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Summary. In this paper, we implement a new definition of breakdown in both finite and
asymptotic samples with correlated observations arising from spatial statistics and time se­
ries. In such situations, existing definitions typically fail because parameters can sometimes
breakdown to zero, Le. the center of the parameter space. The reason is that these definitions
center around defining an explicit critical region for either the parameter or the objective func­
tion. If for a particular outlier constellation the critical region is entered, breakdown is said to
occur. In contrast to the traditional approach, we use a definition that leaves the critical region
implicit but still encompasses all previous definitions of breakdown in linear and nonlinear
regression settings. We provide examples involving simultaneously specified spatial autore­
gressive models, as well as autoregressions from time series, for illustration. In particular, we
show that in this context the least median of squares estimator has a breakdown-point much
lower than the familiar 50%.
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1 Introduction

Data sets arising from environmental sciences are typically correlated in time, space,
or space-time, and thus there is a need to construct new tools to measure robust­
ness for correlated data. Existing tools to study the robustness of statistical proce­
dures have been mainly developed for independent observations. The most familiar
ones include the influence function (Hampel, 1971), the change-of-variancefunction
(Rousseeuw, 1981), the max-bias curve (Hampel et aI., 1986), and the breakdown­
point (Hampel, 1971). Only few attempts have been made to extend these defini­
tions to the setting of correlated observations. Kiinsch (1984) followed by Martin
and Yohai (1986) have proposed two different definitions of the influence function
for time series. Hossjer (1991) extended the change-of-variance function in order
to study the effect of unexpected correlations in the data. Recently, Genton (2001)
broadened the definition of the change-of-variance function to the spatial statistics
context, in order to explore the effects of both dependencies and outliers on the vari­
ance of variogram estimators. In this paper, we use a new definition of breakdown­
point in the context of correlated observations and provide simple illustrative exam­
ples arising from spatial statistics and time series.
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The issue of qualitative robustness and especially the definition of breakdown
has made considerable progress over the last three decades. Informally, breakdown
of a statistical procedure means that the procedure no longer conveys useful infor­
mation on the true underlying model. A natural way ofdefining location breakdown­
point was proposed by Hodges (1967) and called tolerance. It consists in studying
the behavior of the estimate when some of the observations are replaced with pos­
itive or negative extreme values. Hampel (1971) implemented breakdown in the
setting of parameter estimation as the fraction of contamination (or outliers) that
suffices to drive the estimator beyond all bounds, or to the edge of the parameter
space if the latter is bounded. The breakdown-point has then been extended to fi­
nite samples (Donoho and Huber, 1983), dependent observations (Martin and De
Jong, 1977; Martin, 1980), test statistics (He et aI., 1990; He, 1991), and nonlinear
regression models (Stromberg and Ruppert, 1992; Sakata and White, 1995, 1998).
Especially, Stromberg and Ruppert (1992) and Sakata and White (1995) convinc­
ingly argue that the bias in the parameter estimates is not always a good criterion to
assess breakdown of an estimator. Instead, Stromberg and Ruppert (1992) propose
to consider the fraction of contamination that drives at least one of the fitted values
to its supremum or infimum. Sakata and White (1995, 1998) argue that the fitted
value may sometimes not be a satisfactory criterion either, and therefore propose
several alternative criterion functions to assess breakdown. Genton (1998), as well
as Ma and Genton (2000), define respectively a spatial and a temporal breakdown­
point. However, both definitions are local in the sense that they describe breakdown
only for a fixed lag vector in space or time.
The remainder of the paper is set up as follows. In Section 2, we provide evi­

dence that the above definitions of breakdown-point can become unreliable in situ­
ations arising from spatial statistics and time series. Section 3 describes a definition
of breakdown-point that is suitable for the context of correlated observations. We
provide further examples of breakdown in the asymptotic case in Section 4, and we
conclude in Section 5.

2 Examples from Spatial Statistics and Time Series

Although the alternative definitions of breakdown-point described above cover a
wide range of models and estimators, one can easily construct examples that are
not covered by those definitions. A very simple example involving a vector y =
(Y1, ••. , Yn )T of n correlated observations on a 2-dimensional lattice is given by
the simultaneously specified spatial autoregressive (SAR) model

y =pWy+~, (1)

with bounded parameter space for p E (-1,1), and the maximum likelihood (ML)
estimator of p. Such models have important applications, for instance in the context
of pollution analysis, socio-economic studies, and agricultural trials. Here W is an
n x n matrix of nonnegative weights describing the degree of interaction between
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neighbor locations in the plane, and such thatWI = 1, where 1 is a vector of ones
of dimension n. Figure 1depicts two neighborhood structures: the left panel is a full
nearest neighbor structure, whereas the right panel is a quadrant nearest neighbor
structure. Models with the latter structure are often referred to as quadrant autore­
gressions (QAR). The white discs indicate the neighbors of the black one. The vector

(3)

Fig. I. Nearest neighbor structure: full (left panel) and quadrant (right panel). The white discs
indicate the neighbors of the black one.

E is assumed to have i.i.d. N(O,1) components and the vector y is multivariate nonnal
Nn(O, E), where the covariance matrix is equal to 17 = [(I - pWT)(I - pW)t1 .

Note that the vector Eis correlated with y since COV(E, y) = (I - pWT)-l. Thus,
the least squares estimator of p is not consistent (Whittle, 1954). However, the max­
imum likelihood estimator pof p is consistent and is the solution of the following
equation (Ord, 1975)

tr[W(I - pW)-l](yTy - 2pyTWy + p2yTW TWy)

+n(pyTWTWy - yTWy) =0. (2)

Suppose y is observed with error as y = y + Cei, where ei has a nonzero com­
ponent only at index i, where it is 1. How will the ML estimator of p based on the
contaminated sample y be affected?
First, let us consider the case of a quadrant neighbor structure. If we label the

observations on the lattice from South to North and West to East, then the matrix W
is lower triangular. Because the diagonal ofW is always zero (observations are not
neighbors of themselves), the eigenvalues of W are all equal to zero for the QAR
model. Thus, the left factor of the first tenn in (2) is zero and we obtain an explicit
solution for the maximum likelihood estimator of p given by

A yTWy
p= yTWTWy'

Based on the contaminated sample y, we get

A yTWy + ((eTWy + yTWei) + (2eTWei
p= . ~

yTWTWy + ((eTWTWy + yTWTWei)"+ (2eTWTWei

Note that eTWei =0, 'Vi, whereas eTWTWei =j:. 0 (except when W has a column
of zeros, i.e. when the outlier is located at the North-East comer of the lattice).
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Thus, as ( -+ 00, we have p -+ 0 whatever the true value of p, i.e., whatever the
realization of the uncontaminated sample y. The ML estimator no longer conveys
any useful information on p and the estimate is totally dictated by the contamination.
In this simple quadrant autoregressive spatial model, the ML estimator breaks down
to p= 0 with one extreme outlier. Note that p = 0 is at the center of the parameter
space.
Let us now consider the full nearest neighbor structure, in which case an explicit

form for p does not exist. However, ifwe suppose that the vector y in (2) is observed
with error as y = y + (ei, the solution p must satisfy the following equation

(5)

where ho(p) is defined by the left-hand side of (2), and

h1(p) = k(p)(e;y - 2pe;Wy + p2e;WTWy) + n(pe;WTWy - e;Wy) ,

h2(p) = k(p)(l + p2a) + np. (6)

Here k(p) = tr[W(I - pW)-I] and a = e;WTWei. As ( -+ 00, the expression
h2 (p) must tend to zero in order for (5) to hold. Denote by >'1, ... ,An the eigenval­
ues of the matrix W. Because h2 (0) =0 and

n 1 n 1
h~(p) = (1 + p2a)~)I:" - p)-2 + 2pa~) I:" - p)-1 + na

j=1 J j=1 J

n 1
~ L [pC I:" - p) -1 + a] 2,

j=1 J

~ 0, (7)

Le. h2 (p) is monotone on the interval (-1, 1), the estimator p -+ O. Here again,
as ( -+ 00, the ML estimator of p breaks down to zero and no longer conveys any
useful information on p whatever the realization of the uncontaminated sample y.
This situation can not be accommodated by the classical definitions of breakdown
mentioned previously.

It is interesting to note that the autoregressive time series model of order one,
AR(l), is a particular QAR model. Effectively, the matrix W describes neighbors
only on the left (Le. depending on the past) in the time series case. This yields a
matrix W full of zero entries, except that Wij = 1 when j - i = 1. Thus, the
matrix WTW = I, and the ML estimator of the parameter p of the AR(l) model
Yi = PYi-l + €i takes the usual expression

(8)

Consequently, we observe again breakdown to zero when the vector y is observed
with one extreme outlier and ( -+ 00.
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The fonn of breakdown discussed above for the SAR, QAR, and AR(1) model
typically rules out the classical definition ofHampel, because the estimator does not
diverge, but instead tends to zero. It also violates the definition of breakdown based
on supremum bias which is reached when ptends to +1 for negative p, or when p
tends to -1 for positive p. Finally, the alternative definition of breakdown proposed
by Stromberg and Ruppert (1992), as well as Sakata and White (1995), fails too. It
is based on some criterion function such as the model fit, reaching its supremum or
infimum. Indeed, this would imply breakdown to +1 or -1, but not to 0, the center
of the parameter space.

3 Breakdown-point for Correlated Observations

Given the drawbacks of the previous definitions available, Genton and Lucas (2000)
recently proposed a new definition of breakdown in finite samples with an extension
to asymptotic breakdown. Previous definitions center around defining an explicit
critical region for either the parameter or the objective function. If for a particular
outlier constellation the critical region is entered, breakdown is said to occur. In con­
trast to the traditional approach, the definition of the critical region is now implicit.
This allows to cover the previous definitions, as well as situations with correlated
observations as demonstrated below.

3.1 Finite Sample Breakdown-point

Consider a vector y = (Y1 , ... , yn)T of n i.i.d. or correlated observations and de­
note by iJ(y) an estimator of a multidimensional parameter (J based on the vector of
observations y. We introduce outliers trough a contaminating vector z~, where m
represents the number of outliers and ( their magnitude. In the examples of Section
2, we considered Zl = (ei, but other outliers patterns can be studied, such as addi­
tive, replacement, or innovation outliers. The set of allowable outlier constellations
is represented by Z~. We define a measure of badness, Rn«(J,y) E JR+, which
could represent bias or model fit for instance. We further define a badness set by

(9)

where Yn is a neighborhood of the uncontaminated sample y, representing the set of
allowable alternative uncontaminated samples that might have been realized. Genton
and Lucas (2000) define the breakdown-point en of the estimator iJ of (J under the
badness measure Rn at the uncontaminated sample y for the set of allowable outlier
constellations Z~ and alternative uncontaminated samples Yn by

en == min {m: 11 3 z~ E Z~ such that R~(y, z~, Yn) is a finite set}. (10)
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This definition looks for the smallest fraction of outliers for which the set of possible
badness values can take on only a finite number of values. Note that in most cases,
breakdown is concerned with extreme outliers such that we will focus on the case
( -+ 00. If the sample space is continuous, this signals that most, if not all of the
information on the uncontaminated sample has been lost.
For example, consider the sample mean 0with one (m = 1) extreme outlier

at +00 and Yn = JRtl. Denote the outlier by Zpo. If badness is defined as bias,
Rn(O, y) = 10 - O(y)l, then R~(y, Zpo, lRn ) = {oo}, which is a finite set. There­
fore, the breakdown-point of the mean is given by € n = (1 - 1)/ n = O.
Next, consider the examples arising from spatial statistics and time series in­

troduced earlier with one additive outlier, see Section 2. It was shown that the ML
estimator in this case tends to zero for one extreme outlier« -+ 00), independently
of the sample. Using the definition proposed by Genton and Lucas (2000) and bad­
ness equal to bias, the ML breakdown-point in this setting equals zero as we have
R~(y, zf, JRtl) = {IO-O(y)I}, where zl = (ei andO(y) = p. In contrast, consider
the outlier configuration z~ = (0, ... ,0, (, (, ... , (,0, ... ,0), where the patch of
(s has length m. Ifbadness is bias, and for the AR(l) model, it is easy to check that
this results in a badness of I(m - l)/m - O(y)1 for (diverging to infinity. Simi­
larly, if we have an alternating outlier patch (, -(, (, ... of length m, the badness
is 1- (m - l)/m - O(y)l. Supremum badness is reached if m = n, such that the
breakdown-point following Sakata-White in this case is close to one. This seems in­
appropriate, as the ML estimator has already lost all its informational content under
one extreme outlier. The definition introduced by Genton and Lucas (2000) auto­
matically detects this information loss and assigns a breakdown-point of zero to the
ML estimator.

3.2 Asymptotic Breakdown-point

The definition of breakdown-point is extended to the asymptotic case by introducing
the stochastic processes y = {Yi}~l and z~ = {Zf}~l' The interpretation is
similar to that in the previous section. The subscript 1r for the contaminating process
indicates the fraction or probability of contamination, for example p(Zf = () =
1 - p(Zf = 0) = 1r for all i. The badness measure is now a functional R(O, y) E
JR+ , and the badness set is defined by

R" (y, z~, Y) = U {R(6(y' + z~), y) } ,
y'EY

(11)

with Y the set of alternative uncontaminated processes allowed. Genton and Lu­
cas (2000) define the asymptotic breakdown-point € of the estimator 6 of 0 under
badness measure R at the uncontaminated process y for the set of allowable con­
taminating processes Z~ and alternative uncontaminated processes Y by

€ == inf {1r13 z~ E Z~ such that R"(y, z~,Y) is a finite set}. (12)
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Here again, the definition looks for the smallest fraction of outliers for which the
set of possible badness values can take on only a finite number of values. The key
assumption is that the parameter space is not discrete, in which case the estimator
can no longer clearly distinguish between altemate uncontaminated samples.
To illustrate the definition, consider the mean as a location estimator in the i.i.d.

setting,

O(y) =f YiP(dYi). (13)

As a badness measure, consider the bias 10 - 01. This should give us the Hampel
breakdown-point of the mean. Let Y denote the set of processes with finite mean.
For the i.i.d. contaminating process P(Z; = () = 1 - P(Z; = 0) = 1l' with
( -+ 00, it is then easy to show that for every positive 1l' arbitrarily close to 0, the
badness set R* equals {oo}. which is a finite set. Consequently, the breakdown­
point of the mean is zero. A similar line of argument can be used to show that the
median has a breakdown-point of 50%.

4 An Example Involving Asymptotic Breakdown-point

In this section, we present the computation of the asymptotic breakdown-point of the
least median of squares (LMS, see Rousseeuw, 1984) applied to a unidimensional
simultaneously specified spatial autoregressive model of order 1. The SAR model is
defined by

P
Yi = 2(Yi-1 +Yi+d + fi, (14)

where the innovations fOi form a Gaussian i.i.d. process and the parameter is such
that Ipi < 1 to insure stationarity. The assumption of Gaussianity is not strictly nec­
essary, but serves our expositional purposes. We assume that badness is measured by
bias, Ip(y' :;Hz' p(y)1 or Ip(y' t)z' pi for y' E Y, whereY is the set of strictly
stationary unidimensional Gaussian SAR processes. Note that we can characterize
the elements y' ofY by the value of the autoregressive parameter p'.
Consider the i.i.d. additive outlier processes

P(Z; = () = P(Z; = -() = (1 - P(Z; =0))/2 =1l'/2.
The LMS estimator PLMS of Pminimizes

(

A A )2. <: PLMS( <: <:) P-PLMS( )medIan fi + Zi - -2- Zi-l + Zi+l + 2 Yi-l + Yi+l , (15)

which means that it solves

p(( <: PLMS( <: <:) P-PLMS( ))2)0.5 = fi+ Zi --2- Zi_l +Zi+l + 2 Yi-l +Yi+l < C (16)

with respect to c. The righthandside of (16) can be written as a sum of 33 = 27
terms depending on Z;, ZLI' and Z4l' each taking the 3 possible values +(, -(,
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or O. If we let ( -+ 00, we see that there are only 4 interesting values of fiLMS,

namely fiLMS equal to p, +1, -1, or O. We can now rewrite (16) as

1
p(~}+~(Y;_1+Y;+1))2(0.5(1-7I")-1) for fiLMS = 0,
p-;l ((1 - 71")-1 (2 - 471" + 371"2)-1) for fiLMS = p,

C = p(f~l ='!(Y.. y'. ))2(2(4 -1271" + 1471"2 - 571"3)-1) for fiLMS = +1,
f.+ -2 .-1+ .+'

p(-.l e±!(Y.. y'. ))2(2(4-1271"+1471"2_571"3)-1)forfiLMS=-1.
f.+ 2 .-1+ .+'

(17)
where Pi 1

(-) is the inverse c.dJ. corresponding to the random variable X. It is
clear from these fonnulas that for 71" sufficiently small, PLMS = p gives the lower
value of c. For p near 0 or ± 1 and 71" sufficiently large, however. one of the other
branches may dominate. Assume Y is the set of stationary unidimensional Gaussian
SAR processes characterized by Ipi < 1. In order to compute (17), we consider

E(ti + ~(1'i-1 + 1'i+1)) =0 (18)

P p2 p2
Var(ti + "2(1'i-1 + Yi+1)) = 1 + "2Var(Yi-d + "2Cov(Yi-l, Yi+d

+2pCOV(ti,1'i-d
p4 _ p2 + 2 4p2
= +-- (19)2(1 - p2) 4 _ p2 .

Here we have used

COV(E, y) = (I - pW)-l = (Ap / 2 + O(p))-l = A;/2 + o(p), (20)

where A;l is equal to

1 -¢> 0 0
-1

1 ¢> ¢>2 ... ¢>n-1

-¢> 1 + ¢>2 -¢ ¢ 1 ¢
1

0 0 = ¢2 ¢21- ¢2

-¢ 1 + ¢2 -¢ ¢ 1 ¢
0 0 -¢ 1 ¢n-1 ... ¢2 ¢ 1

(21)
and similarly for

Var(y) = [(I - pWT)(I - pW)r1 = (I - 2pW + O(p))-l = A;l + o(p). (22)

Thus, (17) requires Pi1(.) corresponding to a X~ random variable X. Figure 2
plots the value of 71" as a function of p for which the median under PLMS = -1, 0,
or +1 equals that under PLMS = p. The minimum of these curves is depicted in
bold. The maximum of the bold curve, 14.4% at p = ±0.714, is the breakdown­
point according to the definition above. If the fraction of contamination exceeds this



156 M.G. Genton

Fig. 2. Breakdown-curve (in bold) of the LMS estimator in the unidimensional Gaussian SAR
of order I, as a function of p.

breakdown-point, the set of badness values under the postulated extreme additive
outlier process equals {I - 1 - pI, Ipl,I1 - pi} for Y (or p' E (-1,1)), which
for given y (or p) is a finite set. For comparison, Figure 3 plots the breakdown­
curve (in bold) of the LMS estimator in the Gaussian AR(I) as a function of p (see
Genton and Lucas, 2000, for computational details). In this case. the breakdown­
point according to our definition is 22.1% at p = ±0.734. slightly larger than for the
unidimensional SAR model. This is a consequence of the AR(I) model depending
only on 1 neighbor, whereas the unidimensional SAR model depends on two nearest
neighbors. The breakdown-point, therefore. lies below the familiar 50% for LMS in
the regression setting. It has been argued that a breakdown-point of 50%/(1 + p).
where p = 1 is the order of the autoregressive process. might be more appropriate
in the time series or spatial statistics setting. Figures 2 and 3, however, illustrate that
the actual breakdown-point is even lower.

Fig. 3. Breakdown-curve (in bold) of the LMS estimator in the Gaussian AR( 1) as a function
of p.
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To conclude this section, it is useful to note what happens to the ML esti­
mator for the SAR, QAR, and AR(I) model. Under the same contaminating pro­
cess, badness measured as bias, and set of alternative uncontaminated processes
(p' E (-1,1)), we have for the AR(I)

A = E(YiYi-d + E(zfzLl) =O( -2) (~ 0
p E(Yi=-l) +E[(Zf-l)2] (

for arbitrary small positive 1r. The badness set R* for arbitrary small but positive
1r and ( -7 00 is {IO - pll, which is a finite set for given y (or p). Therefore, the
breakdown-point of the ML estimator is zero in the asymptotic AR time series set­
ting as well. A similar line of argument applied to the SAR and QAR models shows
that the ML estimator has also breakdown-point of zero in this spatial statistics con­
text.

5 Discussion

Although the seminal definitions of tolerance and breakdown-point introduced by
Hodges (1967) and Hampel (1971) are intuitively appealing, they are not suitable
for situations with correlated observations. Genton and Lucas (2000) introduced a
concept of breakdown-point that covers both independent and correlated observa­
tions, as well as linear and nonlinear regression settings. Their definition is more
complex than the traditional ones, but this has to be expected given the huge step
existing between independent and correlated observations. In this paper we have
presented several examples from spatial statistics, such as SAR and QAR models,
for which the new definition of breakdown-point is appropriate, whereas previous
definitions typically fail. In particular, it has been shown that the LMS estimator in a
spatial statistics context can have a breakdown-point much smaller than the familiar
50%. Table 1 provides a summary of available breakdown-point definitions.
Genton and Lucas (2000) provide further examples of computations of their

breakdown-point concept, for example the deepest regression estimator of the
AR(I), as well as relations to available notions of breakdown. Of particular inter­
est is the Michaelis-Menten model in the context of nonlinear regression, where the
least-squares estimator can have broken according to our definition, whereas it has
still not broken in the sense of Stromberg and Ruppert (1992). The reason is that we
leave implicit the absolute magnitude of the badness and the relative magnitude with
respect to the supremum badness. In other words, the estimator may already have
broken in the sense of our definition while the badness still increases upon adding
additional outliers.
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