrices are defined as
(C(p)),; =cos(ni(2j+1)/2p) (Strang [19]). If i does not divide 7 then the
eigenvector matrix X of 4 is permuted by P into

prxr=(d cpen )o@ an) )

i1
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FIG. 1. Eigenvalues of the spatial design matrix in R' with n =25 and distance 4 =5 on
the left and 2=7 on the right. On the left, 5 divides 25 and there is only one DCT and one
set of repeated eigenvalues. On the right, 7 does not divide 25 and there are two sets of eigen-
values.

Figure 1 displays two plots of the eigenvalues for n =25 points on a line,
with distances 7 =5 and 4 = 7. Since 1 =5 divides 25, we have ¢ =0 and the
set of p =135 eigenvalues is repeated with multiplicity 5. For =7, we have
25=3(7)+4. There are two types of eigenvectors, and two sets of eigen-
values interwoven: p + 1 =4 eigenvalues with multiplicity ¢ =4 and p=3
eigenvalues with multiplicity & — ¢ = 3.

For R!, this describes the exact structure of the matrix. The maximum
eigenvalue is 4 for all 4 and n. This is the maximum of the quadratic form
2" Az for unit vectors z. As h increases, A(n, h) has fewer distinct eigen-
values (and /& zero eigenvalues). The eigenvalue multiplicities increase
and the ability of the estimator to predict the variogram dramatically
diminishes. This will be discussed more completely after we examine the
eigenstructure for any dimension d.

4. THE SPATIAL DESIGN MATRIX IN R“

How does the form of the spatial design matrix A“)(n“ h) change for
higher dimensions? The answer is found using Kronecker products. The
spatial data are assumed to be located on a hypercube with each edge
holding n points (a total of n“ points). Note it is straightforward to
generalize the hypercube to have unequal edges (Genton [8]). On the
hypercube, the separation distance (the lag) is given by h=./h?+ --- +h3
where 4, is the distance along the kth axis. The distance vector is
h=(h,, .., h,).
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We start with the non-diagonal case, when only one component 4, is
non-zero. The spatial design matrix along the /th axis is

e <l®1 1) ) @ (. ) © ® 10n) ). 9)

k=1 k=1+1

This defines 4” only in one direction. When the stochastic process is
isotropic the variogram is not dependent on direction, only on distance.
Then the matrix A“(n¢ h) must take into account all directions, and /
ranges from 1 to d. The form of the spatial design matrix for non-diagonal
directions (coordinate directions) of a fixed distance / is (Genton [8])

d
AD (nd ) = Z ), (10)

This form is particularly nice, as will be seen later when its eigenvalues are
determined.

In general there are more directions to be accounted for, and the matrix
becomes more difficult to handle. For example, in R? the distance 2 =5 can
be reached not only by (5, 0) or (0, 5), but also by (3,4) and (4, 3). This
introduces “diagonal” vectors h with two nonzero components. Fortunately
these are also handled with Kronecker products. The simplest case is when
all &, are non-zero. Then the spatial design matrix along the diagonal
h=(+h,,.., +h,) is

d d
® D(n, hy)+(—1)¢ @ (n, hy), (11)

k=1

where D(n, h) is the diagonal matrix of A4(n, h) and O(n, h) is the off-
diagonal matrix: A(n, h) = D(n, h) + O(n, h).

There are no diagonal directions in one dimension (along a line). For
larger d the matrix ® ¢_1 D(n, h;) gives the diagonal part, and the matrix
(—D*='®¢%_, O(n, hy) gives the off-diagonal part of A (n h). The off-
diagonal part always consists of —1 entries and (—1)¢~! keeps the sign
correct. The diagonal entries represent the number of neighbors of a point
in the directions ( + /4y, ..., +hy).

To see that Eq. (11) is the correct form for a given diagonal h, start in
R? There A(n, h;)® A(n, h,) gives a typical finite difference mask (nine
points without boundary and four or six points with boundary), taking dif-
ferences on axis one, then taking differences of the prior in the next
orthogonal direction. As an example consider A(3, 1) ® 4(3, 1). This gives
a 9 x 9 matrix of finite differences:
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1-1 0-1 1 0 0
1 2-1 1-2 1 0

0-1 1 0 1-1 0

-1 1 0 2-2 0-1 1

A DA = 1 -2 1 -2 4-2 1-2 1
1 -1 0-2 2 0 1 —1
0 0-1 1 0 1-1 0
0 0 1 -2 1-1 2-—1
00 0 1-1 0-1 1

(=l -}
oS o o o

S o o O

The diagonal directions of interest are h=(+1, +1). Each row involves
the use of 22=4 or 2(3)=6 or 32=9 points. For the distance /2, there
should only be one, two or four neighbors from each point. Consider the
center point on the grid, x5, corresponding to the fifth row and column of
the matrix. This is the only point with four neighbors. The finite difference
mask given by row 5 of A(3,1)® A(3,1) is

1 —2 1
-2 4 —2
1 —2 1

This does not give differences of points a fixed distance 4 apart. The
problem is that we are not interested in the horizontal and vertical direc-
tions (non-diagonal directions), A(n, h;)® I(n) and I(n)® A(n, h,). The
correct finite difference mask is:

—1 0 —1
0 4 0
—1 0 —1

In general we want to remove the non-diagonal directions, given in
Eq.(10). A simple subtraction from A(n, h,) ® A(n, h,) does not work because
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after the first differences are taken, the Kronecker product multiplies the
prior axes’ weights to the next orthogonal direction. This is because
A(n, hy) ® A(n, hy) = (A(n, hy) ® I(n))(I(n) ® A(n, h,)). Therefore we must
also add these weights to A(n, h;) ® I(n) and I(n) ® A(n, h,). The weights
are exactly contained in D(nm, h,) and D(n, h;), giving the following
matrices to be subtracted from A(n, h,) ® A(n, h,):

A(n, hy) ® D(n, hy) 4+ D(n, hy) @ A(n, h,). (12)

By subtracting Eq. (12) from A(n, h;) ® A(n, h,), the horizontal and ver-
tical directions have been taken out leaving the diagonal directions, except
the sign must be corrected so that the diagonal is again positive. This gives
the following form for diagonal (non-coordinate) directions in R*:

A(n, hy) ® D(n, h,) + D(n, hy) ® A(n, hy) — A(n, hy) ® A(n, hy).

Expanding each A(n, h) as D(n, h) + O(n, h) we arrive at Eq. (11) for d=2.
For larger d the procedure is the same. All non-diagonal directions (coor-
dinate directions) in Eq. (10) must be subtracted out with the correct
weights, namely the D(n, #) matrices, leaving only the diagonal directions
as in Eq. (11).

Isotropy requires us to sum the additional directions to Eq. (11), which
only gives one particular set of directions. There will generally be other
diagonal directions that give the same distance 4 and have the property
that all /1, are non-zero. To take into account all diagonal directions of a
given distance /, the labels of the axes must be permuted. Taking into
account all permutations the spatial design matrix for the diagonal direc-
tions of distance / is given by

d

Z P/'T<® D(n, )+ (=1 ® O(”,hk)>Pj» (13)

k=1

where P; is a permutation operator, and N =d!/x,;!x,!---x,,! is the number
of permutations of Eq. (11). The multinomial gives the number of distinct
partitions of the components of h, where m is the number of distinct non-
zero components of h, and x,, k=1, ..., m is the number of times a compo-
nent is repeated. This means x; + x, + --- + x,, =d. If all components have
distinct values, then there are d!/(1!---1!)=d! permutations. This gives all
possible diagonal directions in R? with distance 4 and components /4,
through £,,.

The most general (and most complicated) form is when r component
directions are zero, r <d. Now identity matrices /(n) are mixed into Eq. (13)
for the component directions that are zero. Assuming isotropy, the identity
matrices must be permuted in the same fashion as before, keeping only
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distinct permutations. This gives the following form for the most general
spatial design matrix:

d—r d—r r
z 27 ([ ® Do+ (-1 @ o | @ 00 2, (19
k=1 k=1 i=1
This is because there are N=(d—r)!/(x,!---x,,!) permutations of the non-
zero components of h and M =d!/(r!(d—r)!) permutations of the zero
components with the prior. When r=d — 1, Eq. (14) simplifies to Eq. (10).

We now give several examples of the spatial design matrix. Let d=4,
n=3 and two of the components of h be zero so r=2. Also assume the
directions of interest are of length ﬂ This means there are two repeated
components of h, so that 2!/2! =1. There is only one unique permutation
of D(n, h,) ® D(n, h,), namely itself, because D(n, i) ® D(n, h,) = D(n, h,)
® D(n, hy). But, there are permutations with the identity matrix,
41/212! = 6. The permuted diagonal matrices to be summed are

In)®I(n)®D(n, 1)® D(n, 1

In)®D(n, 1)®D(n, 1) ®I(n

(n)® D(n, 1)® I(n) ® D(n, 1

D(n, 1)® D(n, 1) ® I(n) ® 1(n

D(n, 1)®I(n) ® D(n, 1)@ I(n
(

)

)

)

)

)

D(n, 1)®1(n) ® I(n) ® D(n, 1).

The off-diagonal matrices O(n, h) are permuted in exactly the same way
and subtracted. The sum gives all possible combinations in the (+1, +1)
directions, or hzﬁ in R* The first diagonal entry is 6 since the first
diagonal entries of D(n, h,) and D(n, h,) are 1. This is exactly the number
of neighbors for each corner of the hypercube.

Now assume we are interested in the distance s =./5. Only diagonal
directions can reach this length, with »=2. One component of h must be
2 and the other 1. The components of h are no longer repeated, and now
N=2!/1'1! =2. This means the same permutations above are summed:

I(n) ®1(n) ® D(n, 1) ® D(n, 2)
I(n)® D(n, 1)® D(n, 2) ® I(n)
I(n)® D(n, 1)® I(n) ® D(n, 2)
D(n, 1)® D(n, 2) ® 1(n) ® I(n)
D(n, 1)®I(n) ® D(n, 2) @ I(n)
D(n, 1)® I(n) ® I(n) ® D(n, 2)
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But D(n, 1)® D(n, 2) # D(n,2) ® D(n, 1) so there are another six distinct
permutations:

I(n)®I(n) ® D(n, 2) ® D(n, 1)
I(n)®D(n,2)® D(n, 1)@ I(n)
I(n)® D(n,2)® I(n) ® D(n, 1)
D(n,2)® D(n, 1) ® I(n) ® I(n)
D(n,2)® I(n) ® D(n, 1) ® I(n)
D(n,2)®I(n)® I(n) ® D(n, 1)

Now the first diagonal entry is 12 instead of 6 to reflect that there are 12
neighbors in the diagonal distances of length \/§

The last concern as to the form of the spatial design matrix is when we
wish to consider distances such as |4]| =5 in dimension d=4. There are
additional directions that give length 5 that are not accounted for in the
permutations. The non-diagonal directions of the same distance need to be
included, which means adding Eq. (10) with d =4. We assume this is added
when the square root of the components is a natural number. There can
also be other combinations of the /, that can give the same distance and
this matrix. The value of r may change, but the matrix still has the form
given by Eq. (14). In our example with i, =3, h,=4 and d=4, the
matrices to be summed are those for the non-diagonal directions (Eq. (10))
and those for the directions (3,4, 0,0) and (1, 2, 2,4) (Eq. (14)).

All forms of the spatial design matrix have been described, and the next
sections will explore the eigenstructure. We begin in R? and look at the
eigenstructure for diagonal and non-diagonal cases separately.

5. EIGENSTRUCTURES FOR R? (NON-DIAGONAL DIRECTIONS)

We start by looking at the eigenstructure of the spatial design matrix
that only considers non-diagonal directions. This matrix was defined in
Eq. (10). Surprisingly, the eigenvalues do not change significantly for the
d=2 case. The eigenvalues in the R? case now range from 0 to 8 instead of
0 to 4, and follow a similar pattern having a structured set of multiplicities.
In fact these eigenvalues are the sums of two similar finite difference matrices,
each having the eigenvalues 2 — 2 cos(kn/p). The eigenvectors are products
of discrete cosines.
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This can be seen by recalling that for non-diagonal directions, 4® (n?, h)
has the following form:

AP (2 h) =I(n)® A(n, h) + A(n, h) ® I(n). (15)

Here I(n) ® A(n, h) represents the horizontal direction and A(n, h) ® I(n)
represents the vertical direction. On a 3 x 3 grid with =1 we have a 9 x9
matrix:
2-1 0-1 0 0 0 O
-1 3-1 0-1 0 0 O
0-1 2 0 0-1 0 O
-1 0 0 3-1 0-1 0
-1 0-1 4-1 0-1
0-1 0-1 3 0 0-
0o 0-1 0 0 2-1 0
0 0 0-1 0-1 3 -1
0 0 0 0-1 0-1 2

0
0
0
0
A9, 1)= 0
1

S O o o o

This matrix 4@ is equal to 1(3)® A(3, 1)+ A(3, 1) ® I(3).
The structure of 4@ (n? h) can be rewritten as

AP (n? h) = (—nD A(n, h) + A(n?, nh). (16)

i=1

This is because the points on the grid are numbered left to right, top to
bottom, so that the horizontal differences give n tridiagonal spatial design
matrices of size n. In the vertical direction, the differences are at a distance
of nh instead of & due to the numbering.

Since we know the eigenstructure of A(n, i), we know the eigenstructure
of the horizontal and vertical directions. The eigenvalues of the sum
A®(n? h) are the eigenvalues of A(n? nh) plus the same eigenvalues
permuted.

PROPOSITION 5.1.  The eigenvalue matrix of A®(n? h) using only non-
diagonal directions is PTAP+ A where A is the eigenvalue matrix of
A(n? nh) and P is the permutation matrix that reorders the gridpoints by
columns: PTA(n? nh) P=@"_, A(n, h).

i=1
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Proof. The eigenvalues of I(n) ® A(n, h) + A(n, h) ® I(n) were noted by
Steeb [17]. Because of the numbering of z we simply have A(n, h)®
I(n)= A(n? nh). The permutation matrices were described by Graham

[117. 1

More generally it is easy to show A(n, h) ® (R*_, I(n)) = A(n* ', n*h).
The non-diagonal d-dimensional hypercube case follows directly frorn the
d=2 case. From Eq. (10), the matrix A‘“(n% h) is a sum of a direct
product of d— 1 identity matrices of size n with a single one-dimensional
matrix A(n, h). When d =2 this simplifies to Eq. (15). The numbering of the
spatial locations is assumed to continue lexicographically from the d=2.
As i increases, the differences spread apart until we reach A(n, h)®
In® - ®I(n).

In this case, the exact eigenvalues can be found by using a generalization
of Lancaster’s theorem (Lancaster [ 13]) found by Searle and Henderson
[15]. Using their results, we give the eigenvalues in the next lemma.

LEMMA 5.1. Let A be the eigenvalue matrix of A(n, h). Then the eigen-
value matrix of AP (n® h), using only non-diagonal directions of length h is

i UM ® - ®I(n) P (17)

Each term in this sum represents repeated eigenvalues of A(n, ) in order
i with n?~! times the multiplicity of the eigenvalues of A. For all n and &
the maximum eigenvalue is 4d.

The additional multiplicity is caused by the Kronecker products of the
identity matrix with A(n, /). This equation is the sum of every combination
of the repeated eigenvalues for A(n, h) giving n?~(g(p+ 1)+ p(h—q))
=n“ eigenvalues. Since the eigenvalues of A(n, 1) are 2 —2 cos(kn/(p +1))
of multiplicity ¢ and 2 —2 cos(kn/p) of multiplicity & — ¢, the eigenvalues
of A(n? h) range from 0 to 4d. It is interesting to note that the eigen-
values of A(n¢, n?~'h) are the same as the eigenvalues of A(n, #) but the
multiplicity has a factor n?~ 1

6. EIGENSTRUCTURES IN RY (WITH DIAGONAL DIRECTIONS)

We now admit diagonal directions for the spatial design matrix. The
distance is h=./h?+ ... +h2 and the matrix 4‘”(n“ h) depends on all
components of h.

On a two-dimensional grid, there are many more directions and dis-
tances: =5 can be formed by #;,=3 and h,=4 or h; =5 and h,=0. In
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this case, the form of 4® changes although the matrix can still be placed
in the form of Kronecker products and additions. In Section 4 we found
that for h=(h,, h,), the matrix 4A® (n? h) has the form

AP (n? h)=D(n, h)) ® D(n, hy) — O(n, hy) ® O(n, h,). (18)

Using this form we can find a bound on the eigenvalues, given in Lemma 6.1.

LemMMA 6.1.  Let A; be the eigenvalues of A(n, h,), u; the eigenvalues of
A(n, hy), and A,,,.=max (4, pu;). Then the eigenvalues of A (n? h) for a
grid in R? are bounded by:

2 A
44

4 Appax + 8 Otherwise.

max l]( h1:h2=h1200rh2:0

e if hy #hyand h is not an integer

Since A,,,. =4, these three upper bounds are 8, 16, and 24.

max

Proof. There are four different cases for the eigenvalues of the spatial

design matrix. These cases are defined by the distance 7= ./h?+ /% on a
grid. The non-diagonal case is when %, or A, is zero. Here we know the
exact eigenvalues (Lemma 5.1), and therefore the maximum. The next case
is when 4, =h, and /& is not an integer. This is the diagonal case with only
one permutation matrix to (/,, i;) in Eq. (13) so the matrix is defined as

A® (n?, h) = D(n, hy) ® D(n, hy) — O(n, hy) ® O(n, hy).
This relation can also be rewritten as
A(n, hy) ® D(n, hy) + D(n, hy) @ A(n, hy) — A(n, hy) @ A(n, hy).  (19)
We know the eigenstructure of D(n, h) and A(n, h), so we know the
eigenstructure of each of the three terms. This gives an upper bound (but
not the exact eigenvalues) of the sum. Because D(n, h,) and A(n, h;) are
both positive definite we have

A(n, hy) @ D(n, hy) <2A(n, hy) ® I(n) (20)

where 2 is the largest diagonal entry of D(n, h,). We also have
D(n, h)) ® A(n, h,) <2I(n) ® A(n, h,), so that A (n? h) is dominated by

A(n, hy) ® D(n, hy) + D(n, h)) ® A(n, hy) — A(n, hy) ® A(n, h,).
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Therefore the maximum eigenvalue of
A=2A4(n, hy) ®@I(n) + 21(n) @ A(n, hy) — A(n, hy) ® A(n, )

is never less than the maximum eigenvalue of 4® (n? h). The eigenvalues
of A are known from Searle and Henderson [15] to be

20,4 20— Ak, (21)

where 4, is the ith eigenvalue of A(n, h;) and /; is the jth eigenvalue of
A(n, hy). The maximum of Eq. (21) is 24,,,., where 4,,,, is the maximum
of both sets of eigenvalues, 4; and ;. This is because both sets always have
0 as an eigenvalue. Because the maximum eigenvalue of either matrix for
any n is 4, and 0 is always an eigenvalue, the bound is 8. Eq. (21) has a
saddle point in the center of its domain and extreme values of 8. This
provides the bound for the diagonal case.

The third case is when /1, # &, and the distance is non-integer, meaning
diagonal directions only. The difference now is that there are two permuta-
tions in Equation (13), since 2!/1!1! =2, so there are two matrices. Since
both are positive definite, the maximum eigenvalue of the sum is less than
the sum of the maximum eigenvalues. Therefore the maximum eigenvalue
is two times the second case, giving 16.

Finally the last case is when a third matrix needs to be added. It is also
positive definite, representing the non-diagonal directions. An example is
the distance 5. Then not only do diagonal directions (4, 3) and (3, 4) need
to be added. The non-diagonal directions (5,0) and (0,5) must be
included. Adding those matrices gives an additional 8 to the bound, setting
a maximum bound of 24. This proves the Lemma. |

Figure 2 displays the tightness of the bound when d=2 and h,=h,.
Distances are shown on the horizontal axis and the maximum eigenvalue
is plotted on the vertical axis. The bound 24,,, given by Lemma 6.1 is
indicated by +. The actual eigenvalues are given by dots and are below the
bound.

For increasing n, the bounds given in Fig. 2 are in fact tight. As n
increases, the maximum eigenvalues go to 8 in two dimensions. This is seen
in Fig. 3 for the direction ﬁ Can we find a similar bound for the R? case
with diagonal directions? The answer is yes. The matrix A“(n¢ h) can
be written in a Kronecker product form just as was done in the R? case

(Eq. (21)).

THEOREM 6.1. Let m be the number of distinct non-zero components in
(hyy e hy_,) and x; be the number of times that hy, is repeated, k =1, ..., m. Let
r be the number of components that are zero. Then the maximum eigenvalue,
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+is bound, . is actual

7.5

Maximum eigenvalue

651

T T ¥ T T

L L L n L

[
h‘ and h2

10

153

FIG. 2. Maximum eigenvalues of A® (402 ,/2k*) for the directions /1; = +k and
h,= +k, k=1, .., 10. The actual maximum eigenvalues are given under each bound, and the
bounds 24,,,, are labeled by +. The bound becomes worse as / increases.

Maximum eigenvalue
<
0
T

551

20

FIG. 3. The maximum eigenvalue of the spatial design matrix in R? with the lag = ﬁ
given by directions s, = +1 and /1, = +1. The maximum eigenvalue is asymptotic to 8§ as n

increases.
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Dmaes OF the spatial design matrix AP (n® h) using diagonal directions with
non-integer distance h is bounded by

2d—r+l d! (22)
FlxIx,! e x,,l )

If h is an integer and d —r > 1, A,,,, is bounded by

d=r+1 <d'> +4d. (23)

rixyIx,!oox,,!

Proof. To determine a bound, we approximate the spatial design
matrix by another matrix that fits the theorem given by Searle and
Henderson [15]. We start with the form given by (13). Assume r=0.
When d=1 this reduces to the one-dimensional case with a bound of 4.
Otherwise we have d!/(x;!x,!---x,,!) distinct permutations to consider
Consider just one permutation, ®¢_, D(n, h;)+(—1)*"'®{_, O(n, hy).
Since these matrices are positive definite with real eigenvalues, we can write

d d
® D(n, hy)+(=1)""! ® O(n, hy)
k=1

<2U(n") + (=1~ (i) O(n, hy). (24)

Writing the off-diagonal matrices as 4 — D is one approach to reach a
bound, but it involves many cross terms. A better approach is to determine the
eigenvalues of the off-diagonal matrices, O(n, /). These matrices simply have
—1 along an upper and lower diagonal, 4, away from the main diagonal.
Closely related to the eigenvalues of A(n, i), we find the eigenvalues

41
—2 cos <(]+)”> =0, pr—1, (25)
Prt1

of multiplicity 4, — ¢, and

i+ 1
—2 cos <(]p—|—+)27r>, 7=0, .., Pk, (26)
k

of multiplicity ¢, with n= p,h; + q,. Using this result we can apply the
generalized version of Lancaster’s theorem and find the eigenvalues of the
bounding matrix in Eq. (24),

244 24( 1)1 ﬁ cos( ), (27)

k=1
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where Vi, is the jth eigenvalue of O(n, ;). The maximum occurs when the
product of cosines is near —1. Then the bound is simply 29!, For each
permutation the same bound of 2¢*! applies. By the Cauchy-Schwartz
inequality, the bound is therefore:

2d+1 L (28)
xplxp!ex,,!)

When r #0, there are also identity matrices to be permuted. They do not
change the value of the eigenvalues, but because there are d!/(r!(d—r)!)
new matrices to be added, Cauchy—Schwartz gives the bound as:

Dd+1 # (29)
FlxgIxy oo x,,1 )

This is because h has (d —r)! non-zero components so there are (d—r)!
identity matrices to permute. Similarly using Lemma 5.1 and the Cauchy—
Schwartz inequality, we add 4d if /4 is an integer and d—r>1. If d—r=1
then the problem reduces to the non-diagonal case and is completely
explained by Lemma 5.1. Therefore the bound is proved. |

7. MATHERON’S VARIOGRAM ESTIMATOR

Matheron’s estimator (2) computes an empirical variogram by using the
spatial design matrix. The key properties of the estimator can be described
as functions of A (n“ h) and the actual covariance matrix of the data,
Var(z) = 2. The process Z is assumed to have zero mean and a Gaussian
distribution. The latter assumption can be relaxed to elliptically contoured
distributions (Genton [9]) or skew-normal distributions (Genton et al.
[10]). The expectation, variance, and covariance of 2§,,(/) are given by
the trace (sum of the eigenvalues) (Cressie [ 3], Genton [8]):

tr(AD (n, h) X)

E(27y, ) = ) (30)
(d)(,d () (d
Va2t -2 BACOER ZAYAR D)
h
() (d (d)(,d
Cou(2aalhy). 2pglhy)) =2 A AN ELEERI D) (3
ha hb

If the covariance goes to zero, then X — ¢2I(n?), and the expressions
simplify. They are used for fitting a valid parametric variogram model to
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variogram estimates by generalized least squares. (Furrer and Genton [ 7],
Genton [ 8, 9]). This simplification is based on knowing all the eigenvalues
and is described in the next lemma.

Lemma 7.1. Let X=0*I(n%) and suppose that A in Matheron’s
estimator for Gaussian data involves only non-diagonal coordinate directions
on a hypercube of n? points in R?. For h<n/2 the number of differences
[x;—x;||=his N,= dn®=Y(n—h). The estimator’s properties are given by

_25%dn""'(n—h)

E(27(h)) v

L n?7'd(6n—8h) +d(d— 1) n?=*(2n — 2h)?

Var(2§,,(h)) =20 N

2dn?=1(2n —h, —2hy)
Nhath

Cov(29pr(hy), 2 ng(hy)) = 20 (

L Add—1) n* > (n—hy)(n -

hy)
h, <1
NN, >f0r a <M

Proof. The value of N, in R! is just n— &, the number of differences of
distance /. In R? there are n differences in the horizontal and vertical direc-
tions giving 2n(n—h) differences. Continuing in this way, there are
N, =dn®~'(n—h) differences of size & in R?. Of course N, would not have
such a simple form if diagonal directions were included. Given this value
of N,, the expectation is E(2f,,(h)) =202 reflecting that Matheron’s
estimator is unbiased (Cressie [3]).

To prove that tr(A4“(n? h))=20dn’"'(n—h) we want to add the
eigenvalues A; of A““(n% h). From Lemma 5.1 those eigenvalues are

IZH (P (A® (®4Z] I(n))) P. Therefore from the properties of the
trace we have

tr <dzl (P <A ® <d®l I(n)>> Pi> — dn?=1 1r( ), (33)

i=0 k=1

where A is the eigenvalue matrix of A(n, ). The trace (sum of the diagonal
entries) of A(n, h) is 2n — 2h. Thus the sum of the eigenvalues of 4 (n? h)
is 2dn“~'(n—h), and the expectation of Matheron’s estimator is
20%dn?='(n—h)/N,,.
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The variance of Matheron’s estimator for X~ = ¢2I(n¢) is found the same
way, by summing the squared eigenvalues:

d d 2
trq Y ® (A(n,h))‘s("_f)} > (34)

i=1 j=1

Using the properties of the trace and Kronecker product, the sum comes
outside. Since the trace of ®¢_, A(n,1)°"~7) is equal to the trace of
¢ A(n, h)°* =7, we can rewrite the trace in (34) as

dn?=1tr(A%) + d(d— 1) n=2(tr(4))> (35)

Recall that the trace of A4 is 2(n — h). Since A is symmetric, the trace of 4>
is the sum of 6(n—2#h), the diagonal entries unaffected by the boundary
and 2(2h), the top and bottom diagonal entries, which is simply 6n — 8/.
Therefore the trace in (34) is

dn®=1(6n—8h) +d(d— 1) n9=2(2n — 2h)>% (36)

The form for the covariance follows the same reasoning, but the trace of
A(n, h,) A(n, h,) is needed. This trace has been found in Genton [8] as

42n—h,—2h,)
_— 37
(n—ho)n—hy) 7)

where h,<h, and h,+ h, <n. Now the entire lemma is proved. ||

What do these results tell us about the performance of the estimator as
d and h vary? Keeping n fixed, we plot the variance for increasing d and
h on two axes. The third axis is the logarithm of the variance. Figure 4
indicates that the performance of the estimator dramatically improves as d
increases. The largest increases in performance occur as soon as d goes
beyond 1.

As h increases, the variance increases linearly. This is true for all d.
Experimentally we find that this increase in performance as d increases
happens for only some of the X' tested. Although we have not proven the
exact form of the variance for different d and / for general X, it appears
that a similar result might be possible.

Example. The covariogram (1 —#h)’/ corresponds to X, =(1—|x;—
X, ||)7. This is a valid covariance function in R#~1 with 0<h<1. The
variogram is 1 —(1 —/h)’. As j increases, the covariogram approaches a
delta function. For d=1 we plot the variance of the estimator for
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Variance

6 0 lag h

dimension d

FIG. 4. The variance of Matheron’s estimator keeping # fixed and X = I. The first axis is
the dimension d going from 1 to 6; the second axis is the lag /& going from 1 to 15. The
number of spatial points is fixed at 10'°, so when d=6 the hypercube has about 46 points
along each axis. The variance of Matheron’s estimator decreases exponentially when d
increases, and increases linearly with /.

j=1,..,100 and h=1, ..., 20. There are 20 plots in Fig. 5, with the variance
strictly increasing for each A. The variance of the estimator tends to be
larger for covariances other than ¢I(n?) as h increases. It is interesting that
the peak variance is at j= 11 when 2 =20. When & =45 to h =49 the peak
variance is caused by the covariance (1 —h)*

For i <3, the variance increases as the covariance goes to a delta. This
means the variance of the estimator could be bounded by Lemma 7.1. But
for larger /, a new peak variance occurs for some j. Figure 6 shows the
value of j that gives the maximum variance for a given 4. As / increases,
the peak variance is reached for smaller ;.

Lemma 7.1 only applies to the non-diagonal variogram estimator. How
do the properties of the estimator change when diagonal directions h are
also used in the spatial design matrix? For the expectation of 2§,,(h) we
want the trace of Eq. (11). Using the properties of the trace, this is equal
to

ﬁ tr(D(n, hy)) — ﬁ (tr(O(n, hy)). (38)
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Variance of Matheron Estimator
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FIG. 5. The variance of Matheron’s estimator (31) as the covariance (1 —h)/ goes from
1 —h toward a delta function (j is on the horizontal axis). The last covariance entry is
(1 —h)'. There are 20 plots displaying the variance for s =1, ..., 20. The variance increases
with A.

80 i

60 9

S0 1

power j giving maximum variance

3o " .

20f . J

0 4 s s ' ' :
5 10 15 20 25 30 35 40 45 50

distance h

FIG. 6. The covariance of Z, (1 —h)’, parameterized by j giving the largest variance of
Matheron’s estimator (31) for a given distance 4. For small /1, the largest variance is given by
covariances close to the delta functions, but for large /, the estimator’s variance peaks at a
covariance far from the delta function.
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The trace of O(n, h;) is zero, so

d
tr(AD (n?, h)) ﬂ (21— 2hy) (39)

Because the estimator is unbiased, the expectation must be 2. Therefore we
know for a diagonal direction that the number of differences is

_ n (n—hy). (40)

These results yield the variance of the estimator when diagonal directions
are used.

LeMMA 7.2. Let h=+/h3+ --- +h% with 0 <h;<n/2 for all components.
If X =0c*1(n?) then the variance of the estimator z7A® (n% h) z/N, using
only one diagonal direction is given by

o [1¢_, (4n—6h,) +T1¢_, (2h,—2n)
22d—2 HZ=1 (I’l—hk)z

(41)

Proof. Recall that the matrix 4 (n? h) for a diagonal direction can be
represented by the diagonal and off-diagonal matrices of the individual
components of h as in Eq. (11). The variance of the estimator assuming
X =02I(n) is determined by the trace:

Var(z74“(n? h) z/N,) = o* tr([ AP (n?, h)]?)/N}. (42)
Using Eq. (11) the trace of the squared matrix is equal to
d
[] (4n—6h,)+ ]_[ tr(O(n, hy)?), (43)
k=1 k=1

because the main diagonal of O(n, ;) is entirely zero. This means the cross
terms D(n, h;) O(n, hy) also have trace zero. Earlier we found the trace of
the diagonal matrices to be 2n — 2h,. The trace of O(n, h,)? is unlikely to
be zero. To find this trace we recall the eigenvalues of O(m, hi;) from
Theorem 6.1:

i1
~2 cos (W) of multiplicity /1, — g, where j=0, .., pp—1 (44)
k

i+ 1 D
—2 cos <(]+)n> of multiplicity ¢, where j=0, ..., py . (45)
Prt 2
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The sum squared is therefore
2h;.—2n, (40)

the negative of the diagonal D(nm, h;) sum. Therefore the trace of
[A@(n? h)]? using a diagonal direction h is given by

f[ (4n — 6hy) f[ (2h, — (47)

Using this trace, the lemma is now proved. ||

Another property that can be found using the eigenvalues is the maxi-
mum value of the normalized form of Matheron’s estimator:

d, T 4(d)(,d
nz’ A (n, h)z
—(T ) . (48)

N,z°z
The normalization constant is in fact ¢(0), the covariogram at lag 0.
Suppose that the spatial process is second order stationary, so that

y(h) =c(0) —c(h). (49)

The maximum eigenvalue of A4 (n? h) is the upper bound of the nor-
malized quadratic form. Moreover, there are well established bounds on
normalized covariograms that depend on the dimension ¢(|/h|) is valid in
(Stein [18], Yaglom [24, 25]). If it is assumed that the covariogram is
isotropic, then it can be represented as a R' function ¢(/), representing the
radial function in R? All covariograms valid in R' are bounded by
—1<c(h)/c(0)< 1. For covariograms valid in R?, the bound is —0.403 <
c(h)/c(0) (Stein [ 18]). For covariograms valid in any dimension, they must
be positive and convex, 0 < ¢(/)/c(0). This then sets a bound on y(/)/c(0).
For example, for R! the bound on y(4) is 0 < y(h) <2.

What is the bound on Matheron’s estimator? It turns out to be set by
the maximum eigenvalue of Eq. (48). In R! this maximum is

4nf(n—h). (50)

This equation represents 2y(/) so that for large n the bound goes to 2. For
smaller n, the estimator loses its ability to match the possible range of
actual y(h). For covariograms valid in higher d, the bound on Matheron’s
estimator does not change, and the estimates can be much larger than the
variograms. For variograms valid in all dimensions, the bound on the
variogram is 0 <y(/h) <1 but Matheron’s estimator could still take values
as high as 2.
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In general, the bound for Matheron’s estimator considering only non-
diagonal directions is given for all dimensions by

2 dn? 2n
A Yn—h) (n—h) (D

From the eigenstructure of the spatial design matrix, we have found
simple forms for the expectation, variance, covariance and maximum value
of Matheron’s estimator when X = ¢?[. It is seen that the performance of the
estimator decreases as / increases linearly, but exponentially increases as d
increases for diagonal 2. Therefore we would expect the estimator in a
simulation to do much worse at approximating the variogram in R' than
in R2 In the next section we simulate an isotropic stochastic process for
both d=1 and d=2 and determine the variance of the estimator for a
given variogram, using this spatial design matrix. We find that higher
dimensions yield an improved estimator for nearly diagonal or diagonal X,
but in general, higher dimensions prove detrimental to the variance of the
estimator.

8. SIMULATION STUDY

To illustrate these results, we perform a simulation estimating vario-
grams from spatial processes in different dimensions. We choose a variogram
that is valid in all dimensions tested. We keep n constant while increasing
d, and see that the performance of Matheron’s estimator seriously degrades.
The spacing of the grid points, n in each direction, never changes. To run
the simulation in a reasonable time, we test only d=1 and d=2.

The stochastic process is simulated with the spherical variogram 3/4/10 —
h3/250 for 0 <h <5, which is valid in both R! and R2 The variogram has
a range of 5, a sill of 1 and a nugget of 0. For 2> 5 the variogram is taken
to be just 1. The number of points is kept fixed at n =256 so in R? only
a 16 x 16 grid is used.

Splus is used to perform the simulation using the function rfsim of the
module S + SpatialStats. This function is based on a Choleski decomposi-
tion of the covariance matrix of the process and the results below pertain
to this particular technique. For both d=1 and d =2, 200 simulations were
performed using Matheron’s estimator. For d=1 we find the variance at
distance 1 to be 8.65x10~* but for d=2 at the same distance we get
1.01 x 10 =3, larger than the one-dimensional case. The theoretical variance
of the estimator is 1.53 x 10 = in R! and 1.84 x 10 ~3 for R2 It is interesting
to notice that the variance was worse in R% From our results in Lemma 7.2
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and Fig. 6, we would have expected the variance to go down as d
increases. But notice that the lemma is only for X =¢2I(n?). In fact, over
most simulations as X goes away from ¢2I(n?), the variance decreases in R’
and increases for d> 1. As an example, Fig. 7 shows the d=1 and d=2
cases for the spherical variogram with the range varying from 0.5 to 6 in
increments of 0.5. The line with dots is the variance for d=1 and the line
with plus marks is the d =2 graph. The d=2 graph is smaller when the
variance-covariance of z is essentially white noise, but decreases slower
than the d=1 case beyond a certain range (in this case three). Note that
the number of data points and the spacing between the points is identical
in both cases.

Since the grid is from 1 to 16 in increments of 1, the first two variances
for d=1 (and d=2) are the same. A spherical variogram, with a range
of 0.5 or 1, is essentially the same as a white noise process. In general,
Matheron’s estimator seems to perform worse as d increases and when X~
is not a diagonal matrix. In the diagonal case, the estimator does better in
higher dimensions because /N, increases dramatically. There are many more
combinations to take to reduce the variance of the estimator. When X
diverges from a diagonal, the number of combinations does not change,
but they are no longer independent, and information is lost.

+ is Variance for d=2, . is Variance for d=1
0.025 T T T T T

0.015

Variance

o

o

2
T

0.005

0 1 L A
0 1 2 3 4 5 ]

Range

FIG. 7. Plots of the variance of Matheron’s estimator for d =1 (the dotted line) and d =2
(the “+” line) as the range of the underlying variogram of the data increases. The variogram
of the data is the spherical variogram with a nugget of 0 and a sill of 1. The estimator does
better at estimating white noise in dimension two, but loses its performance when the range
is three or larger.
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9. CONCLUSIONS

This paper describes the simple and striking eigenstructure of the spatial

design matrix that is used in Matheron’s estimator of the variogram. This
eigenstructure is related to finite differences and discrete cosine transforms.
Moreover, this structure can be extended to arbitrary dimensions with the
use of Kronecker products. Using the eigenstructure, we prove the

es
n

timator’s properties for X = ¢2I(n¢). When X diverges from I, the effect of
creasing dimension goes from positive to negative. This again is a

property of the eigenvalues when 4 (n? h) is multiplied by X. A next step
would be to determine a general form for the eigenvalues when X' is not
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