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1. Introduction

Let Z(x), x 2 Rd , be a complex-valued stochastic process, and suppose that Z(x) has finite

variance for all x. Then the function C(xi, xj) ¼ cov(Z(xi), Z(xj)) is defined for xi, xj 2 Rd

and called the covariance function of the process. It is well known that a complex-valued

function C defined on the product space Rd 3 Rd is a covariance function if and only ifXn
i¼1

Xn
j¼1

aiaj C(xi, xj) > 0 (1)

for all finite sets of complex coefficients a1, . . . , an and points x1, . . . , xn 2 Rd .

A covariance function is called stationary if

C(xi, xj) ¼ j(xi � xj), xi, xj 2 Rd , (2)

for a function j defined on Rd . Stationary processes and stationary covariance functions play

major roles in the statistical analysis of time series and spatial data. We then say that j is a

positive definite function on Rd , meaning that (1) holds for the function defined in (2). By a

classical theorem of Bochner (1933), a continuous function is positive definite if and only if

it is of the form

j(t) ¼
ð

eir� t dF(r), t 2 Rd , (3)

where F is a non-negative measure on Rd . Thus, a continuous function is positive definite if
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and only if it is the characteristic function of a non-negative finite measure. Similarly, a

covariance function is called exponentially convex if

C(xi, xj) ¼ ł(xi þ xj), xi, xj 2 Rd , (4)

for a function ł defined on Rd . We then say that ł is an exponentially convex function,

meaning that (1) holds for the function defined in (4). Exponentially convex stochastic

processes and exponentially convex covariances have been studied by Loève (1946; 1965),

among others. Bernstein (1929), Widder (1934; 1946, pp. 273 and 275) and Devinatz (1955)

showed that a continuous function is exponentially convex if and only if it is of the form

ł(s) ¼
ð

er�s dF(r), s 2 Rd , (5)

where F is a non-negative finite measure on Rd and where the integral converges for all s. In

other words, a continuous function is exponentially convex if and only if it is the Laplace

transform of a non-negative finite measure.

Suppose that j(t), t 2 Rd , is a continuous positive definite function. In view of the

representations (3) and (5), it is tempting to assume that we can naively put ł(s) ¼ j(�is),

s 2 Rd , and obtain an exponentially convex function. However, this is not true in general;

for example, j(t) ¼ 1=(1þ t2) is a positive definite function on R but

ł(s) ¼ j(�is) ¼ 1=(1� s2) is evidently not exponentially convex. Our key result, the

bijection theorem in Section 2, shows that the plug-in procedure can be rigorously justified

if j is an entire function, and thereby establishes a bijection between entire positive definite

functions and exponentially convex functions. Its main use lies in the construction of

exponentially convex functions from positive definite functions, of which we give examples.

In Section 3, we extend a closely related stochastic process construction of Loève (1946;

1965) to the case of random fields defined on Rd , d > 1.

This research was prompted by our quest for parametric models of exponentially convex

covariances. These are required when locally stationary covariance functions in the sense of

Silverman (1957) are fitted, a situation discussed by Genton and Perrin (2002). Briefly, a

covariance function is locally stationary in Silverman’s sense if it is of the form

C(xi, xj) ¼ j(xi � xj)ł(xi þ xj), xi, xj 2 Rd , (6)

where j is positive definite. The property C(xi, xi) > 0 forces the function ł to be positive,

but not necessarily exponentially convex, even though (1) must hold for C. For instance, if

a . 0 the covariance C(xi, xj) ¼ exp(�2a(x2
i þ x2

j)) can be written as the product of

exp(�a(xi � xj)
2) and exp(�a(xi þ xj)

2), where the first term is positive definite, but the

second is positive without being exponentially convex. Note that the product of a stationary

covariance function j by a positive function ł as in (6) does not necessarily yield a positive

definite covariance C. However, j and ł can be simultaneously modified in order to make C

positive definite; see the matching theorem in Silverman (1959). It is nevertheless natural and

convenient to build admissible locally stationary models from positive definite and

exponentially convex functions, respectively.
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2. A bijection between exponentially convex and entire positive
definite functions

2.1. Exponential families

Natural exponential families (Lehmann 1986, Section 2.7) provide an appropriate framework

for the questions at hand, and we begin with a review of their properties. Let F be a non-

negative finite measure on Rd , let

j(t) ¼
ð

ei t�x dF(x), t 2 Rd , (7)

denote its Fourier transform or characteristic function, and let

ł(s) ¼
ð

es�x dF(x), s 2 Rd , (8)

denote its Laplace transform. Then

¨ ¼ ¨F ¼ Ł 2 Rd : ł(Ł) ¼
ð

eŁ�x dF(x) ,1
� �

is a non-empty convex subset of Rd that contains 0. For simplicity, we will assume that ¨ is

open. We can then associate F with a natural exponential family F ¼ fFŁ : Ł 2 ¨g of finite

measures, by setting dFŁ(x) ¼ eŁ�x dF(x) for Ł 2 .̈ The characteristic function of FŁ is

given by

jŁ(t) ¼
ð

ei t�x dFŁ(x) ¼
ð

e(Łþi t)�x dF(x), t 2 Rd ,

where the integral is convergent and analytic as a function of � ¼ Łþ it on ¨1 ¼
¨þ iRd 	 Cd (Lehmann 1986, Theorem 9, p. 52). Thus, it represents the unique analytic

continuation of the Laplace transform (8) to this region,

ł(�) ¼
ð

e��x dF(x) ¼ jŁ(t), � 2 ¨1:

Similarly, since Łþ it ¼ i(t � iŁ) we may extend the characteristic function (7) into an

analytic function of ø ¼ t � iŁ on ¨2 ¼ Rd � i¨ 	 Cd ,

j(ø) ¼
ð

ei ø�x dF(x) ¼ jŁ(t), ø 2 ¨2:

It is then immediate that

ł(Łþ it) ¼ j(t � iŁ), Ł 2 ¨, t 2 Rd : (9)

If Ł 2 ¨ then j(t � iŁ) ¼ jŁ(t) is evidently a positive definite function. Furthermore, if

Ł 2 Rd , s 2 Rd , and Łþ s 2 ¨ then

Exponentially convex functions 609



ł(Łþ s) ¼
ð

e(Łþs)�x dF(x) ¼
ð

es�x dFŁ(x):

In other words, the shifted function s 7! ł(Łþ s) is the Laplace transform of FŁ, and it

follows from the results of Devinatz (1955) that it is exponentially convex when restricted to

the appropriate domain.

2.2. Bijection theorem

We now establish a bijection between exponentially convex functions and entire positive

definite functions that justifies the aforementioned plug-in procedure, when applied to the

associated power series representation. Recall that a complex-valued function j(t), t 2 Rd ,

is entire if it can be extended to a necessarily unique analytic function j(z), z 2 Cd .

Theorem 1. If ł(s), s 2 Rd, is an exponentially convex function, then it is entire, and

j(t) ¼ ł(it), t 2 Rd, is a positive definite function. Conversely, if j(t), t 2 Rd, is an entire

positive definite function, then ł(s) ¼ j(�is), s 2 Rd is an exponentially convex function.

Proof. Suppose that ł(s), s 2 Rd , is an exponentially convex function. Then it admits the

representation (5) and the arguments in Section 2.1 apply. In particular, ł is entire and it

follows from (9) with Ł ¼ 0 along with the comments thereafter that j(t) ¼ ł(it), t 2 Rd , is

positive definite.

Conversely, suppose that d ¼ 1 and let j(t), t 2 R, be an entire positive definite function.

Then j admits the representation (3) for a non-negative finite measure F, and Theorem

1.12.6 of Bisgaard and Sasvári (2000) shows that ¨ ¼ ¨F ¼ R. Clearly, ł(s) ¼
Ð

esx dF(x),

s 2 R, is exponentially convex on R, and (9) with Ł ¼ s and t ¼ 0 implies that

ł(s) ¼ j(�is) for s 2 R. Next suppose that d . 1 and let j(t), t 2 Rd , be an entire

positive definite function. Again, j admits the representation (3) for a non-negative finite

measure F, and we need to show that ¨ ¼ ¨F ¼ Rd . Let Fk denote the kth marginal

measure of F with characteristic function �k and let ek denote the kth unit vector in Rd ,

for k ¼ 1, . . . , d. Then

�k(s) ¼
ð

eisu dFk(u) ¼
ð

eis ek �x dF(x) ¼ j(sek), s 2 R,

is a positive definite function and the restriction to R of an entire function z 7! j(zek) on C.

From the case d ¼ 1 we know that ¨Fk
¼ R for k ¼ 1, . . . , d, and thereforeð

erek �x dF(x) ¼
ð

eru dFk(u) ,1 for all r 2 R, k ¼ 1, . . . , d:

Thus ¨F contains all coordinate axes, and since ¨F is convex we have ¨F ¼ Rd . In view of

(9) with Ł ¼ s and t ¼ 0 and the comments thereafter, the proof of the theorem is

complete. h
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The results at the end of Section 2.1 show that if ł(s), s 2 Rd , is an exponentially

convex function, then łŁ(s) ¼ ł(Łþ s), s 2 Rd , is exponentially convex for all Ł 2 Rd .

Similarly, if an entire function j(t), t 2 Rd , is positive definite then jŁ(t) ¼ j(t � iŁ),

t 2 Rd , is positive definite for all Ł 2 Rd . Thus, the theorem in fact establishes a bijection

between a family of entire positive definite functions jŁ(t) ¼ j(t � iŁ), t 2 Rd , which is

indexed by Ł 2 Rd, and a family of exponentially convex functions łŁ(s) ¼ j(�i(Łþ s)),

s 2 Rd , which is also indexed by Ł 2 Rd. For ease of exposition, we have restricted

attention to entire characteristic functions for which the finiteness set ¨F equals Rd . Using

the results in Section 1.12 of Bisgaard and Sasvári (2000), it is not difficult to extend the

bijection theorem to the case where ¨F is a convex subset of Rd containing the origin as

an interior point. This considerably extends the class of covariance functions that can be

modelled by means of the present approach.

2.3. Applications

The key application of Theorem 1 lies in the explicit construction of exponentially convex

functions from positive definite functions, of which we give examples below. This is of

practical importance, since there is a vast body of literature on the construction of positive

definite functions, both in terms of characteristic functions and in terms of covariance

functions, and it is often easy to prove that a given function is entire. In contrast, the

literature on exponentially convex functions is minimal.

However, the bijection theorem can also be applied in the other direction, and we can

sometimes derive results about positive definite functions from the properties of

exponentially convex functions. For instance, if p is an even polynomial of degree

4k þ 2, k ¼ 0, 1, 2, . . . , and j(t) ¼ p(t)e� t2

, t 2 R, is a characteristic function, then the

leading coefficient of p is necessarily negative. Indeed, j is entire and Theorem 1 implies

that Ł(s) ¼ p(is)es
2

is exponentially convex, hence non-negative.

In light of the example, we turn to a discussion of basic properties of exponentially

convex functions. It is immediate from the representation (5) that an exponentially convex

function ł on R is real-valued, non-negative, and analytic with derivatives

ł(n)(s) ¼
ð
r ners dF(r), s 2 R:

The even-order derivatives are non-negative and ł is strictly convex unless it is constant.

Analogous statements hold for exponentially convex functions in Rd . Radial functions are of

particular interest in applications, and Nussbaum (1972) showed that a continuous radial

function ł(s) ¼ ł0(jsj), s 2 Rd , is exponentially convex if and only if it is of the form

ł(s) ¼
ð

[0,1)

ˆ(d=2)
2

irjsj

� �(d�2)=2

J (d�2)=2(irjsj) dF(r), s 2 Rd , (10)

where J is a Bessel function. This corresponds to Schoenberg’s (1938) classical

representation of continuous radial positive definite functions,
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j(t) ¼
ð

[0,1)

ˆ(d=2)
2

rjtj

� �(d�2)=2

J(d�2)=2(rjtj) dF(r), t 2 Rd , (11)

and (10) and (11) are special cases of (5) and (3), respectively. If d is odd, the function under

the integral sign in (10) can be expressed in terms of hyperbolic functions; if d ¼ 1 it

reduces to the hyperbolic cosine, thereby showing that an even exponentially convex function

ł(s), s 2 R, is non-negative, convex, and non-decreasing in s . 0.

2.4. Examples of the bijection

We first give examples on R:

(i) j(t) ¼ eiat�bt2

, t 2 R, ł(s) ¼ easþbs
2

, s 2 R;

(ii) j(t) ¼ (ei t � 1)=(it), t 2 R, ł(s) ¼ (es � 1)=s, s 2 R;

(iii) j(t) ¼ (1� t2)e� t2=2, t 2 R, ł(s) ¼ (1þ s2)es
2=2, s 2 R;

(iv) j(t) ¼ sin(t)=t, t 2 R, ł(s) ¼ sinh(s)=s, s 2 R;

(v) j(t) ¼ 2(1� cos(t))=t2, t 2 R ł(s) ¼ 2(cosh(s)� 1)=s2, s 2 R:

Examples (i), (ii), (iv), and (v) are based on Feller’s (1966, p. 503) table of characteristic

functions, and example (iii) corresponds to dF(r) ¼ (2�)�1=2 r2e�r2=2 dr. In examples (i) and

(iii), F is supported on the real line, and in examples (ii), (iv), and (v), F has compact

support. In example (i) we require that a 2 R and b > 0.

Radially symmetric and related functions in Rd , especially d ¼ 2 and d ¼ 3, are of

particular interest in the aforementioned statistical framework, which calls for parametric

families of exponentially convex functions.

Example (i) with a 2 Rd and b > 0 in fact carries over to Rd , d > 1, and Example (iv)

applies in Rd , d < 3, as follows.

(i) j(t) ¼ eia�t�bj tj2 , t 2 Rd ł(s) ¼ ea�sþbjsj
2

, s 2 Rd

(iv) j(t) ¼ sin(jtj)=jtj, t 2 R3 ł(s) ¼ sinh(jsj)=jsj, s 2 R3.

Example (iii) also allows for an interesting generalization. Consider the entire function

j(t) ¼ � 2(1� ajtj2)e�bj tj
2

, t 2 Rd ,

which is positive definite if and only if � 2 > 0, b > 0, and 0 < a < 2b=d (Cambanis et al.

1981). The associated parametric family of radial exponentially convex functions in Rd is

given by

ł(s) ¼ � 2(1þ ajsj2)ebjsj
2

, s 2 Rd ,

with the same restrictions on the parameters. This leads to interesting examples of parametric

models for locally stationary covariances of the form (6), by multiplying a stationary

covariance by any of the above exponentially convex covariances ł in (i)–(v). For instance,

the family

C(xi, xj) ¼ � 2 1� a1jxi � xjj2
� �

e�b1jxi�x jj2 1þ a2jxi þ xjj2
� �

eb2jxiþx jj2 , xi, xj 2 Rd ,
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is a valid locally stationary covariance function when � 2 > 0, b1 > 0, b2 > 0, 0 <

a1 < 2b1=d, and 0 < a2 < 2b2=d. It can be used to model departures from a stationary

process through the exponentially convex covariance ł. It is also worth noting that a

differentiable covariance function C(xi, xj) is exponentially convex, that is, satisfies (4), if and

only if its first partial derivatives satisfy C(1,0)(xi, xj) ¼ C(0,1)(xi, xj) for all (xi, xj). Genton

and Perrin (2002) characterize non-stationary covariances C(xi, xj) on the real line that can be

reduced to exponentially convex ones by a bijective deformation of the coordinates.

Note that exponentially convex and entire stationary covariance functions correspond to

analytic processes that allow for everywhere convergent power series representations, such

as (14) below. This limits their practical applicability, since analyticity is generally an

unrealistic assumption in the modelling of real-world phenomena. A locally stationary

covariance function of the form (6) also corresponds to an analytic process if both j and ł
are analytic, as is the case in the aforementioned example. We intend to discuss other

parametric models for locally stationary covariances elsewhere.

3. Loève’s construction

Loève (1946; 1965) proposed a neat, little-known stochastic process construction that

embeds stationary and exponentially convex processes into a unified structure. This final

section extends his univariate construction to the case of random fields defined on Rd ,

d > 1. Technicalities are omitted, but can be added easily along the lines of Loève’s work.

Consider the mean-zero Gaussian process Z(x), x 2 Rd , with exponentially convex

covariance function (4), where ł is entire and admits the representation (5) with a non-

negative finite measure F. Let W be a Gaussian process defined on the class B of the Borel

sets in Rd such that:

(i) W (B) � N 0, F(B)ð Þ for B 2 B;

(ii) W (B1), W (B2) are independent if B1, B2 2 B are disjoint;

(iii) W (B1 [ B2) ¼ W (B1)þ W (B2) almost surely if B1, B2 2 B are disjoint.

Then the exponentially convex process Z(x), x 2 Rd , admits the spectral representation

Z(x) ¼
ð

ex� y dW (y), x 2 Rd : (12)

By Taylor expansion of the entire function x 7! ex� y, x 2 Rd , we find that

Z(x) ¼
ð X1

k¼0

1

k!
x � yð Þk

 !
dW (y)

¼
X
n

xn

n!

ð
yn dW (y) ¼

X
n

xn

n!
Z (n)(0), x 2 Rd ,

in the L2 sense, where the summation is over all multi-indices n ¼ (n1, . . . , nd)T,

xn ¼ xn1

1 � � � x
nd
d , n! ¼ n1! � � � nd !, and where Z (n) stands for the associated partial derivative.
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Essentially the same arguments show that (12) can be extended to the complex-valued

Gaussian process

Z(�) ¼
ð

e�� ydW (y), � 2 Cd , (13)

that admits the representation

Z(�) ¼
X
n

�n

n!
Z (n)(0), � 2 Cd , (14)

where the summation and the terms therein are defined as before. This process has covariance

function

C �1, �2ð Þ ¼ E Z(�1)Z(�2)
� �

¼
ðð

e�1�xþ�2� y EdW (x) dW (y) ¼
ð

e(�1þ�2)�x dF(x) ¼ ł �1 þ �2

� �
where

ł(�) ¼
ð

e��x dF(x), � 2 Cd ,

denotes the analytic continuation of the exponentially convex function ł(s), s 2 Rd , with

representation (5).

We can then fix Im(�) ¼ b 2 Rd in (13) and (14), respectively and consider the process

Z(xþ ib), x 2 Rd . For all b 2 Rd , this process is exponentially convex with covariance

function C(xi, xj) ¼ ł(xi þ xj). Alternatively, we might fix Re(�) ¼ a=2 2 Rd and consider

the process Z(a=2þ ix), x 2 Rd . This process is stationary with covariance function

C(xi, xj) ¼ ł(aþ i(xi � xj)), and we conclude that j(t) ¼ ł(a� it), t 2 Rd , is positive

definite. Thus, putting a ¼ 0 provides another perspective on the bijection theorem in

Section 2.2.
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Bisgaard, T.M. and Sasvári, Z. (2000) Characteristic Functions and Moment Sequences, Positive

Definiteness in Probability. Huntington, NY: Nova Science Publishers.

Bochner, S. (1933) Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse. Math.

Ann., 108, 378–410.

Cambanis, S., Huang, S. and Simons, G. (1981) On the theory of elliptically contoured distributions.

J. Multivariate Anal., 11, 368–385.

Devinatz, A. (1955) The representation of functions as Laplace–Stieltjes integrals. Duke Math. J., 22,

185–191.

Feller, W. (1966) An Introduction to Probability Theory and Its Applications, Vol. II. New York: Wiley.

Genton, M.G. and Perrin, O. (2002) On a time deformation reducing nonstationary stochastic

processes to local stationarity. Technical report, North Carolina State University.

Lehmann, E.L. (1986) Testing Statistical Hypotheses, 2nd edn. London: Chapman & Hall.
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