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ON A TIME DEFORMATION REDUCING
NONSTATIONARY STOCHASTIC
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Abstract

A stochastic process is locally stationary if its covariance function can be expressed
as the product of a positive function multiplied by a stationary covariance. In this
paper, we characterize nonstationary stochastic processes that can be reduced to local
stationarity via a bijective deformation of the time index, and we give the form of
this deformation under smoothness assumptions. This is an extension of the notion
of stationary reducibility. We present several examples of nonstationary covariances
that can be reduced to local stationarity. We also investigate the particular situation of
exponentially convex reducibility, which can always be achieved for a certain class of
separable nonstationary covariances.
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1. Introduction

In the last few decades, applications have shown that stationary phenomena are more often
the exception rather than the rule. A classical approach to the modelling of a nonstationary
stochastic process Z = {Z(x), x € T C R} consists in defining

Z(x) = p(x) +o(x)e(x),

where u(x) = E(Z(x)), o2(x) = var(Z(x)), and e(x) is a weakly stationary process with
expectation zero and unit variance. Usually, the nonstationarity of Z is a consequence of the
nonstationarity of both the expectation 1 (x) and the variance o2(x). Stock (1988) and Sampson
and Guttorp (1992) introduced further nonstationarity by modelling e(x) as e(x) = §(f(x)),
where ¢ is a weakly stationary process and f is a bijective deformation. This is also equivalent
to modelling the nonstationary covariance function p(x, y) of the process ¢ as

p(x,y) =R(f(x)— f(»), ()

where R is a stationary covariance function. Sampson and Guttorp (1992), as well as Meiring
(1995) and Perrin (1997), further developed this model in the case of spatial random fields.
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Reducing nonstationary stochastic processes to local stationarity 237

The model (1) allows us to take into account second-order nonstationarities and thus provides
a rich class of nonstationary processes.

A covariance function p satisfying (1) is said to be stationary reducible (SR). Perrin and
Senoussi (1999) characterized stationary reducibility under smoothness assumptions on p and
f. In particular, they showed that a covariance function p satisfies (1) if and only if, for some
arbitrarily chosen point xg € T,

pO(x, x)
POV (x, x0)

P10 (y, xo)

©.1)
+07 7 (x,y)
POV (y, xp)

p0, y) 0, )

where x # y almost everywhere and p™™) (x, y) denotes the (m, m’)-partial derivative of p
with respect to x and y. Moreover, the pair (f, R) in (1) is uniquely determined by

x A(1,0)
fo)y=— / Wdy and R(u) = p(xo, £~ ().
X0 ’

For example, the correlation function of any H-self-similar process with index H € 10, 1],
such as nondegenerate fractional Brownian motion, satisfies (2), and is therefore SR with
f(x) = Inx. Nevertheless, not all nonstationary processes can be reduced to stationarity
through a deformation f of the time axis. For example, the nonstationary covariance

r(x,y) = exp(—x> — y°) ?3)

is not SR since it does not satisfy (2). Moreover, reducibility to stationarity means implicitly
that the variance of the original process is constant, otherwise its standardized version must
be computed and we need to check whether the correlation of the process satisfies (2). Our
motivation in this paper is to extend the model (1) of Sampson and Guttorp (1992) to processes
with a variance which is not necessarily constant and thus to propose a wider family of
nonstationary models which includes Sampson and Guttorp’s model as a subfamily. For this
purpose, we consider a class of nonstationary processes, first introduced by Silverman (1957),
called locally stationary (LS) processes. They were introduced to describe physical systems
for which statistical characteristics change slowly in time. Specifically, a stochastic process Y
is said to be LS, in the weak sense, if its covariance function ¢ can be written in the form

c(x,y) = Ry (%)Rzu _— @)

where R; is a stationary covariance function. The property c(x, x) > 0 forces the function
R) to be nonnegative. A general example of such a process Y = {Y(x), x € T C R}
can be given by taking Y as the product of two independent and centred processes n and v:
Y (x) = n(x)v(x), where n has covariance r1(x, y) = Ri((x + y)/2) and v is stationary with
covariance rp(x, y) = Ra(x — y). Indeed, in this example,

c(x,y) = cov(Y (x), Y(y))
= cov(n(x)v(x), n(y)v(y))
= E®mx)n(y)) E@(x)v(y))

= Rl(x ;y)Rz(x =y
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The variable (x + y)/2 has been chosen because of its suggestive meaning of the average or
centroid of the time points x and y. Indeed, when R is smooth enough, c(x, y) >~ Ry(x — y)
when y € [x — &, /2, x + &, /2] for &, small enough. This justifies the LS structure of Y. Note
that, if Ry is a positive constant, then (4) reduces to a stationary covariance. Thus, the class of
LS covariance functions has the desirable property of including stationarity as a special case. If
the covariance function ¢ can be written as in (4) but R; is not a stationary covariance function,
then we call it pseudo-locally stationary (PLS). Note that the product of a positive function R;
by a stationary covariance function R, as in (4) does not necessarily yield a positive-definite
covariance c(x, y). However, R; and R; can be simultaneously modified in order to make
c(x, y) positive definite; see the matching theorem in Silverman (1959).

We generalize Sampson and Guttorp’s model by defining locally stationary reducible (LSR)
processes. A process Z = {Z(x), x € T C R} is said to be LSR if Z(x) = Y (g(x)), where Y
is an LS process and g a bijective deformation of the time index 7'. This is also equivalent to
modelling the nonstationary covariance function r of the process Z as

gx)+g(y)

r(x7y)=Rl( )

)Rz(g(x) — &), 5)
where R is a nonnegative function and R, is a stationary covariance function. Note that, if
R is a positive constant, then (5) reduces to the model (1) of Sampson and Guttorp (1992).
Here again, if R; is not a stationary covariance, we say that Z is only pseudo-locally stationary
reducible (PLSR).

Notice that local stationarity is a general concept for which different definitions exist.
Berman (1974) defined it in terms of Holder conditions. Priestley (1965), and further Dahlhaus
(1997), considered a process with continuously time-changing spectral representation. Re-
cently, a different and less restrictive notion of local stationarity has been introduced by means
of orthogonal wavelets (see e.g. Mallat er al. (1998)). However, we restrict ourselves to the
definition of Silverman (1957), which is more tractable in the context of continuous-time
deformation. With additional smoothness assumptions on Ry and R;, Silverman’s definition
of local stationarity can be viewed as a particular case of the later versions.

The remainder of the paper is set up as follows. In Section 2, we discuss the properties of
LS processes and give a characterization of such processes. The characterization of locally
stationary reducibility is given in Section 3 and two examples of LSR processes are presented
in Section 4. In Section 5, we treat the particular case when R; is a constant, and we conclude
the paper with a discussion in Section 6.

2. Locally stationary processes

2.1. Properties

Because the product of R; and R; in (4) is defined only up to a multiplicative positive
constant, we further impose without loss of generality the condition that R,(0) = 1. Moreover,
we can always impose the condition that ¢(xp, xo) = 1 for some xo € 7. Indeed, it is always
possible to deal with the covariance c(x, y)/c(xop, xo) instead. From now on we always assume
that the following condition is satisfied.

Condition 1. For some arbitrarily chosen point xo € T, c(xg, xo) = 1 and Ry(0) = 1.

From Condition 1, we get directly that R;(xo) = 1 and that the variance of Y (x) is

var(Y (x)) = c(x, x) = Ri(x)R2(0) = R;(x), (6)
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thus justifying the name of power schedule for R, which describes the global structure of Y,
while R, describes the local stationarity of Y, as already mentioned in Section 1. Using this
property, we can also define R; directly from ¢ by considering

c(x0 + 3%, %0 — 3%) = Ri(x0)R2(x) = Ra(x). (7)
Equations (6) and (7) imply that the covariance function c(x, y) defined by (4) is completely
determined by its values on the diagonal x = y and the antidiagonal y = —x + 2xp in the
plane, for
c(x,y) :c(x+y x+y>c(x0+x—y xo_x—y).
’ 2 72 2 7 2

Note that Ry ((x + y)/2) is invariant with respect to shifts parallel to the antidiagonal, whereas
Ry(x — y) is invariant with respect to shifts parallel to the diagonal.

2.2. Characterization

We make the following assumptions.
Assumption 1. There is at most a countable set of points (x, y) in T? such that ¢(x, y) = 0.

Assumption 2. The function ¢ is continuous in T? and has second derivatives which are
uniformly bounded for x # y.

First let us characterize the separable covariance functions, i.e. the covariance functions of
the form
y(u,v) = c(u+ 3v,u — 5v) = R (u)Ry(v) (8)

for all (u, v).

Lemma 1. Assume that y is twice differentiable for u # v. Then y is separable if and only if
the following holds for u # v up to a countable set of points such that y (u, v) # 0:

y D, v)y @, v) =y, v)y @D, v). ®)

Proof. The necessity is obvious. Conversely, assume that (9) holds. Then the derivative of
y 8O (u, v)/y (u, v) with respect to v is equal to 0. Therefore, we may define

y'Ow, v)

@) ki (u).

By integration with respect to u we obtain that In |y (4, v)| = K(u) + K2(v) everywhere for
u # v such that y(u, v) # 0, with K being a primitive function of k. To conclude, we set
exp(K1(u)) = R (u) and exp(K2(v)) = |R2(v)|.

Considering u # v allows us to include wide classes of covariance functions which are not
necessarily differentiable on the diagonal and which characterize the so-called nugget-effect
phenomenon in geostatistics. Here is a necessary and sufficient condition for a covariance to
have the representation (4) with R; a possibly nonstationary covariance function.

Theorem 1. Let Assumptions 1 and 2 hold. A covariance c is PLS, i.e. of the form (4), if and
only if the following holds for x # y up to a countable set of points in T? such that c(x, y) # 0:

D x, y) = cO2(x, y)ex, y) = (MO, y) = OV (x, )V (x, y) + OV (x, y)).
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Proof. Wesety (u,v) = c(u+v/2, u—v/2). Thus csatisfies (4) if and only if y satisfies (8).
It follows from Lemma 1 that ¢ satisfies (4) if and only if (9) holds with

(1,0) _ (10 v. v 0,1) v _E)
y (u,v)y =c (u+2,u 2>+c <u+2,u 5 )

1
y(o‘l)(u, V) = E(c(l’0)<u + %’ u— g) —C(O’l)(u + %’ u— g))

1 )
o o) (et

To conclude, wesetx =u +v/2andy = u — v/2.

Corollary 1. Let Assumptions 1 and 2 hold. A covariance c is PLS if and only if l(x, y) =
In|c(x, y)| satisfies the following wave equation up to a countable set of points in T? such that
c(x,y) #0:

(20, y) =12 (x, y).

Proof. This is obvious by the definition of /(x, y) since

I(x,y) = ln(R1 (#)) +In|Ra(x — y)I.

Note that a covariance function is locally stationary if and only if it is PLS and R; is a
stationary covariance function.

2.3. Examples

A large class of LS covariances can be constructed by multiplying two covariances
Ri((x +y)/2) and Ra(x — y). Covariances of the form R;((x + y)/2) were studied by
Loeve (1946) who called them exponentially convex covariances. However, the product
Ri((x + y)/2)R2(x — y) can be a covariance without R{((x + y)/2) being a covariance
function. The following two examples given by Silverman (1957) are LS covariances which
are not the product of two covariances. The first example is

2, .2 x+y\° (x — y)?
c(x,y) =exp[—a(x” + y“)] = exp| —2a > exp —a—2— , a > 0,

where the first factor in the right-hand side is a positive function without being a covariance,
and the second factor is a covariance. Secondly, with the positive-definite delta covariance
8(x — y), which is equal to 1 if x = y and 0 otherwise, the product

+y

X
c(x,y) =R1( )6(x—.v)
is an LS covariance provided that R; is any nonnegative function, not necessarily a covariance.
A process with such a covariance is called a locally stationary white noise.
If R, reduces to the constant 1, (4) reduces to the exponentially convex covariance

c(x.y) = R1<x ;y) (10)

From (10) we get that R;((x + ¥)/2) = c((x + y)/2, (x + y)/2) > 0. Actually, as noted by
Loeve, any two-sided Laplace transform of a nonnegative function is an exponentially convex
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covariance. For instance, the two-sided Laplace transform of the standard normal density yields
the following exponentially convex covariance:

2
Ri(x,y) = CXP(@)-

Conversely, Loeve noted that any continuous exponentially convex covariance can be repre-
sented as the two-sided Laplace transform of a nonnegative function in the absolutely contin-
uous case. Ehm et al. (2003) established a bijection between exponentially convex functions
and entire positive-definite functions. As an application, they derived parametric models of
exponentially convex and locally stationary covariances.

Under smoothness assumptions, another characterization can be given by the following
lemma for which the proof can be omitted due to its simplicity.

Lemma 2. Let c(x, y) be a covariance function which is differentiable. Then c(x, y) is an
exponentially convex covariance, i.e. satisfies (10), if and only if the following holds for all

(x,y): 10 0,1
1O, y) = cOD(x, y).

Finally, we give an example of a covariance which is PLS but not LS. Consider the covariance
c(x,y) = exp(x’ +y* +xy - 3), (11)
which is PLS by Corollary 1. Indeed, this covariance is of the form (4) with

Ri(u) = exp(Bu® — 3),

)
Ry(v) = exp(z—).

Since R, is not positive definite, it is not a stationary covariance function, so that (11) is not an
LS covariance, but only PLSR.

3. Locally stationary reducibility

In this section we characterize covariance functions that can be reduced to local stationarity
via a bijective deformation of the time index, i.e. covariance functions of the form (5).

3.1. Main resulit

We consider the following assumption on the deformation g.

Assumption 3. The deformation g is continuous and twice differentiable in T as is its inverse
-1
g~ ing(T).

We assume that Assumptions 1 and 2 hold for r. Since g is a bijection, it is either increasing
or decreasing. Remarking that g increasing is equivalent to —g decreasing, we can restrict
to g increasing without loss of generality. Moreover, note that if (g, Ry, Ry) is a solution
of (5), then, for any ﬁ €eR a >0 and A > 0, (g, R1, R2) is a solution as well, where

g(x) =agx)+ 8, Rl(u) = AR ((u — B)/a), and Rz(v) Rr(v/a)/A. Thus, without loss
of generality, in addition to Condition 1, we may impose in the sequel the following restriction.

Condition 2. We have g(xg) = 0 and gV (xo) = 1.
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Here, g is the first derivative of g. Consequently, when the nonstationary covariance
r satisfying (5) and the deformation g are given, the power schedule R| and the stationary
covariance function R; are uniquely determined by

Ri(w) =r(g” ' (w), g '), (12)

iV 4 v
Ry(v)=r|g §+X0 8 ~3 +x0))- (13)

It follows from Assumptions 2 and 3 that R; and R are continuous and differentiable except
maybe at the origin. Before giving the necessary and sufficient condition for locally stationary
reducibility via bijective deformation we give the following lemma.

Lemma 3. Let Assumptions 1-3 hold. A covariance function r is PLSR, i.e. satisfies (5), if and

only if the following holds for x # y up to a countable set of points in T? such that r(x, y) # 0:
@) (In |r(x, DAY + 300 ) n [r(x, y)p*O

= &(y)(In |r(x, YD + $&D ) An | x, y)HY, (14)

] 2
b= (m) |

Proof. Wesetc(u,v) =r(g ' (u), g~ (v)). Thus, r satisfies (5) if and only if ¢ satisfies (4).
It follows from Theorem 1 that r satisfies (5) if and only if, for # # v up to a countable set of
points in (g(T))2 such that c(u, v) # 0,

where

@O (u, v) = D, v)cw, v) = €W, v) — OV, V) (O, v) + OV, v)),

with
(LO)(,—1 -1
(1,0) _r(gT (), g7 (v)
e T %)
O, ,—1 -1
©,1) (g (u), g (v)
PRI
20y = PV W, g7 ) O W), g g e W)
’ (8D (g~ W)’ (e (g~ @)} ’
NP C R O 3O B s G O S O) S CAN )
T @D Tw)? @M1 ))? ’

where g is the second derivative of g. We set x = g~ (1) and y = g~ ' (v) to obtain that r
satisfies (5) if and only if

1

g (x)
(gD (x))?

(gD (x))3
g2
(gM )3

00, yre,y) = M0, y)?) - r 0 e y)

O (x, yyr(x,y) = rOVx, yn?) — rOV o vyirix, v).

@2

We multiply this equation by 1/(r(x, y))? and set ®(x) = (1/g'"(x))? to conclude.
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We set

r(xg,xo) = lim r(x,x0) and r(xy,xp) = lim r(x,xo).
x\uXo x /X0

The following theorem is our main result.

Theorem 2. Let Assumptions 1-3 hold. A covariance function r is PLSR, i.e. satisfies (5),
if and only if the following holds for x # y up to a countable set of points in T? such that
rx,y) #0:

®(x)(n|r(x, y)|)(2’0) + %‘b(l)(x)(ln Ir(x, y)l)(l,O)
= @()n[r(x, HD*? + ;OO nlr(x, HDOY,

with
((In |7 (xg, x)DTM)2 + k(x, 6) x> %0,
((In |7 (x, x0)|)(1:0))2
d(x) = (15)
((n |r(xg , x0)) )2 + k(x, 6) "
({n | (x, x0) )02 yr =
where

k(x,0) =2 f x(ln Ir (s, x0)) " ((In |r (s, x0)) @2 — 6(In |r (s, x0)) O V) ds (16)
X0

and 6 is the solution of the equation

1 \®
(Ge) | =
@)/ Ly

The triplet (g, R, Ry) in (5) is uniquely determined with g given by

X 1
) = / NCIoR an

and Ry and R, given by (12) and (13). Moreover, if Ry is a stationary covariance function,
then r is LSR.

Proof. In (14), we set y = xg so that, for x # xg, we get the following inhomogeneous
second-order differential equation with respect to &:

@ (x)(In |r(x, x) )@ + LoD ) (n |7 (x, x) )
= & (x0)(In [r(x, x0))*? + L&D (xo)(In | (x, x0) OV,

with ®(x) = (1/gV(x))2. Under Condition 2, we then have ®(xp) = 1 and ®V (x¢) = —29,
where 6 denotes the second derivative of g at xg. Solving this inhomogeneous differential
equation is standard and can be carried out with the variation of the constants method (see for
instance Collatz (1986, pp. 13—-17)). Using this method leads directly to the solution given
by (15), and the rest of the proof follows directly.
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3.2. An illustrative example

We now illustrate with an example the constructive feature of Theorem 2. In a first step,
we construct a non-LS covariance function r via a time deformation g satisfying Assumption 3
and an LS covariance function ¢ such that r satisfies Assumptions 1 and 2. In a second step, we
show the reverse process of recovering the transformation g from r, as well as the LS covariance
function c.

(i) We consider an LS random process ¥ = {Y (), u € R*} with covariance function

(u + v)?

c(u,v) = exp( )exp(—lu —v)),

and the transformation g : Rt — R defined by
g(x) =In(1 + x),
for which Assumption 3 holds. Starting from c and g, we get

(In(1 + x) + In(1 + y))?
2

rix,y) = exp( )exp(—l In(1 + x) — In(1 + y))).
It is easy to check that Assumptions 1 and 2 are satisfied. In addition, Conditions 1 and 2 are
fulfilled with xo = 0.

(ii) Conversely, we want to recover the transformation g and the LS covariance ¢ satisfying
r(x,y) = c(g(x), g(y)) from the non-LS covariance function r. We suppose that x > y.

To start, we compute the first derivatives of In(|r (x, y)|) = In(r(x, y)) as well as its second
derivative with respect to y:

(In(jr(x, »HTO = In(1 +x) +1In(1+y) —1

L]

1+x
amewm@U:m“+ﬂTfS+w+1,
In(1 +x) +In(1 + y)
©02) _ _
(In(|r (x, Y)])) _ s

From this we can deduce the individual terms in (15) and (16):

(n(jr 0%, 0) )"0 = —1,

In(1 +x) — 1
1+ x

(n(r(x, 0HOD =1 +x) + 1,

(n(|r(x, 0))©? = —In(1 + x).

k)

(In(|r(x, 0) )" =

Then, using the fact that, for any p € N*, ((In(1 + x))PTh /(p + 1) is a primitive function
of (In(1 + x))? /(1 + x), we compute the function ® in (15):

(14+0%(1 +201In(1 +x) + (In(1 +x))? — 3(1 + 8)(In(1 + x))3)

®) = (n(l +x) — )2
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Now we compute the derivative of 1/® at O:

1 4y
( ) ] _ _4-.
|: CI)(X) x=0

Solving the equation —4 — 26 = 26 leads to # = —1. Setting & = —1 in (17), we obtain

_ [ (In(1 + 5) — 1)2 e
g(x)_/o \/(1+s)2(ln(1+s)—1)2ds_/(; [y &=+

Finally, c is given by (12) and (13).
For x < y, the same computations hold.

4. Two examples of LSR processes
In this section we present two illustrative examples of covariances which are LSR.

4.1. A general example

Consider an LSR process Z = {Z(x), x € T < R}. By definition, its covariance function
r is of the form (5). A general example of such a process can be obtained by taking Z as
the product of two independent and centred processes £ and ¢: Z(x) = &(x)¢(x), where &
is exponentially convex reducible with covariance ri(x, y) = R1((g(x) + g(»))/2) and ¢ is
stationary reducible (see Section 5 for a definition) with covariance r2(x, y) = Ra(g(x)—g(y)).
Indeed,

r(x,y) = cov(Z(x), Z(y))
= cov(§(x)¢(x), EML ()
=EE@WEM) EC(x)¢ ()

- Rl(%g—(y—))lez(g(x) —50)).

4.2. Fractional Brownian metion

Consider a nondegenerate fractional Brownian motion, i.e. a self-similar process where
H €10, 1] is the Hurst coefficient. Its covariance is given by the following expression for all
x>0andy > O
x2H + yZH —|x= y|2H

2

rix,y) = (18)

Forallx >0and y > 0,

x2H 4+ y2H —|x = y|2H
2xHyH

r(x,y) =x"yH

We know from Perrin and Senoussi (1999) that (x2# + y2H — |x — y|2H )/ 2xH yH is stationary
reducible, i.e. )
H 2H 2H
x4y —x -yl
oxfyH = Ry(g(x) — g(y)),

where g(x) = In(x) and Ry(v) = cosh(Hv) — 22#~1(sinh(|v|/2))?¥. Thus

rix,y) =x"HyH Ry(g(x) — g(»)
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with x”y” = exp(2H (In(x) + In(y))/2). Therefore, r is LSR because, for all x > 0 and
y > 0, we can write

g(x) + gy

r(x,,V)=R1( 5

)Rz(g(x) —g),
with Rj(u) = exp(2Hu) and R, and g as given previously. For x = O or y = 0, we set
r(x, y) = 0 to complete the definition (18).

5. Exponentially convex reducibility

We characterize the nonstationary covariances r that can be reduced to exponentially convex
ones via a bijective deformation #, i.e.

h(x) + h(y)
r(x,y>=R1(———2—y—). (19)
where h satisfies Condition 2. The equation (19) is equivalent to (5) when R; reduces to the
constant 1. Following the characterization of stationary reducible covariances by Perrin and
Senoussi (1999, Theorem 2.1), we directly obtain the following characterization of exponen-

tially convex reducible (ECR) covariances.

Theorem 3. Let r be a continuous and differentiable covariance function in T? such that
rBO(x, x0)/r®V(x, xo) is locally Lebesgue integrable in T, and let h be a bijective deforma-
tion of the time index T such that both h and its inverse are continuous and differentiable in T
and h(T) respectively. The covariance r is ECR, i.e. satisfies (19), if and only if the following
holds almost everywhere for all (x, v) € T?:

(1.0) (1,0)
(1,0) r (y, xo0) 0 r (x, x0) _
r ('x? y)r(OI)(y,xo) r (-xay)r(().l)(x’x()) - (20)
Moreover, the pair (h, R1) in (19) is uniquely determined by
x ,.(1,0)
h(x) = / 5#@ dy and Ri(u) = rixo, k=" Qu)). Q1)
X0 r( ! )(y’x())

Proof. This is similar to the proof given for Theorem 2.1 of Perrin and Senoussi (1999).
Note that the only difference with the latter is the factor % in the definition of Ry, as well as a
change of sign in (20) and (21).

An example of ECR covariances is given by separable covariances of the form
r(x,y)=Cx)C(y) (22)

forall (x, y) € T2, where C is a strictly positive function which is continuous and differentiable
in T as is its inverse in C(7T'). Indeed, (22) is equivalent to

21n(C(x)) + ln(C(y))>

3
> (23)

o=

and thus is of the form (19) with R («) = exp(2u) and h(x) = In(C(x)). Note that, if C(x) =0
for at most a countable set of points A € T, then (23) remains true for (x, y) € (T\A) x(T\ A),
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and we set r(x,y) =0 whenx € A or y € A to complete the definition (22). When C takes
negative values we may deal with |r(x, y)|. Finally, using the fact that, if r is a covariance
function, then exp(r) is also a covariance function (see for instance Cristianini and Shawe-
Taylor (2000)), models of the form

r(x,y) = exp(C(x)C(y))

for all (x,y) € T2, with C satisfying the same assumptions as in (22), are also of the form
(19) with Ry (u) = exp(exp(2u)) and h(x) = In(C(x)). We therefore have the two following
results.

Corollary 2. Any separable covariance of the form (22) is ECR.
Corollary 3. The exponential of any separable covariance of the form (22) is ECR.

We now give three explicit examples of the type (22). Our first explicit example, again with
T = R™, is given by the covariance function

1 1 1
T+x24+y24+x2y2  1+x21 4y

rix,y) = (24)

so that C(x) = 1/(1 + x%) > 0. Thus,

In(C(x)) + ln(C(y))) ( In(1 + x%) + In(1 + yz))
2 =exp| -2 )

r(x,y)= eXP( 2 5

which means that (24) is of the form (19) with R;(u) = exp(—2u) and A(x) = In(1 + x2). Our
second explicit example, with T = R, is given by the covariance function

rx, y) = exp2 4+ x2 + y%) = exp(1 + x2) exp(1 + y?), (25)

so that C(x) = exp(l + x2) > 0. Thus,

In(C(x)) + ln(C(y))) ( I+x)+0+ y2))
2 > =exp| 2 5 ,

rx,y) = exp(

which means that (25) is of the form (19) with Ry (u) = exp(2u) and A(x) = 1 + x2. Finally,
our last example is given by the covariance (3) with 7 = R. Obviously, this covariance is
exponentially stationary reducible with Ry(u) = exp(—2u) and h(x) = x3.

6. Conclusion

In this paper, we have characterized nonstationary stochastic processes that can be reduced
to local stationarity via a bijective deformation of the time index, and we gave the form of
this deformation under smoothness assumptions. It is then natural to ask how to estimate this
time deformation from data. In the case of stationary reducibility, several suggestions can be
found in the literature, e.g. based on multidimensional scaling (Sampson and Guttorp (1992)),
on radial basis deformation (Perrin and Monestiez (1999)), and on simulated annealing (Iovleff
and Perrin (2004)). Research is currently underway on extensions of these techniques to locally
stationary reducibility.
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An important advantage of PLS and LS covariance functions is that they are separable.
Therefore, the full covariance matrix can be written as a Hadamard product of two matrices, one
in the coordinates u = (g(x) + g(y))/2 and the other in the coordinates v = g(x) — g(y). This
is especially useful in reducing computational burden when dealing with very large datasets.
Indeed, the memory requirement for the computation of the full covariance matrix for a sample
of size n is reduced from n(n + 1)/2 to 2n — 1 for R and to n for R;. Further computational
savings can be obtained if R; is compactly supported; see Genton (2001).

There are also two natural extensions of the LS model (4) and its reducibility model (5). The
first generalization deals with nonstationary covariances that are constant not only on the main
diagonal and antidiagonal, but also on certain lines, such as

p
c(x,y) = Ro(x — y) [ | Ritaix + biy), (26)

i=1

where Ry is a stationary covariance and a;, b; € R. We say that covariances of the form (26)
are multilocally stationary. A second generalization deals of course with spatial and spatio-
temporal data. In this case, the coordinates x and y in the model (4) are spatial and spatio-
temporal respectively. Several different models can then be considered depending on the
isotropy or anisotropy of the underlying process. Characterization and estimation of spatial
deformations that reduce a nonstationary process to stationarity are currently the subject of
extensive investigations because of their important application to environmental sciences. The
same is also true for locally stationary reducibility and exponentially convex reducibility since
they provide simple and intuitive departures from stationarity.
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