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Separable approximations of space-time covariance matrices
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SUMMARY

Statistical modeling of space-time data has often been based on separable covariance functions, that is, covariances
that can be written as a product of a purely spatial covariance and a purely temporal covariance. The main reason is
that the structure of separable covariances dramatically reduces the number of parameters in the covariance matrix
and thus facilitates computational procedures for large space-time data sets. In this paper, we discuss separable
approximations of nonseparable space-time covariance matrices. Specifically, we describe the nearest Kronecker
product approximation, in the Frobenius norm, of a space-time covariance matrix. The algorithm is simple to
implement and the solution preserves properties of the space-time covariance matrix, such as symmetry, positive
definiteness, and other structures. The separable approximation allows for fast kriging of large space-time data
sets. We present several illustrative examples based on an application to data of Irish wind speeds, showing that
only small differences in prediction error arise while computational savings for large data sets can be obtained.
Copyright © 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Space-time stochastic processes have become a popular instrument in the statistician’s toolkit for
modeling observations from geophysical and environmental sciences. This work considers a space-
time stochastic process Z(s, t), where s ∈ R

d , d ≥ 1, and t ∈ R. Usually, d = 2 for most practical
applications. We assume that for all space-time coordinates in R

d × R, the mean function is E(Z(s, t)) =
µ(s, t), the variance of Z is finite, and the nonstationary covariance of Z between the space-time
coordinates (s, t) and (s + h, t + u) exists for all h ∈ R

d and u ∈ R, and is given by

cov(Z(s, t), Z(s + h, t + u)) = C(s, s + h, t, t + u) (1)

The purely spatial and purely temporal nonstationary covariances of Z are given respectively by C(s, s +
h, t, t) and C(s, s, t, t + u).
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We assume that Z is observed at N = nm space-time coordinates (sk, tk), k = 1, . . . , N, where
n denotes the number of different spatial locations and m denotes the number of different temporal
locations. The spatial locations could be irregularly or regularly (e.g., on a grid) placed, but the temporal
locations are usually equidistant in time (e.g., hourly records). Typical data sets from geophysical
and environmental sciences tend to be rich in time (i.e., long time series of, for example, pollutant
concentrations, temperatures, wind speed) and rich or poor in space (i.e., many or few monitoring
stations). Consequently, the number N of space-time coordinates is often very large and traditional
statistical methods need to be scaled up. For instance, it is commonly of interest in a space-time analysis
to perform optimal prediction of Z at an unobserved location (s0, t0), and actually at many such new
locations in order to derive maps with associated prediction accuracy. The linear combination of the
observations that minimizes the mean squared prediction error (MSPE) is called the simple kriging
predictor of Z(s0, t0), see, for example, Cressie (1993), and is given by

Ẑ(s0, t0) = µ(s0, t0) +
N∑

k=1

λk(Z(sk, tk) − µ(sk, tk)) (2)

The optimal weights λ1, . . . , λN are obtained by solving an N × N linear system based on the space-
time covariance (1) of the process Z. Evidently, when N is large, this is a computationally difficult task.
This paper is about addressing this issue.

One approach recently proposed by Furrer et al. (2006) consists in tapering the covariance for
prediction with large data sets. Their ingenious idea is to taper the covariance to zero beyond a certain
range with an appropriate compactly supported covariance function (Gneiting, 2002a). The result is
a sparse linear system that approximates the kriging linear system, and therefore can be solved very
efficiently. The procedure is supported by asymptotic theory developed by Stein (1988, 1990) on the
effect of misspecifying the covariance function. In the case of tapering, the misspecification is deliberate,
and the asymptotic mean squared error resulting from kriging with the tapered covariance was shown,
under specific conditions, to converge to the optimal error. Furrer et al. (2006) implemented their method
on a large data set of monthly precipitation in the U.S. recorded atn = 5909 spatial locations. Temporally,
the record spreads over m = 1200 months, and therefore the full size of this climatological space-time
data set is N = 7 090 800. Even in the simple case of just the spatial kriging of the precipitation field
on a fine grid of size 1000 × 1000, Furrer et al. (2006) reported computational gains in time of a factor
over 560 for solving the linear system and over 110 for creating a whole kriged map.

An alternative, but possibly complementary, approach consists in the computation of a separable
approximation of the nonseparable space-time covariance matrix. The main goal of this paper is to
describe such a methodology. The nonstationary covariance (1) is space-time separable if it can be
written as

C(s, s + h, t, t + u) = CS(s, s + h)CT (t, t + u) (3)

where CS is a purely spatial and CT a purely temporal nonstationary covariance. In particular, a stationary
covariance C is space-time separable if it can be written as

C(h, u) = CS(h)CT (u) (4)

If the process Z itself is separable, that is Z(s, t) = ZS(s)ZT (t), where ZS is a purely spatial stochastic
process with nonstationary covariance CS and ZT is a purely temporal stochastic process with
nonstationary covariance CT , and ZS is independent of ZT , then the property (3) holds. Indeed, we
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have

C(s, s + h, t, t + u) = cov(Z(s, t), Z(s + h, t + u))

= cov(ZS(s)ZT (t), ZS(s + h)ZT (t + u))

= cov(ZS(s), ZS(s + h))cov(ZT (t), ZT (t + u))

= CS(s, s + h)CT (t, t + u)

However, the reverse is not true and is often a source of confusion in the literature. A separable covariance
function C does not imply that the process Z is separable. Note also that if ZS and ZT are Gaussian
processes, then their product is not.

A well-known shortcoming of separable covariance functions is that they do not allow for space-
time interactions in the covariance, although deterministic space-time interactions in the process Z

can be modeled through the mean function µ(s, t); see Kyriakidis and Journel (1999), Cressie and
Huang (1999), and Stein (2005) for detailed discussions on this topic. Nevertheless, statistical space-
time modeling has been using separable covariance functions of the form (3) or (4) to a large extent.
The main reason is that the structure of separable covariances dramatically reduces the number of
parameters in the covariance matrix and thus facilitates computational procedures for large space-time
data sets. However, another reason is that the covariance function (1) has to be positive definite due
to the famed theorem of Bochner (1955). Valid (positive definite) parametric models are well-known
in space and in time, but less so in space-time. The separable space-time structure in the covariances
(3) or (4) allows for a simple construction of valid space-time parametric models. Recent efforts have
been allocated to develop new parametric classes of nonseparable space-time covariance models; see,
for example, Cressie and Huang (1999), Gneiting (2002b), Ma (2003), and Stein (2005), among others.
Gneiting et al. (2007) present a survey of geostatistical space-time models. Simultaneously, a growing
interest in developing formal testing procedures for separability has emerged. Most tests available in the
literature are basically testing whether a parameter describing the separability in a parametric space-time
covariance model is zero or not; see, for example, Shitan and Brockwell (1995), Guo and Billard (1998),
Brown et al. (2000), and Genton and Koul (2007). Mitchell et al. (2005, 2006) proposed a likelihood
ratio test for separability in the setting of multivariate repeated measures and suggested its application
to space-time data sets that are rich in the time dimension. Matsuda and Yajima (2004), Scaccia and
Martin (2005), and Fuentes (2006) suggested a test for separability of covariances based on spectral
methods. Recently, Li et al. (2007) proposed a nonparametric test of various properties of space-time
covariance functions, including separability. In this paper, however, we do not consider any test for
separability. Instead, we suggest to use separable approximations of possibly nonseparable covariances.

Let � ∈ R
N×N be the space-time covariance matrix of Z, that is �ij = C(si, sj, ti, tj). If the space-

time covariance C is separable, then there exist two covariance matrices, S = (sij) ∈ R
n×n in space and

T = (tij) ∈ R
m×m in time, such that

� = S ⊗ T =




s11T s12T . . . s1nT

s21T s22T . . . s2nT

...
...

. . .
...

sn1T sn2T . . . snnT


 (5)
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where sij = CS(si, sj), tij = CT (ti, tj), and ⊗ denotes the Kronecker product between two matrices; see,
for example, Steeb (1997). The covariance matrices S and T are not unique since S ⊗ T = (aS) ⊗ ( 1

a
T )

for any a > 0. This non-identifiability problem can be addressed by imposing a constraint, for example
that the (1, 1) entry of S or T be a 1. If the space-time covariance C is separable, then, given � ∈ R

N×N ,
an interesting question is how to determine the two matrices S ∈ R

n×n and T ∈ R
m×m satisfying

(5). Furthermore, if the space-time covariance C is not separable, then we can ask to find the two
matrices S ∈ R

n×n and T ∈ R
m×m that provide the ‘best’ separable (Kronecker product) approximation

of � ∈ R
N×N . The solution to both questions has been presented from a linear algebra point of view

by Van Loan and Pitsianis (1992) for a rectangular matrix �. They coined this question the nearest
Kronecker product (NKP) problem, which we state here in the framework of a space-time covariance
matrix. Note that we do not assume that the process Z is stationary. We denote the Frobenius norm of
a matrix � = (σij) by ‖�‖F = (

∑N
i=1

∑N
j=1 σ2

ij)1/2.

Nearest Kronecker product for a space-time covariance matrix (NKPST) problem

Let � ∈ R
N×N be a space-time covariance matrix with N = nm. Find two matrices S ∈ R

n×n and
T ∈ R

m×m minimizing the Frobenius norm

‖� − S ⊗ T‖F (6)

The solution to the NKPST problem is given by the singular value decomposition (SVD) of a permuted
version of the matrix � and is presented in detail in Section 2. The remainder of the paper is set up as
follows. In Section 2, we further define an index that quantifies the error of the separable approximation
in the solution to the NKPST problem. We discuss properties of the space-time covariance matrix that
are preserved in the solution to the NKPST problem, such as symmetry, positive definiteness, and other
structures. We illustrate the separable approximation on a nonseparable space-time covariance function
used in modeling Irish wind speed data. In Section 3, we discuss the computational gains associated
with kriging with a separable covariance and describe the modeling of separable covariances. We derive
an expression for the increase in mean squared prediction error in simple kriging due to the separable
approximation and describe its application to the Irish wind speed data. We also investigate out-of-
sample predictive performance of separable approximations of space-time covariances on this data set.
We end the paper with a discussion in Section 4 of various extensions of the proposed methodology.

2. KRONECKER PRODUCT APPROXIMATIONS

In this section, we first describe the solution to the NKPST problem (6) based on the work of Van
Loan and Pitsianis (1992) in linear algebra, and then characterize the properties of the solution based on
typical features of space-time covariance matrices �. Recall that the Kronecker product A ⊗ B between
two matrices A ∈ R

n1×n2 and B ∈ R
m1×m2 is a matrix of dimension n1m1 × n2m2. It is an n1 × n2

block matrix whose ij-th block is the m1 × m2 matrix aijB. Recall also the vectorization operator which
transforms a matrix A ∈ R

n1×n2 into a vector vec(A) ∈ R
n1n2 by stacking the columns of A on top of

each other. The Kronecker product enjoys a very pleasant algebra, see, for example, Steeb (1997).
In the context of space-time data, the main computational advantage of separability is that the

number of parameters in the covariance matrix is reduced to n(n + 1)/2 + m(m + 1)/2 − 1 (the −1
corresponds to the additional constraint to make the model identifiable) based on S ∈ R

n×n and T ∈
R

m×m, compared to N(N + 1)/2 for a matrix � ∈ R
N×N based on a nonseparable covariance. In
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addition, the three following properties involving the inverse, the determinant, and the vectorization
of a matrix, respectively, are very attractive: (S ⊗ T )−1 = S−1 ⊗ T−1; |S ⊗ T | = |S|m|T |n; and (S ⊗
T )vec(�) = vec(T�S), where � ∈ R

m×n. In particular, the first and third properties are essential to
reduce the number of space-time kriging operations for large data sets, see Section 3.1.

2.1. Solution to the NKPST problem

The solution to the NKPST problem is given by the singular value decomposition of a permuted version
of the space-time covariance matrix � ∈ R

N×N . The main idea is to rearrange � into another matrix
R(�) ∈ R

n2×m2
such that the sum of squares that arise in (6) is exactly the same as the sum of squares

that arise in ‖R(�) − vec(S) ⊗ vec(T )T ‖F . Note thatR(�) is no longer a square matrix, unless n = m.
For illustration, consider the case of n = 3 spatial locations and m = 2 temporal locations, that is,
N = 6. The Frobenius norm (6) can be rewritten as:∥∥∥∥∥∥∥∥∥∥∥∥∥




σ11 σ12 σ13 σ14 σ15 σ16

σ21 σ22 σ23 σ24 σ25 σ26

σ31 σ32 σ33 σ34 σ35 σ36

σ41 σ42 σ43 σ44 σ45 σ46

σ51 σ52 σ53 σ54 σ55 σ56

σ61 σ62 σ63 σ64 σ65 σ66




−




s11 s12 s13

s21 s22 s23

s31 s32 s33


⊗

(
t11 t12

t21 t22

)
∥∥∥∥∥∥∥∥∥∥∥∥∥

F

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




σ11 σ21 σ12 σ22

σ31 σ41 σ32 σ42

σ51 σ61 σ52 σ62

σ13 σ23 σ14 σ24

σ33 σ43 σ34 σ44

σ53 σ63 σ54 σ64

σ15 σ25 σ16 σ26

σ35 σ45 σ36 σ46

σ55 σ65 σ56 σ66




−




s11

s21

s31

s12

s22

s32

s13

s23

s33




⊗
(

t11 t21 t12 t22
)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
F

(7)

For instance, the term σ12 − s11t12 (boxed above) appears on both sides of the equality (7), and so do
all other terms. It is then easily seen that defining the n2 rows ofR(�) as the transpose of the vectorized
m × m blocks of � yields

‖� − S ⊗ T‖F = ‖R(�) − vec(S) ⊗ vec(T )T ‖F ,

and also clearly ‖�‖F = ‖R(�)‖F . Thus, the NKPST problem has been reduced to a rank-
one approximation of a rectangular matrix, the solution of which is well-known (Golub and
Van Loan, 1996, p. 70–71). It is based on the singular value decomposition of R(�), that is,
UTR(�)V = � = diag(δ1, . . . , δq), where U ∈ R

n2×n2
and V ∈ R

m2×m2
are orthogonal matrices and

the singular values satisfy δ1 ≥ δ2 ≥ · · · ≥ δq ≥ 0, with q = rank(R(�)) = min{m2, n2}. The solution
to the NKPST problem is therefore given by

vec(S) =
√

δ1u1 and vec(T ) =
√

δ1v1 (8)
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where u1 and v1 are the first column of U and V , respectively. This elegant solution to the NKPST
problem of course results from the use of the Frobenius norm in (6) and the choice of other norms would
lead to a computationally difficult optimization problem. Note also that the separable approximation (6)
of a correlation matrix is not equal to the correlation matrix associated with the separable approximation
(6) of a covariance matrix, although the difference is usually rather small.

A natural question is how ‘good’ is the approximation from the NKPST solution? To this end, we
define a separability approximation error index κ�(S, T ) of a matrix � approximated by the Kronecker
product of two matrices S and T by

κ�(S, T ) = ‖� − S ⊗ T‖F

‖�‖F

The separability approximation error index takes values between zero (if � is separable) and
√

1 − 1/q,
and is minimized by the solutions S and T of the NKPST problem. It can be rewritten as a function of
the singular values δ1 ≥ · · · ≥ δq ≥ 0 ofR(�), in the form

κ�(S, T ) =
√∑q

i=2 δ2
i∑q

i=1 δ2
i

which is equal to zero if the matrix � is separable since δ2 = · · · = δq = 0 in that case. The upper
bound of κ� is essentially 1 for large space-time data sets.

2.2. Structured covariance matrices

A covariance matrix � based on a valid covariance function (1) is symmetric and positive definite. In
addition, it has sometimes a patterned structure that can be exploited computationally in algorithms
that require the evaluation and the inversion of �, see Zimmerman (1989). In particular, kriging can be
performed more efficiently with a structured covariance matrix, for example, a block Toeplitz matrix
or a banded matrix.

Recall that a matrix � is said to be of Toeplitz form if its entries are constant on each diagonal. It is
block Toeplitz if its blocks are constant on each block diagonal. Toeplitz and block Toeplitz structures
arise naturally in applications with gridded data and stationary processes. For instance, a spatial process
with equidistant observations in R

1 and with a stationary covariance function yields a symmetric Toeplitz
covariance matrix. The same process on a regular grid in R

2 with an isotropic stationary covariance
function yields a symmetric block Toeplitz covariance matrix with Toeplitz blocks. Moreover, if there is a
regular temporal component with stationary covariance in time, the resulting space-time covariance ma-
trix has an additional block Toeplitz structure. If the covariance function is compactly supported, then the
resulting matrix � will have a banded structure, that is, it will be sparse because certain entries are zero.

We know the Kronecker product has a pleasant algebra, and for example, if the matrices S and
T are either symmetric, positive definite, banded, Toeplitz, non-negative, orthogonal, nonsingular, or
lower/upper triangle, then S ⊗ T is either symmetric, positive definite, banded, block Toeplitz, non-
negative, orthogonal, nonsingular, or lower/upper triangle. The question is whether the reverse is true? In
other words, how are the properties of the solutions S and T of the NKPST problem related to those of �?

The answer is that properties of the space-time covariance matrix �, such as symmetry, positive
definiteness, bandedness, non-negativity, and Toeplitz structures, are preserved by the solutions S and
T of the NKPST problem. We summarize these results in the following proposition.

Propositon 1. Let S ∈ R
n×n and T ∈ R

m×m be the solutions to the NKPST problem for � ∈ R
N×N .

Then:
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(a) If � is symmetric positive definite, then S and T are symmetric positive definite.
(b) If � has bandwidth pm and each m × m block in � has bandwidth q or less, then S has bandwidth

p and T has bandwidth q.
(c) If � is non-negative, then S and T are non-negative.
(d) If � is block Toeplitz, then S and T are Toeplitz matrices.

The proof of (a), (b), and (c) can be found in Van Loan and Pitsianis (1992), whereas the proof of (d)
is given by Kamm and Nagy (2000).

2.3. Application to a covariance model for Irish wind speed data

The goal of this section is to illustrate how closely a covariance matrix based on a parametric
nonseparable space-time covariance function can be approximated by a separable one. We consider a
covariance model used by Gneiting et al. (2007) in a study of Irish wind speed. The data consists of time
series of 6574 daily average wind speed recorded during the period 1961–1978 at n = 11 meteorological
stations. The structure of the records is poor in space but rich in time, with a total of N = 72 314 space-
time coordinates. We refer to Haslett and Raftery (1989) for further information about this data set and to
Gneiting (2002b), de Luna and Genton (2005), Stein (2005, 2006), and Gneiting et al. (2007) for subse-
quent analyses. In particular, we use the same square root transformation, estimated seasonal effect and
spatially varying mean as in the latter paper, yielding a so-called data of velocity measures. In addition, we
also use the same split of the data into a training period (1961–1970) and a testing period (1971–1978) in
order to investigate out-of-sample predictive performance of our separable approximation in Section 3.

Gneiting et al. (2007) considered a stationary but generally nonseparable correlation function model
of the form

C(h, u) =



1
1+a|u|2α if h = 0,

1−ν

1+a|u|2α exp
( −c‖h‖

(1+a|u|2α)β/2

)
otherwise,

(9)

where a and c are temporal and spatial nonnegative scale parameters, respectively, and α ∈ (0, 1] is a
smoothness parameter. The parameter β ∈ [0, 1] controls the space-time interaction and β = 0 yields
a space-time separable correlation function, for which the spatial correlations at different temporal
lags u are proportional to each other. The weighted least squares estimates of the parameters of (9)
from the training data of velocity measures during 1961–1970 are â = 0.972, ĉ = 0.00128, α̂ = 0.834,
ν̂ = 0.0415, and β̂ = 0.681. In this fit, the usable range of lags was ‖h‖ ≤ 450 km in space and |u| ≤ 3
days in time, the latter being motivated by one-day ahead forecasts at the stations. Therefore, we
consider the covariance matrix � ∈ R

N×N with N = 11 × 4 = 44, based on the fitted model (9) and the
station-specific spatial empirical variances of the velocity measures during the training period. Because
β̂ = 0.681 > 0, the covariance matrix is nonseparable, and apparently rather ‘highly’ nonseparable due
to β̂ being larger than 1/2.

Next, we consider the NKPST approximation of the covariance matrix �. First, notice that � is a
block Toeplitz matrix due to equispaced lags in time, but each block is not of Toeplitz form, due to the
irregularly spaced coordinates of the meteorological stations. This structure is visualized in the top-left
panel of Figure 1 by a contour plot of the entries of �. The NKPST approximation of � is depicted
by a contour plot of its entries in the top-right panel of Figure 1. Notice the similarity between those
two panels, which is confirmed by a small separability approximation error index of κ�(S, T ) = 1.4%.
This is due to the q = min{42, 112} = 16 singular values of R(�) plotted in the bottom-left panel
of Figure 1, where only the first singular value is large. We further investigate the sensitivity of the
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separability approximation error index as a function of β in the bottom-right panel of Figure 1. The
bold curve is for m = 4 and the other curves for larger matrices � with m = 10, 20, and 50. The
vertical dashed line is at β̂ = 0.681. Overall, we can see that the separability approximation error index
is not larger than 2%, even in the most nonseparable settings described previously, thus indicating a

Figure 1. Covariance matrix � based on (9) for the Irish wind speed data estimated during the period 1961–1970. Top row:
contour plots of the entries of � (left) and of the entries of its nearest Kronecker product approximation (right). Bottom row:
singular values ofR(�) (left) and separability approximation error index as a function of β (right). The bold curve is for m = 4

and the other curves for m = 10, 20, and 50. The vertical dashed line is at β̂ = 0.681
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good NKPST approximation of �. Of course, this small index, based on the Frobenius norm, does not
necessarily mean that the NKPST approximation is good in terms of mean squared prediction error in
kriging. We investigate this question in Section 3.

3. KRIGING WITH SEPARABLE COVARIANCES

3.1. Separable kriging

From a computational point of view, the solution (8) to the NKPST problem only requires the largest
singular value and corresponding singular vectors of R(�), not all of them. This can be performed
very efficiently by means of the SVD Lanczos algorithm of Golub et al. (1981). Moreover, the explicit
formation of R(�) is not necessary, and additional gains in computational efficiency can be obtained
by exploiting the structure of the matrix �, for example, such as bandedness and/or a Toeplitz structure,
see Kamm and Naggy (2000). This is important when dealing with large space-time data sets.

As described in the introduction, kriging requires solving an N × N linear system based on
the covariance matrix �, a computationally difficult task for large N. However, the separability
approximation of � by S ⊗ T leads to important gains in computational efficiency. Indeed, linear
systems of the form

(S ⊗ T )λ = b, (10)

where λ is the vector of kriging weights and b is the vector of covariances between each observation
and the new location, can be solved fast. For example, if n = m, then λ can be obtained in O(m3)
flops (floating point operations) via the LU factorizations of S and T , see Van Loan and Pitsianis
(1992). Without the exploitation of structure, an m2 × m2 system would normally require O(m6) flops.
Specifically, from the vectorization property listed at the beginning of Section 2, the system (10) is
equivalent to T�S = B with vec(�) = λ and vec(B) = b, that is, TY = B and �S = Y with Y ∈ R

m×n.
As an illustration, Table 1 reports necessary times (in seconds) to solve an N × N linear system in the

Table 1. Necessary times (in seconds) to solve an N × N linear system in Matlab for kriging at one new location
based on an unstructured covariance matrix and a Kronecker structure. (Linux, 2.66 GHz Xeon processor with

16 Gbytes RAM)

n = m N Unstructured Kronecker

16 256 0.0038 0.0002
25 625 0.0368 0.0003
36 1296 0.2513 0.0005
49 2401 1.4570 0.0007
64 4096 6.6984 0.0011
81 6561 25.4700 0.0018

100 10 000 — 0.0023
400 160 000 — 0.0830
900 810 000 — 0.7632

1600 2 560 000 — 3.9053
2500 6 250 000 — 14.3256
3600 12 960 000 — 41.3395
4900 24 010 000 — 102.0876
6400 40 960 000 — —

Copyright © 2007 John Wiley & Sons, Ltd. Environmetrics 2007; 18: 681–695
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numerical software package Matlab (on Linux, 2.66 GHz Xeon processor with 16 Gbytes RAM) for
kriging at one new location. For simplicity, we set n = m. We compare kriging based on an unstructured
covariance matrix with kriging based on a Kronecker structure. Table 1 shows that the computational
gains arising from the Kronecker structure are important. A dash in the table indicates that there is a
computer memory problem to solve the linear system. This occurs much earlier for the unstructured
system than for the one with a Kronecker structure. Note also that the computation of a spatio-temporal
map requires kriging at many new locations. In addition, further savings of time will result from the
Kronecker structure when computing maps of kriging variances.

In order to perform kriging, the space-time covariance matrix � needs first to be estimated. Denote by
�̂ the estimate of � obtained either from space-time replicates or under a stationarity assumption. Then,
compute the solutions Ŝ and T̂ of the NKPST problem for �̂. Fit a parametric spatial covariance model
CS to Ŝ and a parametric temporal covariance model CT to T̂ . The final separable parametric space-time
covariance model is C = CSCT . Observe that Ŝ and T̂ capture the possible space-time nonseparability
in �̂.

3.2. MSPE with separable approximations

We investigate the NKPST approximation in terms of mean squared prediction error (MSPE) in kriging.
Assume the random field Z is observed at N space-time coordinates, and for simplicity, that it has a
zero mean function. The problem of interest is to predict Z at a new set of L arbitrary space-time
coordinates, denoted by Z0 = (Z(s01, t01), . . . , Z(s0L, t0L))T based on the vector of observations Z =
(Z(s1, t1), . . . , Z(sN, tN ))T . We further assume that the vector (ZT , ZT

0 )T has a multivariate normal
joint distribution, NN+L(0, �̃), where �̃ is partitioned according to

�̃ =
(

� �Z0

�0Z �00

)
(11)

with � ∈ R
N×N , �Z0 ∈ R

N×L, �0Z ∈ R
L×N , and �00 ∈ R

L×L. As mentioned in the introduction, the
simple kriging predictor (2) of Z0 is

Ẑ0 = �0Z�−1Z,

with associated mean squared prediction error given by

MSPE(Ẑ0) = tr
[
�00 − �0Z�−1�Z0

]
,

where tr denotes the trace of a matrix. Suppose now that instead of �̃, we use �̃ = S ⊗ T , where S

and T are the solutions to the NKPST approximation of �̃. With the same partition of �̃ as in (11), the
simple kriging predictor of Z0 based on the separable covariance matrix �̃, while the true covariance
matrix is �̃, is

Ẑ∗
0 = �0Z�−1Z,
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with associated mean squared prediction error given by

MSPE(Ẑ∗
0) = tr

[
�00 + �0Z�−1��−1�Z0 − 2�0Z�−1�Z0

]
We define the relative difference in mean squared prediction error τ by the ratio

τ = MSPE(Ẑ∗
0) − MSPE(Ẑ0)

MSPE(Ẑ0)
(12)

which can be checked to be always positive, except when the covariance matrix �̃ is separable, in which
case τ = 0. Thus, τ measures the effect of using a separable approximation of the space-time covariance
matrix �̃ in terms of mean squared prediction error.

As an illustration, we return to the Irish wind speed data considered in Section 2.3. Motivated by
one-day ahead forecasts at the stations from time lags of three days, we consider the covariance matrix
�̃ with N = 33 and L = 11 based on the fitted model (9) and the station-specific spatial empirical
variances of the velocity measures during the training period. However, we allow β to vary in its
admissible range and thus, τ = τ(β). Figure 2 depicts the relative difference in mean squared prediction
error τ(β) as a function of β. At the estimate β̂ = 0.681, represented by the vertical dashed line, we
have τ(0.681) = 0.35%, which is small. Even at the most nonseparable model for this example, the
relative difference in mean squared prediction error is only τ(1) = 0.72%. This suggests that there is
little loss in terms of mean squared prediction error in using a separable approximation of the space-time
covariance matrix used in this case.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

x 10
−3        Relative Difference in Mean Squared Prediction Error

β

Figure 2. Relative difference in mean squared prediction error τ(β) as a function of β based on (9) for the Irish wind speed data
estimated during the period 1961–1970. The vertical dashed line is at β̂ = 0.681
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Figure 3. Root mean squared error at each of the 11 stations for the forecasts of Irish wind velocity measures during the 1971–
1978 testing period based on the nonseparable covariance matrix (solid line) fitted during the 1961–1970 training period and its

separable approximation (dashed line)

3.3. Predictive performance on Irish wind speed data

In order to assess the predictive performance of separable approximations of space-time covariance
matrices, we consider time forward predictions of the Irish wind velocity measures during the 1971–
1978 testing period based on the 1961–1970 training data. Specifically, we consider one-day ahead
simple kriging forecasts at the stations from time lags of three days. We compare the fitted model (9)
based on station-specific spatial empirical variances of the velocity measures during the training period,
with its separable approximation. We compute root mean squared errors (RMSE) over the testing period
of 2920 days for the forecasts based on these two space-time covariance models that were described in
the top row of Figure 1.

Figure 3 depicts the RMSE at each of the 11 stations for the forecasts based on the nonseparable
covariance matrix (solid line) and its separable approximation (dashed line). Overall, the differences
in RMSE appear to be very small in this example. The RMSE for forecasts based on the separable
approximation are slightly larger than those based on the nonseparable covariance for stations 5–9
(more so for station 5) but are even slightly smaller for stations 1–4. Thus, in this example, there is little
loss in terms of RMSE when using a separable approximation of the space-time covariance matrix for
kriging forecasts.

4. DISCUSSION AND EXTENSIONS

We have proposed a general methodology for computing separable approximations of space-time
covariance matrices and illustrated that it results in small differences in prediction error while providing
computational savings for large space-time data sets. Although we do not claim that separable
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covariances should be used as a routine, we feel that existing nonseparable parametric covariance models
do not produce as much nonseparability as one would think at first sight. We believe also that those
ideas can be applied to many other settings, including likelihood-based problems and non-space-time
frameworks. We now discuss briefly some extensions.

First, additional computational savings can be obtained by separable approximations in both space-
time and space. Specifically, a separable approximation of the space-time covariance matrix� is obtained
by minimization of ‖� − S ⊗ T‖F , as described in this paper. Then, a separable approximation of the
spatial covariance matrix S ∈ R

n×n is obtained by minimization of ‖S − S1 ⊗ S2‖F , where S1 ∈ R
n1×n1

and S2 ∈ R
n2×n2 are two spatial covariance matrices with n = n1n2. Hence, we have the separable

approximation � ≈ S1 ⊗ S2 ⊗ T . Unfortunately, a direct minimization of ‖� − S1 ⊗ S2 ⊗ T‖F does
not have a closed-form SVD solution, see Van Loan (2000).

Another interesting direction consists in combining separable approximations with the tapering
approach of Furrer et al. (2006). Indeed, in the NKPST problem, the optimization of (6) can be performed
under constraints in order for the solution to have a prescribed structure, such as sparsity patterns or
even a Toeplitz form. Those are imposed with constraints of the form

PT
1 vec(S) = 0 and PT

2 vec(T ) = 0

where P1 ∈ R
n2×p1 and P2 ∈ R

m2×p2 have full column rank. The solution of the constrained
optimization problem is again obtained from an SVD decomposition, now of QT

P1
R(�)QP2 , where

QP1 and QP2 result from a QR decomposition of P1 and P2, see Van Loan and Pitsianis (1992). Thus,
one can find the separable approximation of a nonseparable space-time covariance matrix while, for
example, imposing a banded Toeplitz structure on the temporal covariance matrix T . In that case, it is
expected that a combination of computational gains, reported in Table 1 for Kronecker structures and
in Furrer et al. (2006) for tapering, can be achieved.

Sometimes, the covariance matrices � and T (or � and S) are given, for instance if the covariance
matrix in time (or in space) is known. Then, the optimization of (6) is a frozen factor NKPST problem,
that is, it reduces to linear least squares that can be solved easily.

When not only the first singular value δ1 ofR(�) is large, then the separable approximation will not
be accurate and we can consider approximations with sums of Kronecker products by minimizing

∥∥∥∥∥� −
r∑

i=1

Si ⊗ Ti

∥∥∥∥∥
F

the solution of which is given by

vec(Si) =
√

δiui and vec(Ti) =
√

δivi

for i = 1, . . . , r, r ≤ q, based on the notation in Section 2.1. Kriging linear systems with this sum of
Kronecker products structure can still be solved more efficiently than those without pattern. For example
when r = 2, the generalized Schur decomposition triangularizes simultaneously the matrices S1 and
S2, and T1 and T2, leading to a generalized Sylvester equation problem, see Gardiner et al. (1992).

When dealing with several variables evolving in space and time, that is, multivariate space-time
stochastic processes, cokriging approaches are used. However, it is well-known that cokriging is
computationally very costly already when considering a few variables. The separable approximation
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techniques described in this paper can be used in this context too, in order to reduce the computational
burden of cokriging.

Finally, separable approximations can also be used directly on the data, rather than on a covariance
matrix. Indeed, separable process approximation can be achieved by the same SVD technique described
in Section 2.1 since it is not restricted to square matrices.
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Brown P, Kåresen K, Roberts G, Tonellato S. 2000. Blur-generated nonseparable space-time models. Journal of the Royal

Statistical Society Series B 62: 847–860.
Cressie N. 1993. Statistics for Spatial Data. Wiley: New York.
Cressie N, Huang H-C. 1999. Classes of nonseparable, spatiotemporal stationary covariance functions. Journal of the American

Statistical Association 94: 1330–1340.
de Luna X, Genton MG. 2005. Predictive spatio-temporal models for spatially sparse environmental data. Statistica Sinica 15:

547–568.
Furrer R, Genton MG, Nychka D. 2006. Covariance tapering for interpolation of large spatial datasets. Journal of Computational

and Graphical Statistics 15: 502–523.
Fuentes M. 2006. Testing for separability of spatial-temporal covariance functions. Journal of Statistical Planning and Inference

136: 447–466.
Gardiner J, Wette MR, Laub AJ, Amato JJ, Moler CB. 1992. Algorithm 705: A FORTRAN-77 software package for solving the

Sylvester matrix equation AXBT + CXDT = E. ACM Transactions on Mathematical Software 18: 232–238.
Genton MG, Koul HL. 2007. Minimum distance inference in unilateral autoregressive lattice processes. Statistica Sinica,

in press.
Gneiting T. 2002a. Compactly supported correlation functions. Journal of Multivariate Analysis 83: 493–508.
Gneiting T. 2002b. Nonseparable, stationary covariance functions for space-time data. Journal of the American Statistical

Association 97: 590–600.
Gneiting T, Genton MG, Guttorp P. 2007. Geostatistical space-time models, stationarity, separability and full symmetry. In

Statistics of Spatio-Temporal Systems. Monographs in Statistics and Applied Probability. Finkenstaedt B, Held L, Isham V
(eds). Chapman & Hall/CRC Press, Boca Raton, Florida, 151–175.

Golub G, Luk F, Overton M. 1981. A block Lanzcos method for computing the singular values and corresponding singular vectors
of a matrix. ACM Transactions on Mathematical Software 7: 149–169.

Golub G, Van Loan C. 1996. Matrix Computations (3rd edn). The Johns Hopkins University Press: London.
Guo J-H, Billard L. 1998. Some inference results for causal autoregressive processes on a plane. Journal of Time Series Analysis

19: 681–691.
Haslett J, Raftery AE. 1989. Space-time modelling with long-memory dependence: Assessing Ireland’s wind-power resource.

Applied Statistics 38: 1–50.
Kamm J, Nagy JG. 2000. Optimal Kronecker product approximation of block Toeplitz matrices. SIAM Journal on Matrix Analysis

and Applications 22: 155–172.
Kyriakidis PC, Journel AG. 1999. Geostatistical space-time models: a review. Mathematical Geology 31: 651–684.
Li B, Genton MG, Sherman M. 2007. A nonparametric assessment of properties of space-time covariance functions. Journal of

the American Statistical Association, 102: 736–744.
Ma C. 2003. Families of spatio-temporal stationary covariance models. Journal of Statistical Planning and Inference 116: 489–

501.
Matsuda Y, Yajima Y. 2004. On testing for separable correlations of multivariate time series. Journal of Time Series Analysis 25:

501–528.
Mitchell M, Genton MG, Gumpertz M. 2005. Testing for separability of space-time covariances. Environmetrics 16: 819–831.
Mitchell M, Genton MG, Gumpertz M. 2006. A likelihood ratio test for separability of covariances. Journal of Multivariate

Analysis 97: 1025–1043.

Copyright © 2007 John Wiley & Sons, Ltd. Environmetrics 2007; 18: 681–695
DOI: 10.1002/env



SPACE-TIME COVARIANCE MATRICES 695

Scaccia L, Martin RJ. 2005. Testing axial symmetry and separability of lattice processes. Journal of Statistical Planning and
Inference 131: 19–39.

Shitan M, Brockwell P. 1995. An asymptotic test for separability of a spatial autoregressive model. Communications in Statistics—
Theory and Methods 24: 2027–2040.

Steeb W-H. 1997. Matrix Calculus and Kronecker Product with Applications and C++ Programs. World Scientific: Singapore.
Stein ML. 1988. Asymptotically efficient prediction of a random field with a misspecified covariance function. The Annals of

Statistics 16: 55–63.
Stein ML. 1990. Uniform asymptotic optimality of linear prediction of a random field using an incorrect second-order structure.

The Annals of Statistics 18: 850–872.
Stein ML. 2005. Space-time covariance functions. Journal of the American Statistical Association 100: 310–321.
Stein ML. 2006. Statistical methods for regular monitoring data. Journal of the Royal Statistical Society Series B 67: 667–687.
Van Loan CF. 2000. The ubiquitous Kronecker product. Journal of Computational and Applied Mathematics 123: 85–100.
Van Loan CF, Pitsianis N. 1992. Approximation with Kronecker products. In Linear Algebra for Large Scale and Real-Time

Applications, De Moor BLR, Moonen MS, Golub GH (eds). Kluwer Publications, Dordrecht, The Netherlands, 293–314.
Zimmerman D. 1989. Computationally exploitable structure of covariance matrices and generalized covariance matrices in spatial

models. Journal of Statistical Computation and Simulation 32: 1–15.

Copyright © 2007 John Wiley & Sons, Ltd. Environmetrics 2007; 18: 681–695
DOI: 10.1002/env


