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Abstract

The slash distribution is often used as a challenging distribution for a statistical procedure. In this
article, we define a skewed version of the slash distribution in the multivariate setting and derive
several of its properties. The multivariate skew-slash distribution is shown to be easy to simulate from
and can therefore be used in simulation studies. We provide various examples for illustration.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Despite the central role played by themagic bell-shapednormal distribution in statistics,
there has been a sustained interest among statisticians in constructing more challenging dis-
tributions for their procedures. Indeed, if one can perform satisfactorily under two extreme
scenarios, it is commonly believed that the performance will be reasonably good under
intermediate situations. This idea is the cornerstone of configural polysampling, a small
sample approach to robustness described byMorgenthaler and Tukey (1991). A first family
of scenarios can be represented by a finite mixture of normal distributions. However, this
family does not contain any real challenge since its members always have a finite variance.
A second more popular class in this scenario is thet� distribution with� degrees of freedom,
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which converges to the normal distribution for� → ∞. The other extreme given by�=1 is
a Cauchy distribution, that is, the distribution of the ratio between two independent standard
normal random variables. This distribution has heavier tails than the normal distribution and
does not possess finite moments or cumulants. However, its sharp central peak has often
been considered as unrealistic in representing real data.

Another family of scenarios is described by the standard slash distribution, representing
the distribution of the ratioX = Z/(U1/q) of a standard normal random variableZ to an
independent uniform random variableU on the interval(0, 1) raised to the power 1/q,
q > 0. Whenq = 1 we obtain the canonical slash, whereasq → ∞ yields the normal
distribution. The probability density function (pdf) of the univariate slash distribution is
symmetric about the origin and has heavier tails than those of the normal density, with, for
the canonical slash, the same tail heaviness as the Cauchy. However, it is less peaked in
the center and thus more realistic in representing data. Effectively, straightforward algebra
yields the pdf

�(x; q) = q

∫ 1

0
uq�(xu) du

and the cumulative distribution function (cdf)

�(x; q) = q

∫ 1

0
uq−1�(xu) du, (1)

where� and� denote the standard normal pdf and cdf, respectively. In particular, we have

�(0; q) = (q/(q + 1))�(0) = q/(
√

2�(q + 1))

and�(0; q) = 1
2. Moreover, closed-form expressions for the pdf can be computed, for

instance

�(x; 1) =
{

(�(0) − �(x))/x2, x 	= 0,

�(0)/2, x = 0

and

�(x; 2) =
{

2((�(x) − �(0))/x − �(x))/x2, x 	= 0,

2�(0)/3, x = 0.

The expectation and the variance of the standard slash distribution are given by E(X)=0
for q > 1 and Var(X)=q/(q −2) for q > 2. A general slash distribution is obtained by scale
multiplication and location shift of a standard slash random variable, seeRogers and Tukey
(1972), andMosteller and Tukey (1977)for further properties.Kafadar (1982)discussed
the maximum likelihood estimation of the location and scale parameters of this family.
The slash distribution has been mainly used in simulation studies because it represents an
extreme situation, see for exampleAndrews et al. (1972), Gross (1973), andMorgenthaler
and Tukey (1991). In this paper, we introduce an additional challenge by defining a skewed
version of the slash distribution.

Another approach to introduce challenges for statistical procedures is to define skewed
distributions.A simple departure from the normal distribution has been proposed byAzzalini
(1985)who defined the skew-normal distribution with pdf

2�(x;�,�2)�(	(x − �)), (2)
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where�(x;�,�2) is the pdf of a normal random variable with mean� and variance�2, and
	 is a shape parameter controlling skewness. For	 = 0, the pdf (2) reduces to the normal
one, whereas for	> 0 or 	< 0 the pdf is skewed to the right or the left, respectively. An
extension of (2) to the multivariate setting was proposed byAzzalini and Dalla Valle (1996),
defining the pdf

2�p(x;�,
)�(�T(x − �)), x ∈ Rp, (3)

where�p(x;�,
) is thep-dimensional normal pdf with mean� and correlation matrix

, �(·) is the standard normal cdf N(0, 1), and� is ap-dimensional shape parameter. A
p-dimensional random vectorX with a multivariate skew-normal distribution is denoted by
X ∼ SNp(�,
, �). Its expectation and variance are given by

E(X)=� +
√

2

�
�, (4)

Var(X)=
 − 2

�
��T, (5)

where� = 
�/
√

1 + �T
�, see e.g.Genton et al. (2001).
It is now natural to construct univariate and multivariate distributions that combine skew-

ness with heavy tails. For instance, one can define skew-t distributions (Branco and Dey,
2001; Jones and Faddy, 2003; Sahu et al., 2003), skew-Cauchy distributions (Arnold and
Beaver, 2000), skew-elliptical distributions (Azzalini and Capitanio, 1999; Branco and Dey,
2001; Sahu et al., 2003; Genton and Loperfido, 2005), or other skew-symmetric distribu-
tions (Wang et al., 2004). In this article, we define a multivariate skew-slash distribution
and study its properties and applications.

This article is organized as follows. In Section 2, we define the multivariate slash distri-
bution and derive various of its properties. For example, we show that the slash distribution
is invariant under linear transformations and that its moments are analytically tractable. In
Section 3, we define the multivariate skew-slash distribution and provide several examples
revealing its skewness and tail behavior. The results of a small simulation study are reported
in Section 4 along with two illustrative applications. We conclude in Section 5.

2. The multivariate slash distribution

In this section, we define a multivariate slash distribution and derive its pdf. We show
that the multivariate slash distribution is invariant under linear transformations and derive
its moments. In the sequel, we denote thep-dimensional multivariate normal distribution
with mean vector� and covariance matrix
 by Np(�,
), its pdf by�p(x;�,
), and the
standard uniform distribution on the interval(0, 1) by U(0, 1).

Definition 1. A random vectorX ∈ Rp has ap-dimensional slash distribution with location
parameter�, positive definite scale matrix parameter
, and tail parameterq > 0, denoted
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by X ∼ SLp(�,
, q), if

X = 
1/2 Y
U1/q

+ �, (6)

whereY ∼ Np(0, Ip) is independent ofU ∼ U(0, 1).

When� = 0 and
 = Ip, X in (6) has a standard multivariate slash distribution. The pdf
of the random vectorX in (6) is easily shown to be

�p(x;�,
, q)=q

∫ 1

0
uq+p−1�p(ux; u�,
) du

=



q2(q+p)/2−1�((q+p)/2;‖
−1/2(x−�)‖2/2)

(2�)p/2‖
−1/2(x−�)‖q+p
, x 	= 0,

q
q+p

( 1
2� )p/2, x = 0,

where�(a; z)=∫ z

0 ta−1e−t dt=∑∞
k=0

(−1)kza+k

k!(a+k)
, and‖
−1/2(x−�)‖=

√
(x − �)T
−1(x − �).

Note that the standard slash random vector in(6) is a scale mixture of the normal model
(see e.g.Fang et al., 1990) and so it can be represented as:

X|(U = u) ∼ Np(0, u−1/qIp) with U ∼ U(0, 1).

Next consider the linear transformationV = b + AX, whereX has the multivariate
slash distributionX ∼ SLp(�,
, q), b is a vector inRp, andA is a nonsingular ma-
trix. The Jacobian determinant of the transformation is|A|−1 and hence the pdf ofV
is |A|−1�p(A−1(v − b);�,
, q), showing thatV has a multivariate slash distribution
SLp(b + A�, A
AT, q). This implies that the slash distribution is invariant under linear
transformations and this is summarized in the following proposition.

Proposition 1. If X ∼ SLp(�,
, q), then its linear transformationV=b+AX ∼ SLp(b+
A�, A
AT, q).

It can be checked that Proposition 1 still holds whenA is only a full row rank matrix and
therefore marginal distributions ofX ∼ SLp(�,
, q)are still of the slash type.Alternatively,
this follows from the fact that marginal distributions ofY ∼ Np(0, Ip) in (6) are still normal.

Now we consider the moments ofX. The moments of a uniform random variableU ∼
U(0, 1) are given by

E(U−k/q) = q

q − k
, q > k. (7)

BecauseY andU are independent in (6), the moments ofX follow immediately from the
moments ofY and (7). For instance, the first two moments ofX for the multivariate slash
distribution are shown in the following proposition.
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Proposition 2. If X ∼ SLp(�,
, q), then the expectation and variance ofX are given by

E(X)=� if q > 1,

Var(X)= q

q − 2

 if q > 2.

3. The multivariate skew-slash distribution

In this section, we define a multivariate skew-slash distribution and derive its pdf. We also
provide another definition based on a stochastic representation of the skew-slash distribu-
tion, which is useful for simulations. Both definitions lead to the same probability density
function. We show that the multivariate skew-slash distribution is invariant under linear
transformations.

Definition 2. A random vectorX ∈ Rp has ap-dimensional skew-slash distribution with
location parameter�, positive definite scale matrix parameter
, tail parameterq > 0, and
skewness parameter�, denoted byX ∼ SSLp(�,
, q, �), if

X = 
1/2 Y
U1/q

+ �, (8)

whereY ∼ SNp(0, Ip, �) is independent ofU ∼ U(0, 1).

When�=0and
= Ip, X in (8) has a standard multivariate skew-slash distribution. The
pdf of the random vectorX in (8) is then

�p(x;�,
, q, �) = 2q

∫ 1

0
uq+p−1�p(ux; u�,
)�(u�T
−1/2(x − �)) du. (9)

In the univariate case, i.e. forp=1, the distribution ofT =|X|has density 2�(t; q)I (t > 0)

in both cases whenX ∼ SL(0, 1, q) and whenX ∼ SSL(0, 1, q, 	). This invariance
property holds also for the distribution of‖X‖ in the multivariate case, which follows
directly from the stochastic representation in (8) and considering the well known result
about the invariance of the distribution of‖Y‖, Y ∼ SNp(0, Ip, �), with respect to�. This
invariance property is similar to the one derived byGenton et al. (2001)for the skew-normal
distribution,Genton and Loperfido (2005)for generalized skew-elliptical distributions, and
by Wang et al. (2004)for skew-symmetric distributions.

Next consider the linear transformationV = b+ AX, whereX has the multivariate skew-
slash distributionX ∼ SSLp(�,
, q, �), b is a vector inRp, andA is a nonsingular ma-
trix. The Jacobian determinant of the transformation is|A|−1 and hence the pdf ofV is
|A|−1�p(A−1(v−b);�,
, q, �), showing thatV has a multivariate skew-slash distribution
SSLp(b + A�, A
AT, q, A−T�). This implies that the skew-slash distribution is invariant
under linear transformations and is summarized in the following proposition.

Proposition 3. If X ∼ SSLp(�,
, q, �), then its linear transformationV = b + AX ∼
SSLp(b + A�, A
AT, q, A−T�).
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Fig. 1. Density curves of the univariate normal, skew-normal, and skew-slash distributions.

Here again, it can be checked that Proposition 3 still holds whenA is only a full row
rank matrix and therefore marginal distributions ofX ∼ SSLp(�,
, q, �) are still of the
skew-slash type. Alternatively, this follows from the fact that marginal distributions of
Y ∼ SNp(0, Ip, �) in (8) are still skew-normal, seeAzzalini and Dalla Valle (1996).

The multivariate skew-slash distribution SSLp(�,
, q, �) reduces to the skew-normal
distribution SNp(�,
, �) whenq → ∞, to the slash distribution SLp(�,
, q) when�=0,
and to the normal distribution Np(�,
) when both�=0andq → ∞. Thus, the skew-slash
distribution includes a wide variety of contour shapes. To illustrate the skewness and tail
behavior of the skew-slash, we draw the density of the univariate skew-slash distribution
SSL1(0, 1, 1, 1) together with the densities of the standard normal distribution N1(0, 1) and
skew-normal distribution SN1(0, 1, 1). Fig. 1 depicts the three density curves (the skew-
normal and skew-slash have been centered at zero and rescaled). Note that the densities of
the skew-normal and skew-slash distributions are positively skewed and that the skew-slash
distribution has much heavier tails than the normal and skew-normal distribution. Actually,
this skew-slash distribution does not have finite mean and variance, see Proposition 4.
Fig. 2 depicts contour plots of the standard bivariate skew-slash pdf for the parameter
valuesq = 5, � = (1, 1)T (left panel) andq = 1, � = (0.5, 0.2)T (right panel). The right
panel shows a case with heavier tails than the left panel, but both exhibit skewness.

Next we discuss an equivalent definition of the multivariate skew-slash distribution based
on an approach described byArnold and Beaver (2002). For simplicity of the exposition,
we set� = 0 and
 = Ip. Consider the conditional distribution ofW given �TW> W0,
where� ∈ Rp, and(W0,WT) ∼ SLp+1(0, Ip+1, q) with W = (W1, W2, . . . , Wp)T. The
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Fig. 2. Contour plots of the standard bivariate skew-slash pdf forq = 5, � = (1, 1)T (left panel) andq = 1,
� = (0.5, 0.2)T (right panel).

joint probability density function of(W0,W) conditional on�TW> W0 is given by

�p+1(w0, w;0, Ip+1, q)1(�Tw> w0)

P {W0 − �TW< 0} , w0 ∈ R, w ∈ Rp.

It follows from the symmetry of the slash distribution thatP {W0−�TW< 0}= 1
2. Integrating

outw0 yields the density ofW which is given by∫ ∞

−∞
2�p+1(w0, w;0, Ip+1, q)1(�Tw> w0) dw0

= 2q(2�)−(p+1)/2
∫ �Tw

−∞

∫ 1

0
up+q

× exp(−u2w2
0/2) exp

(
−u2

p∑
i=1

w2
i /2

)
du dw0

= 2q

∫ 1

0
up+q−1�p(uw;0, Ip)�(u�Tw) du, w ∈ Rp,

which is exactly the density�p(w;0, Ip, q, �) in (9) of the multivariate skew-slash distri-
bution SSLp(0, Ip, q, �). This result proves the equivalence between Definition 2 and the
definition based on conditioning. Consequently either of these two definitions can be used
to simulate from the multivariate skew-slash distribution, see Section 4.1.

We now compute the moments of the skew-slash distribution. Using the same argument
as for the multivariate slash distribution, the moments ofX ∼ SSLp(�,
, q, �) follow
readily from (7) and the moments ofY ∼ SNp(0, Ip, �), see e.g.Genton et al. (2001). For
instance, the first two moments ofX for the multivariate skew-slash distribution are shown
in the following proposition.
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Proposition 4. If X ∼ SSLp(�,
, q, �), then the expectation and variance ofX are given
by

E(X)=� + q

q − 1

√
2

�
� if q > 1,

Var(X)= q

q − 2

 − 2

�

(
q

q − 1

)2

��T if q > 2,

where� = 
�/
√

1 + �T
�.

Note that when there is no skewness, i.e.� = � = 0, the expectation and variance in
Proposition 4 reduce to the expressions given in Proposition 2, whereas whenq → ∞ (no
heavy tail behavior) they reduce to the expressions given by (4) and (5).

4. Applications

In this section, we present three applications of the skew-slash distribution. The first one
illustrates the use of the skew-slash distribution in simulation studies, whereas the other
two involve the statistical analysis of real data sets.

4.1. Skew-slash distributions in simulation studies

The skew-slash distribution can be used in simulation studies as a challenging distribution
for a statistical procedure. As an illustration, we perform a small simulation to study the be-
havior of two location estimators, the sample mean and the sample median, in four different
univariate settings. We consider two symmetric distributions, a standard normal N1(0, 1)

and a slash SL1(0, 1, 2), and two asymmetric distributions, a skew-normal SN1(0, 1, 3)

and a skew-slash SSL1(0, 1, 2, 3). The location means of the asymmetric distributions are
adjusted to zero, so that all four distributions are comparable. Thus, this setting represents
four distributions with same mean, but with different tail behavior and skewness. Actually,
with q=2, the variance of the slash and skew-slash distributions is infinite. We simulate 500
samples of sizen=100 from each of these four distributions. On each sample, we compute
the sample mean and sample median and report the boxplot for each distribution inFig. 3. In
the left panel, we observe that all boxplots of the estimated means are centered around zero
but have larger variability for the heavy tailed distributions (the slash and the skew-slash).
In the right panel, we see that the boxplot of the estimated medians has a slightly larger
variability than the boxplot for the estimated means at the normal distribution, but has a
much smaller variability at the slash distribution. This indicates that the median is a robust
estimator of location at symmetric distributions. On the other hand, the median estimator
becomes biased as soon as unexpected skewness arises in the underlying distribution, see
the boxplot of the estimated medians of the skew-normal distributions. This effect is even
more severe under both skewness and heavy-tails represented by the skew-slash distribution.
Although this simulation is very simple, it illustrates the use of non-normal distributions to
challenge the behavior of statistical procedures.
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Fig. 3. Boxplots of the sample mean (left panel) and sample median (right panel) on 500 samples of sizen = 100
from four distributions: N1(0, 1); SL1(0, 1, 2); SN1(0, 1, 3); SSL1(0, 1, 2, 3) (the means of SN1 and SSL1 are
adjusted to zero).

4.2. Fiber-glass data set

This application is concerned with a unidimensional data set ofn=63 breaking strengths
values of 1.5 cm long glass fibers.Jones and Faddy (2003)andAzzalini and Capitanio (2003)
fit two forms of skew-t distributions to these data. They both note skewness on the left as
well as heavy tail behavior. We instead fit a skew-slash distribution. The fitted parameters,
obtained by maximizing the likelihood function, are�̂ = 1.81, �̂ = 3.33, q̂ = 3.33, and
	̂ = −3.00. The negative value of̂	 indicates skewness on the left and the small value
of q̂ indicates a heavy tail behavior.Fig. 4 depicts a histogram of the data and the fitted
skew-slash probability density function, which has a finite mean and variance.

4.3. Australian athletes data set

This application deals with the Australian athletes data set analyzed byCook and
Weisberg (1994)in a normal setting andAzzalini and Dalla Valle (1996)with the skew-
normal distribution. It consists of several variables measured onn=202 athletes and we focus
on body mass index (BMI) and lean body mass (LBM). We fit a bivariate skew-slash to these
data in order to investigate the possible heavier-than-normal tail behavior of (BMI, LBM).
The parameters, estimated by maximizing the likelihood function, are�̂= (20.24, 62.20)T,
�̂1,1 = 0.38, �̂1,2 = −0.07, �̂2,2 = 0.09, �̂ = (3.95, 1.01)T, and q̂ = 8.98, where�i,j is
the (i, j)-entry of the 2× 2 matrix
−1/2. The skewness parameter�̂ indicates apparent
skewness, as can be seen inFig. 5, but the parameter̂q does not indicate a serious heavy-tail
behavior. We use a likelihood ratio test for the null hypothesis H0 : q = ∞, that is to test
that a skew-normal distribution is enough. The unconstrained log likelihood function value
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Fig. 4. Fitted skew-slash probability density function (solid line) to the fiber-glass data.

is 1213.261 and the constrained log likelihood function value is 1212.953, which yields a
likelihood ratio test statistic of 0.616 and ap-value of 0.567 with an asymptotic
2

1 distri-
bution under the null hypothesis. There is not enough evidence in the data to reject H0, and
therefore a skew-normal distribution would be appropriate for this example.

5. Discussion

We have introduced a multivariate skew-slash distribution, a flexible distribution that can
take skewness and heavy tails into account. This distribution is useful in simulation studies
where it can introduce distributional challenges in order to evaluate a statistical procedure.
It is also useful in analyzing data sets that do not follow the normal law. We have used the
fiber-glass data set and the Australian athletes data set for illustration. Additional flexibility
can be introduced in the skew-slash distribution by allowing higher order odd polynomials in
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Fig. 5. Contours of the fitted bivariate skew-slash probability density function to the (BMI, LBM) variables of
Australian athletes data.

the skewing function�(·) in (9). For instance, an odd polynomial of order three would yield
a distribution that can model bimodality, seeMa and Genton (2004)for further discussions
on this topic.

Jones and Faddy (2003)discuss different versions of skew-t distributions. Their own
proposal is developed in the univariate setting and they acknowledge that its extension to
the multivariate setting (Jones, 2001) is of questionable usefulness. Families of closely
related multivariate skew-t distributions are constructed byAzzalini and Capitanio (2003),
andSahu et al. (2003). However,Jones and Faddy (2003)point out that odd moments of these
families are analytically intractable, which results in the unavailability of a Fisher scoring
algorithm for likelihood maximization. Another family of univariate skew-t distributions
is proposed byFernández and Steel (1998). They use Bayesian fitting techniques because
standard asymptotic likelihood theory is not applicable due to the discontinuity of even
derivatives of their skew-t density at the origin. The multivariate skew-slash distribution
introduced in this article is clearly an alternative to skew-t distributions because it can
model both skewness and heavy tails. One interesting advantage of the multivariate skew-
slash distribution is that its moments can be computed analytically by taking advantage of
the moments of the multivariate skew-normal distribution, see the discussion in Section 3.
Another attractive feature is that simulations from the multivariate skew-slash distribution
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are straightforward from softwares that permit simulations from the multivariate skew-
normal or normal distribution.
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