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SUMMARY

Separable space–time covariance models are often used for modeling in environmental sciences because of their
computational benefits. Unfortunately, there are few formal statistical tests for separability. We adapt a likelihood
ratio test based on multivariate repeated measures to the spatio–temporal context. We apply this test to an
environmental monitoring data set. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Separable models are often used in spatio–temporal models or multivariate repeated-measures because

of their computational simplicity compared to non-separable models (Rodriguez-Iturbe and Mejia,

1974; Dutilleul, 1999; Huizenga et al., 2002). The definition of separability is often formulated in the

context of second-order stationary models and is given by the following (Kyriakidis and Journel,

1999):

Cðh; kÞ ¼ C1ðhÞC2ðkÞ ð1Þ

for all spatial and temporal lags h and k, respectively, where C represents the joint covariance function,

and C1 and C2 represent spatial and temporal covariance functions, respectively. With this definition,

the overall joint process can be seen as the product of two independent processes, one that occurs in

space and another that occurs in time. However, we do not observe realizations of the two separate

processes, only the joint process. In terms of the joint process, separability can be formulated as

Cðh; kÞ ¼ ð1=�2ÞCðh; 0ÞCð0; kÞ ð2Þ

where �2 ¼ Cð0; 0Þ is the variance of the process.
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However, separable processes need not be stationary, and non-separable processes may be

stationary such as those proposed by Cressie and Huang (1999) and Gneiting (2002). We use a

more general definition of separability that involves Kronecker products. Let U and V be the s-

dimensional and p-dimensional variance–covariance matrices for space and time, respectively, and let

R denote the sp by sp variance–covariance matrix of the joint-process. The covariance is separable if

and only if

R ¼ U � V ð3Þ

Note that U and V are unique only up to constant multiples since aU � ð1=aÞV ¼ U � V for a 6¼ 0.

Because the determinant and inverse of Kronecker products are computed from the determinants

and inverses of U and V, separability provides great computational convenience. For example,

inversion of the variance–covariance matrix is required for linear prediction. For the data in our

application, a non-separable covariance requires inversion of a 1586� 1586 matrix. However, a

separable covariance requires only the inversion of a 122� 122 matrix and a 13� 13 matrix.

Separability is a convenient property, but there are few formal statistical tests available. Many

applications test separability for particular classes of models such as second-order stationary spatial

autoregressive models (Shitan and Brockwell, 1995) and ‘blur-generated’ models (Brown et al., 2001).

One class of models recently proposed by Gneiting (2002) has a parameter that controls the degree of

non-separability. The function is given by

Cðh; kÞ ¼ �2

ðajkj þ 1Þ exp � ckhk
ðajkj þ 1Þ�=2

 !
ð4Þ

where a � 0, c � 0, and 0 � � � 1. This model will be referred to hence-forth as the ‘Gneiting

model’. When � ¼ 0 the model is separable, and the most extreme non-separable model occurs when

� ¼ 1. Thus, one could test separability by testing whether � ¼ 0 or not.

Cressie and Huang (1999) proposed a class of non-separable second-order stationary isotropic

models given by

Cðh; kÞ ¼ �2ðajkj þ 1Þ
ððajkj þ 1Þ2 þ b2khk2Þ3=2

ð5Þ

where a � 0 and b � 0. This model will be henceforth referred to as the ‘Cressie and Huang non-

separable model’. It is possible to form a corresponding separable model from (5) by forming

ð1=�2ÞCðh; 0ÞCð0; kÞ, which is given by

Cðh; kÞ ¼ �2

ðajkj þ 1Þ2ðb2khk2 þ 1Þ3=2
ð6Þ

This model will henceforth be referred to as the ‘Cressie and Huang separable model’. One could test

separability by testing which gives the better fit (note that both of these have the same number of

parameters).

For the Cressie and Huang and the Gneiting models, we created contour plots of the correlations for

a strongly correlated process (�ð0; 1Þ ¼ �ð1; 0Þ ¼ 0:85, where �ðkhk; jkjÞ is the correlation function)
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and a moderately correlated process (�ð1; 0Þ ¼ �ð0; 1Þ ¼ 0:5). These plots are shown in Figures 1 and
2. For the Gneiting models, we compare the separable case (� ¼ 0) to the most extreme non-separable

case (� ¼ 1).

For the Cressie and Huang models, we see for the strongly correlated processes that the non-

separable and separable models are very similar for h � 2 and k � 2. For the moderately correlated

processes, the two models are very similar for h � 1:5 and k � 1:5. However, beyond these lags the

correlations are lower than 0.2. A similar pattern occurs for both cases with the Gneiting models. So

there is not much difference for strongly correlated processes for the separable Gneiting model and the

most extreme non-separable model. The differences for the Gneiting or Cressie and Huang models

occur for larger lags or when the correlations are lower. Hence, even if a test for separability shows that

the non-separable model is better within that class of models, there may be little important difference

between the separable and non-separable models to justify the loss in computational benefits.

Furthermore, if we decide, for example, that the non-separable Cressie and Huang model is better

than the separable one, there may be a different separable model that fits better than the non-separable

Cressie and Huang model.
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Figure 1. Contour plots of Gneiting correlation models (4)
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As we see, testing separability within a class of models has its limitations. There are a few

general tests. Fuentes (2005) proposes a test of separability for spatio–temporal processes by using

properties of the spectral representation. Dutilleul (1999) tests separability in the context of

independent identically distributed (i.i.d.) multivariate repeated measures, but there are some

limitations to this application (Mitchell et al., 2004). Recently, Mitchell et al. (2004) proposed a

likelihood ratio test (LRT) for independent identically distributed (i.i.d.) multivariate repeated

measures. This test is simple to implement and does not require stationarity in time or space, but

does require the number of subjects to be greater than the product of the number of locations and

the number of times, which is not realistic for most spatio–temporal applications and will need to

be addressed (see Section 3).

First in Section 2 we discuss testing separability for multivariate repeated measures, and we give an

important theorem concerning the distribution of that test statistic. Then, in Section 3, we discuss

adapting the test to the case of one replicate. For this case type I error and power analyses are

conducted. In Section 4 we apply the test to the RiceFace data, which is an environmental monitoring

data set.
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Figure 2. Contour plots of Cressie and Huang correlation models (5), (6)
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2. TESTING SEPARABILITY: MULTIVARIATE REPEATED MEASURES

Let y1; y2; . . . ; yr be i.i.d. normal random vectors with EðykÞ ¼ m (each time–location combination

may have a different mean, but each replicate has the same mean vector) and variance–covariance

matrix R, where yk ¼ ðy11k; . . . ; y1pk; . . . ; ys1k; . . . ; yspkÞT, with s and p being the numbers of spatial

locations and time points, respectively. Let Yk be the p� smatrix such that vecðYkÞ ¼ yk, where vec is
the vectorization operator, and similarly let �YY be the corresponding matrix such that vecð�YYÞ ¼ �yy.
When the null hypothesis of separability holds, the variance–covariance can be written as U � V. The
maximum likelihood estimators for U and V satisfy (Dutilleul, 1999):

ÛU ¼ 1

pr

Xr
k¼1

ðYk � �YYÞTV̂V�1ðYk � �YYÞ

V̂V ¼ 1

sr

Xr
k¼1

ðYk � �YYÞÛU�1ðYk � �YYÞT
ð7Þ

Mitchell et al. (2004) derived negative twice the difference in the log-likelihoods as

rslogjV̂Vj þ rplogjÛUj � rlogjSj ð8Þ

where S is the usual maximum likelihood estimator of an unpatterned, symmetric, positive-definite

matrix. Mitchell et al. (2004) proved the following theorem.

Theorem 1: The distribution of the LRT statistic (8) under the null hypothesis of separability does not

depend on the true values of m, U or V.
Theorem 1 allows one to develop empirical distributions, and examples of these for various

combinations of s, p and r are given in Mitchell et al. (2004). Since the choices of m, U and V do not

affect the distribution of the statistic, one may simulate the distribution by choosing m ¼ 0, U ¼ Is
and V ¼ Ip. In other words, simply generate Nð0; 1Þ random variables, fit the mean (a mean for every

space–time combination), compute ÛU, V̂V and S and compute the LRT statistic (8). Repeat this process

a large number of times in order to develop the empirical distribution. The necessary statistics can be

computed with SAS1 PROC MIXED (SAS Institute, 2000), but we are able to compute the necessary

statistics much faster with R using Dutilleul’s algorithm (Dutilleul, 1999) for estimating ÛU and V̂V. Note
that it is required that r > sp in order for S to be positive-definite. In the next section, we discuss how

to apply this test to the case when r ¼ 1.

3. TESTING SEPARABILITY IN THE SPATIO–TEMPORAL CONTEXT

Unlike multivariate repeated measures, spatio–temporal processes typically have r ¼ 1 (a notable

exception can be found in Huizenga et al., 2002). The LRT statistic (8) in the previous section can be

adapted to the case when r ¼ 1. Let Y be the vector of all the observations with EðYÞ ¼ XB, where the
dimensions of Y, X and B are ps by 1, ps by q, and q by 1, respectively. The test can be adapted as

follows: (i) create bootstrap replicates by fitting U, V, B, and sampling from the residuals,

ðÛU � V̂VÞ�1
2ðY � XB̂BÞ, to compute the test statistic, or (ii) create pseudo-replicates from the data by

partitioning the data into approximately independent ‘chunks’. The first approach is practical for

moderately sized data sets. For example, suppose s ¼ 10 and p ¼ 10. Create 200 ‘reps’ (or some other

number above 100 ¼ 10� 10.) and compute the test statistic. Then generate an empirical distribution
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for s ¼ 10; p ¼ 10; r ¼ 200. However, this approach is limited by the somewhat arbitrary choice of r

and is not practical for larger data sets (the empirical distribution is not computationally feasible). The

second approach is practical for data sets that are rich in one dimension relative to the other, such as the

RiceFACE data (see Section 4). We now discuss this technique in more detail.

Suppose there are nine locations and 200 times. One could decompose the data into pseudo-

replicates as follows: let times 1–4 be ‘rep’ 1, times 5–8 be ‘rep’ 2, etc. This yields 50 ‘replicates’ with

nine locations and four times. For the replicates to be approximately i.i.d., the mean must be constant

across ‘reps’ and each ‘rep’ must have the same temporal covariance (which requires a condition close

to stationarity in time for the original process) with low correlations between ‘reps’. We use s, p and r

as before, and we denote the number of times within a pseudo-replicate by p�, and we denote the

number of pseudo-replicates by r�.
First we performed simulations to estimate the type I error for various space–time combinations

using this approach. We assess the effects of the dimensions of the pseudo-replicates and the temporal

correlation of the original process on the type I error. A zero mean model was used, and no mean was

fitted. We performed 2500 simulation runs for each combination of s, p�, r� and compared these to

critical values computed from 10 000 runs when s ¼ s, p ¼ p� and r ¼ r�. All these computations were

performed in R, and the code may be obtained from the authors.

We modeled the spatial correlation with an exponential correlation function with lag-1 correlation

approximately equal to 0.75. The spatial locations used in the simulations were positioned on a regular

square grid with unit spacing. The simulated process had 200 time points with four and nine spatial

locations. For each combination we chose an AR(1) model with temporal correlation parameters

� ¼ 0:1; 0:2; . . . ; 0:8; 0:9. We set �2 ¼ 1 as the variance of the joint-process. We created pseudo-

replicates with p� ¼ 2, 3 or 4, which gives 100, 66 and 50 pseudo-replicates, respectively (for p� ¼ 3

we omitted the last 2 points).

For p� ¼ 2 and p� ¼ 3 with s ¼ 4 or s ¼ 9, the type I errors are approximately the nominal levels �
(0.10, 0.05, 0.01) when � ¼ 0:7 or less. For p� ¼ 4 with s ¼ 4 or s ¼ 9, the approximate type I errors

are equal to the nominal levels when � ¼ 0:8 or less. For � ¼ 0:05, the type I errors for � ¼ 0:8 and

p� ¼ 2 are approximately 0.13 and 0.21 for s ¼ 4 and s ¼ 9, respectively. A similar increase in type I

error from s ¼ 4 to s ¼ 9 occurs with the other combinations as well. In general, the type I error is

inversely proportional to p�, but directly proportional to s. However, with smaller p�, more replicates

are possible, which increases the power. The results are presented in Table 1.

Table 1. Estimating type I error with AR(1) temporal autocorrelation

�a p� Type I errorb s ¼ 4 Type I errorb s ¼ 9

0.7 2 0.05 0.04
0.8 2 0.13 0.21
0.9 2 0.44 0.88
0.7 3 0.04 0.04
0.8 3 0.07 0.09
0.9 3 0.25 0.46
0.7 4 0.04 0.04
0.8 4 0.05 0.06
0.9 4 0.11 0.18

a Temporal autocorrelation.
b Level is 0.05.
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We also performed simulations with another temporal correlation function:

�ðkÞ ¼ 1

ðak þ 1Þ2 ð9Þ

which is the function used in example 3 in Cressie and Huang (1999) when the spatial lag jjhjj is zero.
The parameter a was chosen to yield lag-1 temporal correlations of �ð1Þ ¼ 0:1; 0:2; . . . ; 0:8; 0:9. This
temporal correlation decays more slowly than the AR(1) models, so we expect higher type I errors.

The same spatial correlation matrix was used as before. For p� ¼ 2 with s ¼ 4 or s ¼ 9, the type I

errors are approximately the nominal levels for � equal to 0.5 or less. For p� ¼ 3 with s ¼ 4 or s ¼ 9,

the type I errors are approximately the nominal levels for � equal to 0.6 or less, and for p� ¼ 4 it is 0.7

or less. The results are presented in Table 2. Thus, as expected there are higher type I errors than with

the AR(1) models, but the pattern is similar (the type I error is inversely proportional to p�, but directly
proportional to s).

For highly correlated data, it is possible to reduce the type I error by creating ‘gaps’. For example,

with p ¼ 200 omit t ¼ 3; 6; . . . ; 195; 198, create the pseudo-replicates with t ¼ 1; 2, t ¼ 4; 5, etc. For
the two temporal correlation functions discussed earlier with s ¼ 4, we computed the type I error when

omitting every third data point (67 pseudo-replicates with p� ¼ 2), every fourth data point (50 pseudo-

replicates with p� ¼ 3), and every fifth data point (40 pseudo-replicates with p� ¼ 4). The estimated

type I errors based on 2500 simulation runs are shown in Tables 3 and 4. We see that the type I errors

are much lower than when there are no gaps. However, many still have type I errors greater than the

nominal levels.

To further reduce the type I error, larger ‘gaps’ can be created. We did this by omitting every other

pair of times (rep 1 has t ¼ 1; 2, rep 2 has t ¼ 5; 6, etc.); which for t ¼ 200 creates 50 pseudo-

replicates with p� ¼ 2. To avoid discarding data, it is also possible to compute the average statistic

across both subsets—i.e. subset one has t ¼ 1; 2, t ¼ 5; 6, etc. and subset two has t ¼ 3; 4, t ¼ 7; 8,
etc.—compute the LRT for each, and then compute the average LRT value. This further reduces the

Table 2. Estimating type I error with Cressie–Huang temporal autocorrelation

�a p� Type I errorb s ¼ 4 Type I errorb s ¼ 9

0.5 2 0.05 0.05
0.6 2 0.06 0.07
0.7 2 0.09 0.14
0.8 2 0.22 0.41
0.9 2 0.56 0.95
0.5 3 0.05 0.05
0.6 3 0.06 0.05
0.7 3 0.06 0.07
0.8 3 0.13 0.17
0.9 3 0.33 0.62
0.5 4 0.04 0.04
0.6 4 0.05 0.05
0.7 4 0.05 0.05
0.8 4 0.07 0.09
0.9 4 0.16 0.27

a Lag-1 temporal autocorrelation.
b Level is 0.05.
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type I error, although for many cases the estimated type I error from using the averaged statistics is

lower than the nominal levels as shown in Tables 5 and 6. Overall, we see that increasing the ‘gaps’

reduces the type I error as expected; however, it also reduces the power since the number of pseudo-

replicates is decreased.

Now we examine the power of our test. We estimate the power for the following class of models:

C½ðsi; t þ kÞ; ðsj; tÞ� ¼ �2expð�bkhkÞ �ki
1� �i�j

ð10Þ

where h ¼ si � sj. This covariance is neither separable nor (second-order) stationary when all the �i
are not equal. A process with this covariance has a different first-order autoregressive time series for

each location. When the �i are all equal, then the covariance is separable and stationary.

Table 3. Estimating type I error with AR(1) temporal autocorrelation with gaps, s ¼ 4

�a p� Type I errorb with gaps Type I errorb, no gaps

0.8 2 0.08 0.13
0.9 2 0.26 0.44
0.8 3 0.06 0.07
0.9 3 0.14 0.25
0.8 4 0.05 0.05
0.9 4 0.09 0.11

a Lag-1 temporal autocorrelation.
b Level is 0.05.

Table 4. Estimating type I error with Cressie–Huang temporal autocorrelation with gaps,
s ¼ 4

�a p� Type I errorb with gaps Type I errorb, no gaps

0.8 2 0.14 0.22
0.9 2 0.37 0.56
0.8 3 0.09 0.13
0.9 3 0.20 0.33
0.8 4 0.05 0.07
0.9 4 0.11 0.16

a Lag-1 temporal autocorrelation.
b Level is 0.05.

Table 5. Estimating type I error with AR(1) temporal autocorrelation omitting alternate
pairs, s ¼ 4

�a Type I errorb Type I errorb Type I errorb

with gaps with gaps, averaged with no gaps

0.8 0.06 0.02 0.13
0.9 0.17 0.10 0.44

a Lag-1 temporal autocorrelation.
b Level is 0.05.

826 M. W. MITCHELL, M. G. GENTON AND M. L. GUMPERTZ

Copyright # 2005 John Wiley & Sons, Ltd. Environmetrics 2005; 16: 819–831



We test the power for three scenarios: (i) four locations on a regular grid with unit spacing, 200 time

points, 100 pseudo-replicates, no gaps (p� ¼ 2); (ii) four locations on a regular grid with unit spacing,

200 time points, no gaps, 50 pseudo-replicates, no gaps (p� ¼ 4); and (iii) nine locations on an

irregular grid, 100 time points, 50 pseudo-replicates (p� ¼ 2). For (i) and (ii), we set b ¼ 0:37 (which

gives an approximate lag-1 spatial correlation of 0.7), �1 ¼ 0:8, �2 ¼ 0:6, �3 ¼ 0:8 and �4 ¼ 0:3
(average lag-1 temporal correlation is 0.625). For (iii) we set b ¼ 0:37 and �1 ¼ 0:8, �2 ¼ 0:6,
�3 ¼ 0:8, �4 ¼ 0:5, �5 ¼ 0:5, �6 ¼ 0:7, �7 ¼ 0:85, �8 ¼ 0:4 and �9 ¼ 0:75 (average is approximately

0.63). The nine spatial locations for (3) are shown in Figure 3.

Simulations were performed similarly as with the type I error computations with 10 000 simulation

runs for each. From Table 1 we see that the type I error is approximately the nominal level for these

temporal correlations. We use a nominal level of 0.05 for all tests.

Table 6. Estimating type I error with Cressie–Huang temporal autocorrelation
omitting alternate pairs, s ¼ 4

�a Type I errorb Type I errorb Type I errorb

with gaps with gaps, averaged with no gaps

0.7 0.06 0.02 0.09
0.8 0.09 0.03 0.22
0.9 0.26 0.18 0.56

a Lag-1 temporal autocorrelation.
b Level is 0.05.
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Figure 3. Grid used for power simulation (3)
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The test had very high power for each scenario. The empirical powers for the three cases are the

following: (i) 1.0000, (ii) 0.9999 and (iii) 0.9618. Scenario (iii) has similar dimensions to the

RiceFACE data, which we analyze in Section 4, so our test should have sufficient power to detect such

a departure from separability. Note that a test that assumes stationarity has no power to detect this

covariance since it assumes that the covariance does not depend on ðx; y; tÞ, and the time correlation

depends on the location.

4. TESTING SEPARABILITY OF FACE DATA

The Japanese RiceFACE (Free-Air CO2 Exchange) project was a study of the effects of elevated levels

of CO2 on rice. The project spanned 1998–2000 and is one of many FACE projects around the world,

which investigate the effects of global change on various ecosystems. The RiceFACE system emits

CO2 directly into the air in a field, and the CO2 is dispersed by the wind. The experiment was

performed in eight plots in a set of rice fields in Shizukuishi, Iwate, Japan. Four plots received no

additional CO2 above the ambient levels, while the other four received CO2 from rings that consisted

of polyethylene tubes. We refer to the area enclosed by the ring as a ‘FACE plot’. More details of the

RiceFACE experiment are found in Okada et al. (2001).

Because the wind disseminated the CO2, the CO2 was not uniformly distributed throughout the

FACE plots. One of our responsibilities was to estimate the concentration of CO2 in various sub-

regions in the plots across the whole season and for various periods during the season. To do this, we

developed a spatio–temporal model, which employed meteorological covariates for the mean and had

a separable covariance. More details of our spatio–temporal model and the RiceFACE project are

given in Mitchell and Gumpertz (2003).

For testing separability we use data from the year 2000, which had 13 locations and 122 time points.

The analysis is performed separately for each FACE plot. We fit the mean first and then partition the

residuals into pseudo-replicates.

For the mean we fitted the target level (tar), the height of the plants (H), the aperture of the solenoid

valve (mv), the wind speed (ws) and the square of the wind speed (ws2) for temporal covariates, and fit

different coefficients for each location, i.e.

mði; tÞ ¼ �0i þ �1itarðtÞ þ �2iHðtÞ þ �3imvðtÞ þ �4iwsðtÞ þ �5iwsðtÞ2 ð11Þ

for t ¼ 1; 2; . . . ; 121; 122 and locations i ¼ 1; 2; . . . ; 13.
We now show that the covariance of the residuals is separable for this mean model when the

covariance of the original process is separable. This is because all the regressor variables are time-

dependent only and not spatially varying. Let the data be arranged so that we have time¼ 1, loc¼ 1,

. . ., loc¼ 13, time¼ 2, loc¼ 1, . . ., loc¼ 13, . . ., time¼ 122, loc¼ 1, . . ., loc¼ 13, with variance–

covariance matrix V � U for the joint space–time process. Let X be the matrix of covariates. Here

X ¼ T � I13 ð12Þ

where T is the matrix of temporal covariates. Let PX be the projection matrix of X, which is

XðXTXÞ�1XT. It is straightforward to show that

PX ¼ PT � I13 ð13Þ
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where PT is the projection matrix of T. The covariance of the residuals for the RiceFACE data is given

by

ðI1586 � PXÞðV � UÞðI1586 � PXÞ ð14Þ

Since I1586 ¼ I122 � I13, the covariance of the residuals for this application can be written as

VarðÊEÞ ¼ ðV � VPT � PTV þ PTVPTÞ � U ð15Þ

which is separable as claimed.

After computing the residuals, we decomposed the data into 61 pseudo-replicates of size s ¼ 13 by

p� ¼ 2. To estimate a possible type I error with this model, we generated 1000 multinormal samples

with the same mean as fitted above for FACE plot ‘A’ in the year 2000. For the temporal correlationwe

used the model given in Mitchell and Gumpertz (2003), which was an AR(1) process with �̂� ¼ 0:299.
We modeled the spatial covariance with an unstructured covariance matrix. To estimate the critical

values, we generated Nð0; 1Þ random variables as before, then estimated the mean with the covariates

used above, then estimated ÛU, V̂V and S for s ¼ 13, p ¼ 2 and r ¼ 61 based on the residuals, and then

computed the LRT (8). We obtained the following critical values: 360.67, 371.33 and 395.00 for levels

0.10, 0.05 and 0.01, respectively. Based on the 1000 simulations, the estimated type I errors are 0.098,

0.050 and 0.010, respectively, indicating that the non-stationary mean and temporal correlation of the

process have virtually no effect on the size of the test.

Since for the application in Mitchell and Gumpertz (2003) an AR(1) model was used, another

possibility for testing the separability of the FACE data is to compute negative twice the difference of

the log-likelihood values for a model with the same AR(1) correlation parameter for each location

versus a model with a different AR(1) correlation parameter for each location. This addresses whether

the particular separable model used is better than a particular alternative. We used the chi-square

critical values for 12 degrees of freedom. We modeled the spatial covariance with an unstructured

matrix. Since these critical values rely on the asymptotic distribution of the test statistic, we examined

the type I error. Based on 5000 simulation runs, the estimated type I errors are approximately 0.212,

0.138, 0.035 for levels 0.10, 0.05 and 0.01. Hence the p-values from this test are too small.

We tested separability with both methods, and the results are shown in Table 7. Overall, the

p-values for the test comparing the two particular models are larger than those obtained from the test

involving pseudo-replication. Considering that the p-values with the former method are too small, this

is especially remarkable. This indicates that deviations from separability include different classes of

models than the one with different AR(1) parameters for each location.

Table 7. P-values for testing separability of the RiceFACE data

Ring LRT1a LRT2b

A 0.1133 0.3137
B 0.1222 0.2307
C 0.0010 0.1694
D 0.4755 0.7199

a Test using pseudo-replicates.
b Test comparing two AR(1) models.
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Judging from Table 7, we see that, overall, the model with the same AR(1) parameter for each

location is sufficient compared to that with a different correlation parameter for each location. The test

using pseudo-replication shows more evidence of non-separability than the test based on different

AR(1) parameters for each location, but most results are not significant at the 0.10 level. Overall, it

appears that a separable space–time covariance is sufficient for the RiceFACE data.

5. CONCLUSIONS

There are very few formal tests available for testing separability of spatio–temporal covariances.

However, it is possible to successfully test separability in many applications by adapting a

likelihood ratio test for the multivariate repeated measures context. For moderately sized data

sets, this test can be adapted using a bootstrap method. For data sets, such as the RiceFACE data,

which are much richer in time than in space, it is possible to partition the data into approximately

i.i.d. pseudo-replicates.

The type I errors for the test involving pseudo-replication depend on the dimensions of the pseudo-

replicates. The larger the value of p� (the ‘time’ dimension in a pseudo-replicate) and the smaller the

value of s (spatial dimension), the lower the type I error. For a process with nine locations and 200

times with an AR(1) temporal correlation of 0.7, the type I errors are approximately equal to the

nominal levels for p� ¼ 2: For more highly correlated data, the type I error can be reduced by creating

‘gaps’. For Theorem 1 to strictly apply, the mean is required to be constant across the pseudo-

replicates. However, our simulation study showed that this had virtually no effect on the application

involving the RiceFACE data.

The test in the multivariate repeated measures context requires no stationarity in space or time, but

the pseudo-replication method requires close to stationarity in time since the pseudo-replicates are

required to have the same temporal covariances. This is slightly more general than stationarity in time

since the variances within a pseudo-replicate need not be equal (and hence all the time variances of

the original process will not be equal). This reduction is not surprising since we have only one true

replicate. Because of this restriction, one may consider assuming stationarity in time and fitting a

Toeplitz or banded Toeplitz temporal structure. If we do not assume stationarity in space, then the non-

separable covariance matrix for a zero mean process could be estimated with

ĈCðZðsi; tÞ;Zðsj; t þ kÞÞ ¼
Xp�k

l¼1

ðyi;l � yj;lþkÞ=ðp� kÞ ð16Þ

For the separable case, the matrices ÛU and V̂V are interdependent, so one could estimate these similar to

the algorithm given in Dutilleul (1999) by estimating V̂V with the usual Toeplitz (or banded Toeplitz)

structure instead of an unstructured matrix. However, these computations are significantly more

computationally intensive than those with the pseudo-replicates since the operations must be done on

the entire covariance matrix (for the RiceFACE data, a 1586 by 1586 matrix for the non-separable

case), not ‘chunks’ of it. This severely hampers the ability to generate the empirical distribution.

Furthermore, there is no guarantee that the sample covariance matrix will be positive definite. For

example, consider the following Toeplitz matrix:

1 � 0

� 1 �
0 � 1

0
@

1
A ð17Þ
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The determinant of the matrix is 1� 2�2. Thus, if �2 > 0:5 the matrix will not be positive

definite.

Testing separability in the pseudo-replicates gives more general results than comparing a class of

models, and this test is adaptable to many situations. It is especially useful because the spatial structure

need not be stationary or isotropic. However, the results of the test do not indicate what type of

separable or non-separable model should be used. For future work, it is worth studying how much

effect non-separability has on applications such as kriging.
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