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Abstract. In this article, skew-elliptical time series are defined in order to account 
for both skewness and kurtosis, with particular emphasis on the skew-normal and skew-t 
distributions. The bivariate skew-t distribution is then used to describe a 63 year time 
series of hourly sea levels measured at Charlottetown, Atlantic Canada. It is shown 
that the skew-t fits the data better than the normal distribution and it can be used 
to recover return periods of extreme levels based on a standard analysis of 63 annual 
maxima. Preliminary results are presented to show how the skew-t distribution may 
be used to estimate changes in flooding risk resulting from changes in sea level rise, 
storminess, and other climatic factors. 
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1. Introduction. This article presents time series modeling with a 
class of continuous multivariate distributions that can simultaneously ac­
count for both skewness and heavy tails. To date, most time series modeling 
has focused on symmetric distributions, with particular emphasis on the 
normal distribution. Nevertheless, there are many natural phenomena that 
do not follow the normal law including the example discussed in this pa­
per: the nontidal changes in sea level caused by variations in air pressure 
and wind acting at the surface of the ocean. Non-normal distributions are 
needed to model such phenomena and departures from normality can be 
achieved by varying both the skewness and kurtosis in the distribution. For 
this purpose, two main approaches are available. 

The first approach consists of modifying a random variable, and thus 
also its quantiles, through an appropriate transformation. It was suggested 
by John W. Tukey in 1977 and discussed by Hoaglin et al. (1985) in the 
univariate setting. Basically, a standard normal random variable Z is trans­
formed to Y = Tg,h(Z), where: 

(1.1) 

The resulting random variable Y is said to have a g-and-h distribution, 
where 9 is a real constant controlling the skewness and h is a nonnega­
tive real constant controlling the kurtosis, or elongation. The quantiles of 
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Y = Tg,h(Z) can easily be computed since Tg,h increases monotonically in Z 
and is therefore a bijective transformation. Thus, the p-th quantile of the 
distribution of Y is simply Tg,h(Zp) where zp is the p-th quantile ofthe stan­
dard normal distribution. The estimation of the parameters 9 and h from 
data is carried out by computing and fitting empirical quantiles. However, 
the generalization to the multivariate setting is not straightforward, mainly 
because multivariate quantiles need to be defined appropriately. Research 
is currently underway on this topic. 

The second approach consists of modifying the probability density of 
a random variable instead of the random variable itself. This approach 
was first developed by Azzalini (1985) for the univariate normal distribu­
tion and by Azzalini and Dalla Valle (1996) for the multivariate normal 
distribution, yielding the so-called skew-normal distribution. Extensions 
to skew-elliptical distributions were proposed by Azzalini and Capitanio 
(1999), Branco and Dey (2001), Sahu et al. (2003), and include for in­
stance skew-t and skew-Cauchy distributions. All these distributions are 
particular types of generalized skew-elliptical distributions recently intro­
duced by Genton and Loperfido (2002), i.e. they are defined as the product 
of a multivariate elliptical density 9 with a skewing function 7r: 

where e E lRn and n E lRnxn are location and scale parameters respectively, 
o ::; 7r( x) ::; 1, and 7r( -x) = 1 - 7r( x). The skew-elliptical distributions are 
attractive because their properties are very similar to those of the normal 
distribution, and include the normal distribution as a particular case. 

In this paper we will provide a practical application of the skew­
elliptical distribution (1.2) by modeling the distribution of a long time 
series of sea level and then using the distribution to predict changes in 
flooding risk associated with rising sea level. It will be shown that the 
skew-t distribution leads to an effective and parsimonious description of 
the sea level process and can be used to take into account its strong sea­
sonality and other forms of nonstationarity. 

The paper is structured as follows. In Section 2, we define skew­
elliptical random processes and describe in detail the skew-normal and 
skew-t distributions. Section 3 presents the sea level analysis and conclu­
sions are presented in Section 4. 

2. Skew-elliptical distributions and stochastic processes. We 
say that a stochastic process {Xt, t E T} is a skew-elliptical time series 
if and only if its distribution functions are all multivariate skew-elliptical. 
In particular, Gaussian times series are skew-elliptical time series. Skew­
elliptical time series are very flexible and allow us to model a wide variety 
of natural phenomena. In this section we focus on two simple examples, 
namely skew-normal time series and skew-t time series. 
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2.1. Skew-normal time series. A skew-normal time series is a skew­
elliptical time series defined by the multivariate pdf (1.2) where 9 is a 
multivariate normal pdf cPn with correlation matrix nand 1f is the standard 
normal univariate cdf <I>, i.e. 

(2.1) 

The parameter Q E ]Rn controls the skewness and Q = 0 reduces to the 
multivariate normal case. A random vector x E]Rn with pdf given by (2.1) 
is said to be multivariate skew-normal and was first introduced by Azzalini 
and Dalla Valle (1996). Its first two moments are given by 

(2.2) 

(2.3) 

where 

(2.4) 

Note that both the expectation and the variance of x depend on the skew­
ness parameter Q (or equivalently 6). In order to describe a stationary 
skew-normal time series with constant mean, we require that e = ~In and 
8 = 81n , where In = (1 .. . 1)T E ]Rn. Figure 1 depicts the contours ofthe 
pdf (2.1) for n = 2, e = (O,O)T, n the correlation matrix with correlation 
0.5, with Q = (O,O)T (left panel) and Q = (2,2)T (right panel). Note that 
the left panel corresponds to the bivariate standard normal distribution 
with correlation 0.5. 

It is rather straightforward to simulate realizations of skew-normal 
time series. Indeed, Azzalini and Capitanio (1999) showed that if 

n* = 0 6~) 
where Zo is a scalar component, n* is a correlation matrix, then 

X= {z 
-z 

if Zo > 0, 

otherwise, 

has a skew-normal distribution with parameters e = 0, n, and Q, where 

The multivariate skew-normal distribution enjoys many pleasant proper­
ties. For instance, marginal distributions of a multivariate skew-normal 
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FIG. 1. Contours of the multivariate skew-normal pdf (2.1) for n = 2, ~ = (0, O)T, 
n the correlation matrix with correlation 0.5, with a = (O,O)T (top panel) and a = 
(2,2)T (bottom panel). 

distribution are still skew-normal. Further properties and applications of 
skew-normal distributions can be found in Azzalini and Dalla Valle (1996), 
Azzalini and Capitanio (1999), and Genton et al. (2001). One drawback 
of skew-normal time series is that only skewness is accounted for, and not 
kurtosis. The next section deals with this issue. 
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2.2. Skew-t time series. A skew-t time series is a skew-elliptical 
time series defined with the multivariate pdf (1.2) where g is a multivariate 
t pdf tn with correlation matrix nand 7r is the standard t univariate cdf 
T, i.e. 

(2.5) 

where 

(2.6) 

The parameter a E ]Rn controls the skewness and a = 0 reduces to the 
multivariate t case. The parameter v controls the kurtosis and v = 1 
reduces to the multivariate skew-Cauchy distribution, whereas v ---' 00 

reduces to the multivariate skew-normal distribution. The multivariate 
skew-t distribution was introduced by Branco and Dey (2001) and its first 
two moments are given by 

(2.7) E(x) = t: + r((v - 1)/2) ~o if v> 1, 
~ r(v/2) V -; , 

(2.8) Var(x) = _v_n _ (r((v _1)/2))2 ~OOT, if v> 2, 
v - 2 r(v/2) 7r 

where 

(2.9) 

Note that both the expectation and the variance of x depend on the skew­
ness parameter a (or equivalently 0). In order to describe a stationary 
skew-t time series with constant mean, we require that e = ~In and 
8 = 61n , where In = (1 ... If E ]Rn. Here again, the marginal distri­
butions of a multivariate skew-t distribution are still skew-t, see Branco 
and Dey (2001). 

3. Modeling the distribution of sea level. To illustrate the use­
fulness of multivariate skew-t time series we will now model variations in 
sea level recorded at Charlottetown, a coastal city on the south shore of 
Prince Edward Island in the Gulf of St Lawrence (the tide gauge is located 
at 46.23°N, 63.12° W). Charlottetown was chosen for two reasons. First, it 
is a low-lying coastal city and so there is considerable interest in the pos­
sible effect of climate change on flooding risk. Second, Charlottetown has 
one of the longest sea level records in Canada and this has allowed us to 
examine the usefulness of the multivariate skew-t distribution in modeling 
both seasonality and other forms of nonstationarity. 
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FIG. 2. Annual means and annual maxima of Charlottetown hourly sea levels, 1938 
to 2000 inclusive. The levels are specified with respect to local Chart Datum. 

3.1. Annual means, annual maxima, and residuals. The annual 
means of sea level at Charlottetown have been increasing almost linearly 
at a rate of about 3 mm per year from 1938 to the present day (Figure 2, 
lower trace). This linear trend is due in part to a rise in global sea level of 
about 1 mm per year; the remainder is believed to be due to subsidence of 
the Earth's crust in this region. 

The annual maxima of the hourly sea levels are, not surprisingly, more 
variable than the annual means (Figure 2, upper trace). Variations in the 
annual maxima can exceed 1 m (compare the maxima for 1999 and 2000). 
From Figure 3 we can conclude that the distribution of the annual maxima 
for each half of the record are reasonably consistent with a Type I extreme 
value distribution, i.e. with a cdf of the form exp( - exp( - (y -(X) / f3)) where 
(X and f3 are location and scale parameters (see for example Leadbetter et 
al., 1982). From Figure 3 it can also be seen that the probability of an 
annual maximum not exceeding a specified level is higher for the first half of 
the record, pointing to an increase in the annual maxima in recent decades. 

Note the 1.5 m offset of the two traces in Figure 2. A significant part 
of this difference between annual means and annual maxima is due to the 
tide, the dominant component of sea level variability at Charlottetown. 
The decomposition of sea level into its tidal and aperiodic component is 
illustrated in Figure 4 for the latter part of January, 2000. During this 
period an intense storm piled up water in the southern Gulf of St Lawrence 
and caused extensive flooding of downtown Charlottetown. In fact this 
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FIG. 3. Extreme value (Type J) probability plots based on the annual maxima of 
Charlottetown hourly sea levels. The top and bottom panels are for the first and last 
halves of the record respectively. The straight lines are the maximum likelihood fits. 

storm caused the highest sea level observed at Charlottetown between 1938 
and 2000 (compare Figures 2 and 4). 

The tidal component of sea level is forced by the gravitational pull 
of the sun and moon and, for the purposes of this study, can be treated 
as deterministic. The difference between the observed sea level and the 
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FIG. 4. Decomposition of sea level into tidal and residual components. The solid 
line with dots shows the observed hourly sea level variation at Charlottetown from 20 
to 23 January, 2000. The dotted line is the predicted tide. The difference between the 
observed sea level and predicted tide is termed the residual. It is shown by the solid line 
that fluctuates about zero. 

tide is caused by oceanographic and meteorological factors and is usually 
called the "residual" (i.e. the part that remains after the predicted tide is 
subtracted from the observed level). The most important cause of resid­
ual variability at Charlottetown is the passage of intense storms and the 
associated variations in air pressure and wind. It should therefore not be 
surprising to learn that the residuals exhibit strong seasonal dependence 
with the largest residuals occurring in winter (Figure 5). 

In this study we have treated the residuals as stochastic and modeled 
their bivariate distribution with a bivariate skew-t distribution. From the 
fitted bivariate skew-t distribution we were then able to estimate flooding 
risk as explained in the following section. 

Before fitting the bivariate skew-t distribution to the residuals the sea 
level record was split into two equal halves (1938-1968, 1970-2000 inclu­
sive) and the residuals were stratified by calendar month. This allowed us 
to model secular and seasonal changes in the residual distribution. Twelve 
bivariate skew-t distributions were then fit to pairs of adjacent hourly resid­
uals from each half of the record: one for January, one for February and so 
on through to December. 

The method of maximum likelihood was used to fit the bivariate 
skew-t distribution to pairs of adjacent residuals. Let Xt = (Xt, Xt+d T de­
note a residual pair starting at time t. To reduce the dependence amongst 
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FIG. 5. Variations in the hourly sea level residuals for the last 5 years of the 
Charlottetown record. Note the strong seasonality in the record with the largest residuals 
always occurring in winter. The ticks mark the first day of January for each year. 

pairs, they were subsampled every T hours and the following likelihood 
function, which assumes independence, was maximized with respect to ~, 
nu , n12 /n U , v and a: 

where h2(X) is the bivariate skew-t distribution (2.5). It is possible to ob­
tain another T -1 estimates by starting the subsampling at times 2 through 
T. Using the fact that maximum likelihood estimators are asymptotically 
unbiased we averaged the T estimates to provide a more reliable estimate 
of the 5 parameters. 

Table 1 summarizes the statistics of residual variability and the esti­
mated parameters of the bivariate skew-t distribution for the second half 
of the record. (We assumed a subsampling rate of T = 24 hours which is 
reasonable given the strength of serial correlation in the residual record.) 
We see that the sample standard deviation (8) exhibits a pronounced sea­
sonal variation with winter values that are more than double the summer 
values. This is consistent with Figure 5. The autocorrelations at lag 1, 
P(1), are close to unity but slightly smaller in summer. If the residual pro­
cess is AR(I) the e-folding time in February is - [log(O.97)r 1 = 32 hours; 
in August the e-folding time is = [log(O.94)r 1 = 16 hours. This means 
the residual process has a shorter "memory" in summer and this is another 
aspect of the seasonality of the process. The kurtosis indicates heavier tails 
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TABLE 1 
Statistics of residual variability and the estimated parameters of the bivariate skew­

t distribution for the period 1970 to 2000. The first column gives the month of the year 
for which the residuals were analyzed. The next four columns give the sample standard 
deviation, autocorrelation at a lag oj 1 hour, kurtosis (ku) and skewness (sk) calculated 
directly from the residuals. The remaining 5 columns list the estimated parameters of 
the bivariate skew-t distribution as defined in the text. 

I Month I s ,0(1) ku 

1 0.23 0.96 4.9 0.13 0.005 0.19 0.97 6.2 0.01 

2 0.21 0.97 4.1 0.15 -0.036 0.18 0.97 7.5 0.38 

3 0.20 0.97 4.4 0.29 -0.015 0.17 0.97 7.2 0.29 

4 0.15 0.96 4.3 0.49 -0.046 0.13 0.97 6.6 2.03 

5 0.11 0.95 3.9 0.25 -0.056 0.11 0.96 9.9 2.11 

6 0.10 0.95 4.0 0.33 -0.035 0.10 0.96 9.6 2.26 

7 0.09 0.95 3.6 0.32 -0.039 0.10 0.96 11.8 3.67 

8 0.10 0.94 3.6 0.36 -0.056 0.10 0.96 10.4 3.91 

9 0.13 0.95 4.4 0.37 -0.032 0.11 0.96 7.5 1.45 

10 0.16 0.96 5.4 0.41 -0.033 0.13 0.96 5.8 0.79 

11 0.18 0.96 4.2 0.30 -0.024 0.16 0.97 6.9 0.60 

12 0.23 0.96 4.8 0.13 -0.010 0.19 0.97 5.4 0.14 

than the normal, with lightest tails in summer, and the skewness is pos­
itive throughout the year. For the estimated parameters of the bivariate 
skew-t distribution, we see that estimates of lJ and a tend to be highest in 
summer. 

Typical probability plots are shown in Figure 6. It is clear that the 
skew-t distribution fits the residual histograms better than the normal dis­
tribution. Of particular note is the ability of the skew-t distribution to 
describe the heavy tails of the January residual histogram. Similar fits 
were found for the other 11 months. Figure 7 shows probability density 
contours for the bivariate normal and skew-t distributions fit to the resid­
uals from April, 1970 to 2000. This figure clearly shows the ability of the 
skew-t distribution to model the positive skewness evident in the residuals. 

3.2. Flooding risk. The extreme value probability plot shown in Fig­
ure 3 gives some indication of flooding risk. For example, the probability 
an annual maximum will not exceed the critical level 'TIc = 3.8 m is esti­
mated to be 0.957 (corresponding to a "return time" of 1/ (1- 0.957) = 23.2 
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FIG. 6. Probability plots for the January residuals, 1970 to 2000 inclusive. The 
top-hand panel is based on the normal distribution and the bottom-hand panel is based 
on the skew-t distribution. 

years). Assuming the annual maxima are independent, the probability that 
no hourly sea level will exceed TJc over a 31 year period (the time span of 
1970 to 2000) is 0.95731 = 0.256. 

To show how the skew-t distributions can be used to calculate flood­
ing probabilities, such as those described in the preceding paragraph, we 
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expand as follows the probability that all hourly sea levels between hour 
1 and n are less than a specified critical level TJe: 

(3.1) PI2 ... n = PI P211 P312,1 ... Pn~lln~2, .. ,1 Pnln~I, ... ,1 

where Ptlt~l,t~2, ... ,1 is the probability the sea level is below TJe at time t 
given it was below for the earlier times t - 1 through 1. To simplify (3.1) 
we assume that for large values of TJe it is only necessary to condition on 
the preceding M hours. This leads to the approximation 

(3.2) ~ (M) (M) (M) (M) (M) 
PI2 ... n ~ PI P2 P3 ... Pn~1 Pn 

(M) 
where Pt = Ptlt~l,t~2, ... ,t~M· 

To evaluate p~M) we write the sea level at hour t as follows: 

T R 
TJt = TJt + TJt 

where superscript T and R denote the tidal and residual components re­
spectively. The event TJt < TJe is equivalent to TJf < TJe - r/{ i.e. the residual 
at time t is not large enough to "jump the gap" between the predicted tide 
and the critical level. Thus p~M) can be expressed in terms of conditional 
probabilities involving TJ;; which, in turn, can be estimated by fitting an 
M + 1 dimensional skew-t distribution to the observed residuals. This has 
been done for the case M = 1 (i.e. conditioning on the previous sea level) 
after stratifying the residuals by month to allow for seasonality as explained 
earlier. It was then a straight forward calculation to compound the condi­
tional probabilities according to (3.2) and estimate the probability the sea 
level would not exceed TJe. 

The result of a typical calculation of P12 ... n using the skew-t and taking 
TJe = 3.8 m is shown in Figure 8. The small steps in the trace correspond 
to the seasonal transitions from summer to winter when the residuals tend 
to be larger and the probability of an exceedance of TJe is greatest. (This is 
consistent with the seasonal variation in variance shown in Table 1.) The 
probability TJe will not have been exceeded during this 31 year period is 
0.126 according to Figure 8. This is equal to the probability that all annual 
maximum over this 31 year period are below TJe = 3.8 m. If we assume the 
annual maxima are independent, and denote by P the probability that an 
annual maximum is below TJe, it follows that p3I = 0.126. This implies 
p = 0.1261/ 31 = 0.934. This calculation allows us to take the probabilities 
calculated using (3.2) and plot them on the extreme value probability plot 
of the annual maxima. This has been done in Figure 9 for TJe increasing from 
3.40 m to 4.25 m in steps of 0.05 m. The agreement between return periods 
calculated by the two approaches is encouraging and suggests we may be 
able to use the skew-t distribution and conditional probability approach to 
calculate flooding risks in a strongly nonstationary setting (e.g. changing 
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FIG. 8. Probability that sea level will not exceed rye = 3.8 m as a function of 
time starting January 1, 1970. The trace was obtained by compounding conditional 
probabilities calculated from the skew-t distributions fit to the residuals from 1970 to 
2000. See text for details. 

the mean, or perhaps slowly increasing the standard deviation of the skew­
t distribution through time to reflect changes in storminess under various 
climate change scenarios). 

To conclude this section we present in Figure 10 a calculation showing 
the probability of Charlottetown sea level not exceeding 'T)c = 4.5 m over the 
next 100 years. The predicted tides for this period were calculated in the 
standard way and the seasonally stratified, bivariate skew-t distributions 
based on 1970-2000 residuals were used to calculate p?). To gauge the effect 
of rising sea level on flooding risk we added two linear sea level trends to 
the predicted tide with different slopes: 3 mm per year is the present value 
and 7 mm per year is the value proposed by the International Panel on 
Climate Change as a plausible rate for the coming century. Superimposed 
on the gradual drop and seasonal steps in probability can be seen a small 
oscillation with a period of about 20 years. This is due to the nodal tide 
which is forced by moon's gravitational pull; it has an amplitude of several 
centimeters and a period of 18.6 years. The effect of the increased rate of 
sea level rise on flooding risk is clearly evident in Figure 10: the probability 
of at least one exceedance of 4.5 m during the next century is about 0.3 if 
sea level continues to rise at its present rate, and about 0.8 if it increases 
to 7 mm per year. 
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FIG. 9. Extreme value probability plot based on annual maxima of hourly sea lev­
els, 1970-2000 inclusive. The line shows the probabilities calculated using the skew-t 
distribution and {3. 2} as explained in the text. 

0.9 

0.8 

0.7 

" ~ 
~ 0.6 

o 
~O.5 

~ 
:0 
~ 0.4 
e 
D. 

0.3 

0.2 

0.1 

Critical level 'I1c= 4.Sm 

- Sea level rise of 3 mm per year 
- Sea level rise of 7 mm per year 

~ooo 2020 2040 2060 
Year 

2080 

FIG. 10. Probability of not exceeding the critical level TJe = 4.5 m over the next 
century assuming a rate of sea level rise of 3 mm per year {upper trace} and 7 mm 
per year {lower trace}. The results are based on compounding conditional probabilities 
calculated from the skew-t distribution fit to the seasonally stratified residuals, 1970 to 
2000 inclusive. 



184 MARC G. GENT ON AND KEITH R. THOMPSON 

4. Conclusions. In this article, the multivariate skew-t distribution 
has been shown to fit well the distribution of residual sea level at Char­
lottetown. In particular it captured the heavy tails and skewness in the 
residuals, features not reproducible by the normal distribution. The bi­
variate skew-t distribution was used to estimate conditional probabilities 
of sea level not exceeding a given level, given it was below on the previous 
time step. By compounding these conditional probabilities it was possible 
to recover the return periods of extreme sea level calculated in the stan­
dard way using extreme value theory and observed annual maxima. This 
encouraged us to use the conditional probability approach to calculate the 
risk of flooding a specified critical level as a function of time over the next 
century. The calculated probabilities reflect the strong seasonality in the 
sea level process and also long period tidal effects. An increase in the rate 
of rise of sea level from 3 to 7 mm per year was shown to have a dramatic 
effect on flooding risk. 

The reason simple compounding of conditional probabilities can give 
reasonable return period of extreme levels is that sea level at Charlottetown 
is dominated by the tide. This means that even though the highest residuals 
in the record may not have occurred at the highest tides, which we treat at 
deterministic, the probability of this coincidence occurring can be estimated 
without extrapolating into the tails of the residual distribution. This idea 
has been used by a number of authors following the lead of Pugh and 
Vassie (1980). 

The present approach was designed specifically to quantify flooding 
risk in a strongly nonstationary setting and the preliminary results pre­
sented here are encouraging. There are however a number of issues that 
need to be addressed before the method is used for practical purposes in­
cluding, most importantly, the number of residual levels on which to condi­
tion i.e. the choice of M and its dependence on Tic in strongly nonstationary 
situations. 
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