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Abstract. This paper discusses the use of simple good sense in the spatial prediction of rainfall
measurements in Switzerland. The method consists of a forecast based on the values of the
available observations combined with topographic knowledge of the Swiss territory. Comparison
of our subjective estimates with the true measurements is completed and yields surprisingly good
results.

Keywords: Interpolation; Swiss Bayesian prior; Rationality; SPLUS.

1. INTRODUCTION

The analysis and interpretation of spatial data sets forms an important part of geostatistics
and is unfortunately highly human dependent. For instance, it is well known that different
individuals will take different approaches (Englund, 1990), yielding a large assortment of distinct
solutions. This is partly due to the variety of available spatial interpolation methods, ranging from
simple intuitive predictions to more sophisticated and complex procedures. Some of the more
commonly used interpolation methods (Cressie, 1993) include:

¢ Inverse distance weighting and nearest neighbor
e Polynomial trend surfaces and splines

e Kriging

o Likelihood and Bayesian analysis

e  Neural networks

Most of these methods are in fact only classes of procedures, which contain an incredible number
of possible variations accessible to the researcher. Moreover, several sources of variability arise
from the data themselves and involve subjective decisions on the part of the individual. These
include data transformations, detection and handling of outliers or even more nasty inliers, choice
of estimators for dependent observations, variability of estimators, model selection, choice of
hardware and software. An attempt of robustness in variogram estimation and fitting for kriging is
proposed by Genton (1996, 1998a, 1998b, 1998¢), and an example of application to sediments data
of Lake Geneva, Switzerland, can be found in Furrer and Genton (1998). Having such a large
diversity of methods, yielding so many different results (Englund, 1990), one can legitimately ask
whether spatial statistics is worth the trouble ? In this paper, we try to give some possible answers
to this question.
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2. SIMPLE GOOD SENSE PREDICTION

In this section, we describe briefly the simple good sense method that the first author used
for the spatial prediction of rainfall in Switzerland. First, the =100 available locations of rainfall
are plotted, and each corresponding value of amount of rainfall is labeled with the function
identify in SPLUS. Second, the 367 locations where rainfall has to be predicted are plotted,
and the corresponding amounts of rainfall are estimated by eye. We used the information given by
the 100 known rainfall amounts, as well as some subjective knowledge of the Swiss territory,
which can be viewed as a Swiss Bayesian prior. For example, we are conscious of the sunny
micro-climate of the county of Wallis, as well as the locations of mountains and plains. Moreover,
one of the fundamental principle of geostatistics has been applied: observations which are closely
located in space are more likely to be similar than observations which are far away. It is also well
known that the precipitations on the lee side of mountains is much higher than on the luv side.
Thus the 100 known observations helped to determine on which side of the mountains it rained.
Note that in our prediction procedure, no additional information from any other spatial statistical
method has been used: this is pure good sense !

3. DISCUSSION OF THE RESULTS
The overall performance of our method in predicting the remaining 367 rainfall data is
summarized in Table 1. We consider the true values Z(x), the estimated values (by simple good

sense) Z( X ), the errors e(x) = Z( X )—Z(x), the absolute errors |e(x)| and the relative errors

le(x))/ Z(x). For each of these quantities, the minimum, the maximum, the mean, the median and
the standard deviation is computed.

Min Max Mean Median Std. Dev.
True values 0 517 185 162 111
Estimated values 13 450 176 150 94
Errors -318 223 -9 2 72
Absolute errors 0 318 50 36 52
Relative etrors 0 10.00 0.40 0.23 0.78

Table 1. This table presents the minimum, the maximum, the mean, the median, and the standard
deviation for the 367 true rainfall values, the estimated values, the errors, the absolute errors, and
the relative errors.

The distribution of the estimated values by simple good sense is in agreement with the
distribution of the true values. This is confirmed by a plot of estimated values (horizontal) against
true values (vertical) in Figure 1.
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Figure 1. Plot of estimated values (horizontal) against true values (vertical).

A small positive bias is however revealed. A plot of observed (true) values against residuals in
Figure 2 indicates that small values are generally overestimated whereas large values are

underestimated.
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Figure 2. Plot of observed (true) values (horizontal) against residuals (vertical).

Figure 3 shows the maps for the rainfall prediction by simple good sense and the corresponding

absolute errors.

observed values
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Figure 3. Maps for the rainfall prediction by simple good sense (the 10 lowest values are
represented by circles and the 10 highest by squares) and the corresponding absolute errors.

Proportional plots of the absolute errors and relative errors in Figure 4 indicate the locations of the
smaller or higher errors. It seems to be correlated with the smaller or higher rainfall measurements.
The root mean squared error is RMSE=72 and should be compared with other predicting methods.
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Figure 4. Proportional plots of the absolute errors and relative errors for the simple good sense
prediction of rainfall amounts. Positive errors are represented by red circles, and negative errors
by blue circles.

Table 2 compares the prediction of the ten lowest values and the ten highest values of the
initial data set with the corresponding estimated values. This method identified four respectively
five locations of the ten highest respectively ten lowest values of the initial data set, which are
written in bold in Table 2

Ten lowest values ten highest values
true values estimated values true values estimated values
0 56 434 288
0 22 434 224
0 19 441 441
0 28 444 450
0 72 445 311
1 13 452 452
5 55 493 330
6 36 503 185
8 43 517 204
10 10 585 585

Table 2. This table compares the prediction of the ten lowest values and the ten highest values of
the initial data set with the corresponding estimated values. The simple good sense method
identified four respectively five locations of the ten highest respectively ten lowest values of the
initial data set, which are written in bold.

The performance in predicting the lowest and the highest 10 rainfall measurements can
also be summarized by the root mean squared RMSE,,;=16 and RMSE,,.,=10 respectively. It seems
that higher values are more accurately predicted than lower ones. This method of rainfall
prediction can be useful for the monitoring of accidental releases of radioactivity in the
environment, because it doesn't require computations at all, but only some knowledge of the Swiss
territory. The procedure is straightforward and almost automated. As rainfall is strongly correlated
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with radioactive fallout of accidental releases, this method can easily be used in emergency
situations of nuclear accidents for making fast decisions. In the extreme case, it is sufficient to
consult a meteorological map to predict the rainfall and winds. Using this information, citizens can
be informed within a matter of hours. Of course, this ad hoc method is imprecise but much faster
than any other.

4. CONCLUSIONS

In this paper, the use of simple good sense in the spatial prediction of rainfall
measurements in Switzerland has been discussed. The method consists of a forecast based on the
values of the available observations combined with topographic knowledge of the Swiss territory.
Comparison of our subjective estimates with the true measurements has been completed and has
yielded results which are not too far from the true values. Fortunately, the results of this method
are worse than those from a robust spatial statistics methodology used by the authors in another
analysis. This would lead to support that spatial statistics is worth the trouble. However, it would
be very interesting to compare the simple good sense method with methods used by other
participants, for example by mean of the RMSE. We believe that simple good sense would not be
the worst.
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