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Abstract This paper discusses the use of robust geostatistical methods on a data set of rainfall
measurements in Switzerland. The variables are detrended via non-parametric estimation penalized
with a smoothing parameter. The optimal trend is computed with a smoothing parameter based on
cross-validation. Then, the variogram is estimated by a highly robust estimator of scale. The
parametric variogram model is fitted by generalized least squares, thus taking account of the
variance-covariance structure of the variogram estimates. Comparison of kriging with the initial
measurements is completed and yields interesting results. All these computations are done with the
software S+SPATIALSTATS, extended with new functions in S+ that are made available.
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1. INTRODUCTION

Statistical methods widely known under the name #kriging are intended to predict
unobserved values of a variable in a spatial domain, on the basis of observed values. These
techniques are based on a function which describes the spatial dependence, the so called
variogram. Therefore, variogram estimation and variogram fitting are important stages of spatial
prediction. Because they determine the kriging weights, they must be carried out carefully,
otherwise kriging can produce unreliable maps.

In practical situations, a fraction of outliers is often included in observed data. Experience
from a broad spectrum of applied sciences shows that measured data contains as a rule between 10
to 15 percent of outlying values due to gross errors, measurement mistakes, faulty recordings, efc.
One might argue that any reasonable exploratory data analysis would identify and remove outliers
in the data. However, this approach is often subjective and outlier rejection is highly opinion
dependent. Thus, in this paper, we advocate the use of robust geostatistical methods, which prevent
the negative effects of outlying values. Note that the existence of exploratory techniques does not
supersede the utility of robust techniques.

The data set contains N=467 measurements of rainfall in Switzerland, from which only
n=100 were made available. A complete description of the data set, as well as the location map of
the measurements, are presented in an introduction report. However, we would like to point out the
skewness in the first histogram of Figure 1, and the possibly bimodality of the distribution of the
data. Therefore, a logarithmic transformation is applied on the data, followed by centering and
reducing operations. The resulting histogram is visualized in Figure 1.
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Figure 1: Histogram of the observations and histogram of the transformed observations
(logarithm followed by centering and reducing). Note the skewness and possibly bimodality of the
distribution of the data.

In order to describe the data, the following simple model is used for the rainfall variable

Z(x)= m(x) + &x), x = (%), (M

where m(x) is the deterministic part of Z and &(x) the stochastic one. Because of the local behavior
of the data, the trend m(x) is computed by a non-parametric approach and removed, as shown in
the next section. Highly robust variogram estimation is performed in section 3, followed by
generalized least squares variogram fitting in section 4. Finally, kriging results are discussed in the
last part of this paper.

2. TREND DETECTION

The first step of spatial data analysis consists in detecting the trend of the variables
(Cressie, 1991), i.e. we determine m(x), the non-stochastic part of (1). Figure 2 shows the trend
surfaces of the n = 100 rainfall measurements of the data set drawn with the command symbols
in S+. We note the local behavior of the trend. By comparing the trend with the geographic
characteristics of Switzerland, we verify that there is a correspondence between the amount of
rainfall and the elevation of the measures (plain and mountains), as well as with particularly sunny
counties like Wallis.

Figure 2: Trend for the n=100 measurements of the rainfall data set. Bigger circles represent
higher amount of rainfall.
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It is not appropriate removing such local drifts by adjusting a polynomial trend surface as
shown in Venables and Ripley (1994). A non parametric adjustment is much more sensible to local
variations and is therefore more suitable. It is also a simple way of taking account of the elevation
of the measurements. The function 1oess fits a local regression model of second degree. To apply
a robust fitting, we suppose not a Gaussian but a symmetric distribution of the errors and set
therefore the argument family=symmetric, as well as normalize=F. Full details of 1loess
are given by Cleveland ez al. (1992).

The problem of choosing the smoothing parameter A is ubiquitous. Often, in geostatistical
approaches, exploratory work helps to find a value for a “*good looking" surface. To avoid this
ambiguousness, we apply the principle of cross-validation (Green and Silverman, 1994). The basic
idea of cross-validation is to choose the smoothing parameter A which minimizes the criterion

VM) == (x, - ¢ (x, Mf @

where g7( X;, A ) is the nonparametric estimation of m(x;) in omitting the observation x; from the

data set and with smoothing parameter A . This criterion ensures stability of the fitted surface. In
this work, the predictor g('x,A ) is the function loess. In general, the function CH(A) decreases to

a global minimum at Ay, close to 0, and converges to a horizontal asymptote CH(e<). Figure 3
shows the function CV(A) for the transformed rainfall data.
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Figure 3: The cross-validation criterion CV(A). It decreases to a global minimum at A,,;, = 0.16,
and converges to a horizontal asymptote CV( ).

We get CV(Ayim) = 0.425 at (Ap,) = 0.16 . Note that the estimation of loess with
smoothing parameter A = models a parabolic surface which is not sufficiently effective to remove
local trends. Thus we removed the non-parametric trend m(x) = §(x,4,,;, =0.16) from Z(x) , the

transformed data set.
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3. HIGHLY ROBUST VARIOGRAM ESTIMATION

Variogram estimation is a crucial stage of spatial prediction, because it determines the
kriging weights. It is important to have a variogram estimator which remains close to the true
underlying variogram, even if outliers (faulty observations) are present in the data. Otherwise
kriging can produce non-informative maps. Let &(x) = Z(x) - m(x), be the detrended spatial
stochastic process, which is assumed to be intrinsically stationary. The classical variogram
estimator of a sample &(x,), ..., &(X,) proposed by Matheron (1962), based on the method-of
moments, is

2ih)=—Sle(x)-e(x)},  he )

h N(h)

where N(h)={( x; X;): X; - X; = h}and W, is the cardinality of N(h). This estimator is unbiased, but
behaves poorly if there are outliers in the data. One single outlier can destroy this estimator
completely. However, it is not enough to make simple modifications to formula (3), such as the
ones proposed by Cressie and Hawkins (1980), in order to achieve robustness. In this section, we
advocate the use of a highly robust variogram estimator (Genton 1996, 1998a)

29(h)=(Qy, )’ he % 4)

which takes account of all the available information in the data. It is based on the sample V,(h),...,
Vy(h) from the process of differences V(h) = &(x + h) - &(x) and the robust scale estimator Ow,»

proposed by Rousseeuw and Croux (1992, 1993)
Qu, =2.2191{| Vi(h) - V(h); i <j}w (5)

where the factor 2.2191 is for consistency at the Gaussian distribution,

. :[[Nh/z]ﬂ}

2

and [Ny/2] denotes the integer part of Ny/2. This means that we sort the set of all absolute
differences |Vi(h)-V(h)] for i <j and then compute its k-th quantile ( k =Y for large Ny). This value
is multiplied by the factor 2.2191, thus yielding Oy, Note that this estimator computes the k-th

. Ny . Sy
order statistic of the [ 2h) interpoint distances.

At first sight, the estimator Ow, appears to need computation time, which would be a

disadvantage. However, it can be computed using no more than time storage, by means of the fast
algorithm described in Croux and Roussecuw (1992).
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Figure 4: Omnidirectional variogram estimated by Q, and fitted by generalized least squares
(GLSE).

This variogram estimator possesses several interesting propertics of robustness. For
instance, its influence function, which describes the effect on the estimator of an infinitesimal
contamination, is bounded. This means that the worst influence that a small amount of
contamination can have on the value of the estimator is finite, in opposition to Matheron's classical
variogram estimator. Another important robustness property is the breakdown point £ of a
variogram estimator, which indicates, how many data points need to be replaced to make the
estimator explode (tend to infinity) or implode (tend to zero). The highly robust variogram
estimator has an £ = 50% breakdown point on the differences V(h), the highest possible value,
whereas Matheron's classical variogram estimator has only an £ = 0% breakdown point, the lowest
possible value. More details about the use and properties of this estimator, including some
simulation studies, are presented in Genton (1998a).

We set the lag unit to ¥ = 5000m, which is a reasonable approximation for the nearest
neighbor distance mean in east-west (E-W) and north-south (N-S) direction. We estimate the
variogram at lags A; = iu, i = 1,...,30, with the common tolerance of a half unit to achieve higher
robustness. We compute the directional variogram for the N-S and the E-W direction, as well as
the omnidirectional variogram with (5) by using variogram.gn, a new function in S+. The N-S
and E-W directional variograms show similar behavior, suggesting an underlying isotropic process.
Therefore we decide to fit the omnidirectional variogram (Figure 4).

4. VARIOGRAM FITTING BY GENERALIZED LEAST SQUARES

Variogram fitting is another crucial stage of spatial prediction, because it also determines
the kriging weights. Careful fitting implies on one hand the use of a highly robust variogram
estimator (Genton, 1998a). On the other hand, variogram estimates at different spatial lags are
correlated, for the same observation is used for different lags. As a consequence, variogram fitting
by ordinary least squares is not satisfactory. This problem is addressed by Genton (1998b), who
suggests the use of a generalized least squares method with an explicit formula for the covariance
structure (GLSE). A good approximation of the covariance structure is achieved by taking account
of the explicit formula for the correlation in the independent case. Simulations were carried out
with several types of underlying variograms, as well as with outliers in the data. Results showed
that the (GLSE) technique, combined with a robust estimator of the variogram, improves the fit
significantly.
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Consider a omnidirectional variogram estimator for a given set of lags A, ..., iy, where 1 <
k < K and K is the maximal possible distance between data. Denote further by

29=(2Y(h ),..2%h )" € R the random vector with variance-covariance matrix

Var(2y) =1"Q where 7" is a real positive constant. Suppose that one wants to fit a valid
parametric variogram 2y(h,0) to the estimated points 2y . The method of generalized least squares
consists to determine the which minimizes

G(0)=(27-2v(0))" Q"' (2y-2v(0)) ©)

where 2y(0) = (2y(h,0),...2Y(h,0))" € R*is the vector of the valid parametric variogram, and

0 € R” is the parameter to be estimated. Note that 2y(%, 6) is generally a nonlinear function of the
parameter. Journel and Huijbregts (1978) suggest to use only lag vectors 4; such that N, > 30 and 0

< i < K/2. This empirical rule is often met in practice, and is used in this work. The GLSE
algorithm is the following:

[1] Determine the matrix Q =€(@) with element Q; given by
Corr(27(h;),27(h ;))y(h;,0)y(h,;,0)/ /N, N, @)

[2] Choose 8 and let /= 0.

[3] Compute the matrix £ =£2(¢ #”) and determine 6" which minimizes

G(0)=(27-2¥(0))" (0" )" (2 -2v(6)) ®
[4] Repeat [3] until convergence to obtain 0.

In step [1], the correlation Corr(27(h;),27(h ,)) can be approximated by the one in the independent

case. An explicit formula can be found in Genton (1998b), which depends only on the lags #; and
h;, as well as on the size n = n;n, of a spatial rectangular data set. In step [2], the choice of 09 can
be carried out randomly, or with the result of a fit by ordinary least squares (OLS).

A spherical variogram

0 if  h=0
3 h ] h q

7(h,0)=10, +0, E(E)_E(T’?)E if 0<h<o,
0,+90, if h>0,

has been fitted to the empirical omnidirectional variograms by GLSE using glse.fitting,
another new function in S+. The starting value 8” was set as the solution of a fit by OLS. The

estimated parameter is 0 = (0.003, 0.113, 7.938). To calculate (7), we neglected the irregularities
of the grid and set n; = 60 and n, = 40, which is a crude approximation of the grid.

5. KRIGING AND DISCUSSION OF THE RESULTS

Epitomizing, kriging is a linear interpolation method that allows predictions of unknown
values of a random function from observations at known locations. For further details see Cressie
(1991). S+SPATIALSTATS performs 2-dimensional kriging by using the krige and
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predict.krige functions. The kriging results are easily visualized with the functions
contour or persp. Further details and examples are given by Kaluzny et al. (1996). Figure 5
shows the kriging maps for the rainfall data. The ten lowest values are represented by circles and

the ten highest by squares.

Figure 5: Kriging map of the rainfall data. The ten lowest values are represented by blue circles

and the ten highest by red squares.

Figure 6 visualizes the corresponding errors and kriging variances respectively. The
overall performance of our method in predicting the remaining 367 rainfall data is summarized in
Table 1. We consider the true values Z(x), the estimated values (by kriging), the errors, the
absolute errors |e(x)and the relative errors e(x)[/Z(x). For each of these quantities, the minimum,
the maximum, the mean, the median and the variance is computed. The distribution of the
estimated values by kriging is in close agreement with the distribution of the true values. This is

confirmed by a plot of estimated values (horizontal) against true values (vertical) in Figure 7.

min max mean median std. dev.
true values 0 517 185 162 111
estimated values 14 433 171 151 96
errors -255 230 -14 -10 61
absolute errors 0 254 32 44 43
relative errors 0 3.31 0.32 0.21 0.42

Table 1: This table presents the minimum, the maximum, the mean, the median, and the standard
deviation for the 367 true rainfall values, the estimated values, the errors, the absolute errors, and

the relative errors.
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Figure 6: Absolute errors and kriging variances corresponding to the kriging map of the rainfall
data.
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Figure 7: Plot of estimated values (horizontal) against true values (vertical).

A small positive bias is however revealed. A plot of observed (true) values against
residuals in Figure 8 indicates that small values are generally overestimated whereas large values
are underestimated.
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Figure 8: Plot of observed (true) values (horizontal) against residuals (vertical).

Proportional plots of the absolute errors and relative errors in Figure 9 indicates the locations of the
smaller or higher errors. It seems to be correlated with the smaller or higher rainfall measurements.
The root mean squared error is RMSE = 62 and should be compared with other predicting methods.
Table 2 compares the prediction of the ten lowest values and the ten highest values of the initial
data set with the corresponding estimated values. This method identified four respectively three
locations of the ten highest respectively ten lowest values of the initial data set. The performance in
predicting the lowest and the highest 10 rainfall measurements can also be summarized by the root
mean squared error RMSE,;,= 15 and RMSE,,..= 19 respectively. It seems that lower values are
more accurately predicted than higher ones.

This method of rainfall prediction can be useful for the monitoring of accidental releases of
radioactivity in the environment, because it doesn't require huge computations, nor subjective
modeling decisions. The procedure is straightforward and almost automatized with the new
available S+ functions. As rainfall is strongly correlated with radioactive fallout of accidental
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releases, this method can easily be used for emergency situations.
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Figure 9: Proportional plots of the absolute and relative errors for the kriging of the rainfall
measurements. Positive errors are represented by red circles, negative errors by blue circles.
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ten lowest values ten highest values
true values estimated values true values estimated values
0 57 434 300
0 55 434 253
0 33 441 441
0 27 444 369
0 29 445 377
1 41 452 452
5 22 493 433
6 20 503 249
8 26 517 262
10 10 585 585

Table 2: This table compares the prediction of the ten lowest values and the ten highest values of
the initial data set with the corresponding estimated values.

6. CONCLUSIONS

In this paper we have studied a data set of rainfall measurements in Switzerland. As local
drifts are typically present in the data set due to geographical characteristics and elevations, the
observations have been detrended by a non-parametric surface, based on a cross-validation
criterion. Then, robust methods have been applied for variography with the software
S+SpatialStats. First, the variogram was estimated by a highly robust estimator. Second, the
fit of the variogram estimates was done by generalized least squares thus taking account of their
statistical properties. Kriging has been performed and the overall performance analyzed by various
criterion. Results are of course different from the true values, but however in good agreements.
Thus, our model is a simple way of studying such data sets, without the need of huge
computations. As rainfall is strongly correlated with radioactive fallout of accidental releases, this
method can easily be used for emergency situations.

The S+ functions used are made available at http://dmawww.epfl.ch/~furrer/SIC97/
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