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Summary. In the study of variable stars, where the light reaching an observer fluctuates over
time, it can be difficult to explain the nature of the variation unless it follows a regular pattern.
In this respect, so-called periodic variable stars are particularly amenable to analysis. There,
radiation varies in a perfectly periodic fashion, and period length is a major focus of interest.We
develop methods for conducting inference about features that might account for departures from
strict periodicity. These include variation, over time, of the period or amplitude of radiation. We
suggest methods for estimating the parameters of this evolution, and for testing the hypothesis
that the evolution is present. This problem has some unusual features, including subtle issues
of identifiability.
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1. Introduction

The light that is emitted by some stars in the heavens varies very nearly periodically with time.
However, in other cases there is evidence that the ‘light curve’, as it is sometimes called, is not
quite periodic. Either the period or the amplitude of radiation evolves slowly over time, even
if the basic underlying shape of the curve does not alter. For discussion of these issues see,
for example, Eyer and Genton (1999), Koen (2005), Rodler and Guggenberger (2005), Sterken
(2005) and Hart et al. (2007).

Physical considerations suggest that the nature of period or amplitude evolution might be rel-
atively simple. In particular, either quantity may slowly increase or decrease over time, perhaps
linearly. Departures from linear change might be explainable in terms of low degree polynomials,
e.g. quadratics.

Of course, in the context of changes to period, an astronomer envisages adjustments that
occur in the continuum, rather than discretely. Therefore, a function that is ‘basically’ periodic,
but has a changing period, is modelled by applying a periodic function to another function that
represents a monotone, continuous time change.

Problems of this nature have unusual subtle aspects, which should guide our approaches to
modelling and inference. In particular, any positive function can be derived from any other by
simply changing its amplitude over time. Substantial changes in the shape of a periodic function
can be produced by merely altering the period, without changing the amplitude.
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These issues might be thought to argue in favour of a parametric, rather than non-parametric,
treatment, carefully constructed to avoid the problems of identifiability that were foreshadowed
above. However, the very rich variety of light curves that are observed in even periodic settings
suggests that a highly adaptive non-parametric argument should lie at the heart of any broadly
applicable approach to inference about evolving periodic functions.

We shall take this view, modelling the periodic function in a non-parametric way but assuming
simple parametric models for period and amplitude change. This approach allows us to estim-
ate the periodic function with non-parametric convergence rates, although we may estimate
the period at rate n−3=2, where n denotes sample size. This high degree of accuracy reflects the
fact that very small mathematical departures from the correct period can lead to large visual
departures in the data.

Our work is motivated by data on the Mira variable R Hydrae, a long period variable star
of which the period and amplitude have been evolving through time. Fig. 1 depicts data on
the magnitude (brightness) of this star during 1900–1950 (Fig. 1(a)) and 1950–2001 (Fig. 1(b))
with an irregular time design. On the basis of these data, and using wavelet methods, Zijlstra
et al. (2002) reported a decline in the period of R Hydrae, from about 420 to 380 days during
1900–1950, accompanied by a decline in its semiamplitude from magnitude 2.4 to 1.7. Zijlstra
et al. (2002) also concluded that the period and semiamplitude of R Hydrae stabilized during
1950–2001, to about 385 days and magnitude 1.7 respectively. From Fig. 1, it is difficult to val-
idate these claims visually. We shall investigate them by using the methods that are developed
in this paper.

There is a large literature on statistical analysis of data on variable stars. The method that is
most favoured among astronomers is based on the periodogram and can be traced to influential
work of Barning (1963), Lomb (1976), Ferraz-Mello (1981) and Scargle (1982). Recent instances
of its application are to be found in the contributions of de Cat and Aerts (2002), DePoy et al.
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Fig. 1. Light curve of the Mira variable R Hydrae: (a) 1900–1950; (b) 1950–2001
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(2004), Lanza et al. (2004), Aerts and Kolenberg (2005), Maffei et al. (2005) and Hall and
Li (2006).

Evolving periods might also be tackled by using the notion of time-varying spectra; see, for
example, Dahlhaus (1997) and Neumann and von Sachs (1997). However, we shall take a time
domain approach, as in the work of Hall et al. (2000) and Hall and Yin (2003).

This paper is organized as follows. In Section 2, we describe various models for functions
with evolving period and amplitude, and discuss methodology for statistical inference in this
setting. We illustrate the numerical properties of our methods in Section 3, using simulated and
real data. In Section 4 we outline theoretical properties, including convergence rates. All proofs
are collected together in Appendix A.

2. Models and methodology

2.1. Functions with evolving period and amplitude
Let g0 denote a periodic function with unit period, and let t be a continuously differentiable,
strictly increasing function. Represent time by x, and define tx = t.x/ and t′x = t′.x/> 0. We shall
consider t to provide a change of time, from x to tx.

Against this background, assume that a function g can be represented as

g.x/=g0.tx/: .1/

We may think of g as having period 1=t′x at time x. Indeed, for small u> 0,

g.x+u/=g0{tx + t′xu+o.u/}:

Since the function d.u/=g0.tx + t′xu/ has period 1=t′x, then, if the time transformation tx+u were
to continue in a linear way for u > 0, g would have period 1=t′x at all future times x +u. More
generally, without the assumption of linearity, the function g that is given by equation (1) can
be considered to have a period px ≡1=t′x that evolves as time x increases.

Amplitude, also, can evolve. Indeed, if a > 0 is a smooth function, representing amplitude,
and if we write ax for a.x/, then, from some points of view, we might generalize equation (1) to

g.x/=ax g0.tx/: .2/

In this case we might, perhaps, consider g to have period 1=t′x, and amplitude ax g0.tx/, at x.
The concept of evolving amplitude must be treated cautiously, however. Whereas changing

time can alter only the distances between successive peaks and troughs in the function g0, chang-
ing both amplitude and time can produce a function which is entirely different. In particular, any
smooth, strictly positive function g can be constructed as at equation (2), with a > 0 denoting
a smooth change in amplitude, tx ≡ x being the identity transformation, and g0 denoting any
strictly positive smooth function, periodic or otherwise.

A conclusion to be drawn from this discussion is that, unless amplitude is determined by a
relatively simple parametric model, and unless it changes only very slowly over time, relative to
the lengths of periods, it can interact too greatly with period to be interpretable independently
of period.

It is possible for non-identifiability of g0 to occur even when a ≡ 1 and the function t has a
simple parametric form. For example, suppose that, in the particular case p=1,

tx+kp = tx +k for each x∈ [0, 1] and each integer k �1: .3/

(We can think of expression (3) as defining a time change function t with ‘pseudoperiod’ p.)
Then, since g0 has period 1, it follows that g0.tx+k/=g0.tx/ for each x and each integer k. There-
fore, the periodic function g ≡ g0.t/ is representable as either a time-changed version of the
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function g0 with unit period or more directly as the non-time-changed function g1 ≡g0.t/ with
unit period. If we consider this particular time change function t, and also the identity time
change ι.x/ ≡ x, to be members of a larger parametric class, T say, of time change functions,
then there is ambiguity in determining the member s of T that enables us to represent g ≡g0.t/

as g =g2.s/ where g2 has period 1.

2.2. Models for period
We shall view equation (2) as a model for a regression mean function g, where the func-
tions a and t are determined parametrically and g0 is treated non-parametrically. For equation
(2) to be readily interpretable in astronomical terms, it is helpful for the models for t to be
quite simple. For example, taking tx = θ−1

2 log.θ1 + θ2x/ + θ3, for constants θ1 > 0, θ2 and θ3,
implies that 1=t′x = θ1 + θ2x. In this case the initial period is θ1, and the period increases
linearly with time, with slope θ2. (Of course, θ2 < 0 implies decreasing period.) If we start
measuring time at zero when x = 0 then we require θ3 = −θ−1

2 log.θ1/, and then the model
becomes

tx =θ−1
2 log.1+θ−1

1 θ2x/: .4/

We might refer to equation (4) as a ‘linear model’, since it results from a linear model for
period. Analogously we could refer to the model

tx = .θ1θ2/−1{1− exp.−θ2x/}, .5/

for which 1=t′x =θ1 exp.θ2x/, as an ‘exponential model’. It is an attractive alternative to the linear
model in certain cases. In particular, its period is unequivocally positive. The condition of pos-
itivity can be awkward to ensure in the case of a decreasing linear model for period. However,
the exponential model is seldom physically reasonable if |θ2| is large; only for small |θ2| is it
attractive, and there it is close to the linear model. On grounds of pragmatism, our numerical
and theoretical work will be for the model

tx =θ−1
1 x+θ2x2 + . . . + θkxk, 0�x�n, .6/

where k �1. An exponentiated version of equation (6) is also possible.
In models (4)–(6), and in a realistic theoretical setting where data are assumed to be observed

at an approximately constant rate over a time interval [0, n] of increasing length n, usually only
the parameter θ1, representing period at time x = 0, would be kept fixed as n increased. The
parameters θ2, . . . , θk would typically decrease to 0 with n, and in fact would usually decrease
at such a rate that nj−1|θj| was at least bounded. This would prevent the period from changing
by an order of magnitude over the observation–time interval.

2.3. Models for amplitude
Models for the function ax can be similar to those for tx. However, to avoid identifiability prob-
lems we should insist that ax =1 at the initial time, so that initial amplitude is incorporated in
the function g0 and not duplicated in ax. Bearing this in mind, and taking the initial time to be
x=0, potential models include

ax =1+ω1x+ . . . + ωlx
l, 0�x�n, .7/

and its exponentiated form, ax =exp.ω1x+ . . .+ ωlx
l/. For both these models, theoretical anal-

ysis requires an assumption, such as supn sup1�j�l.n
j|ωj|/ <∞, to ensure that the amplitude

does not alter by an order of magnitude over the observation time interval.
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2.4. Model for data generation
Assume that data .X1, Y1/, . . . , .Xn, Yn/ are generated by the model

Yi =a.Xi|ω0/g0{t.Xi|θ0/}+ "i, .8/

where ax = a.x|ω/ and tx = t.x|θ/ are smooth positive functions that are determined by finite
vectors ω and θ of unknown parameters, ω0 and θ0 denote the true values of the respective
parameters, t.·|θ/ is strictly increasing, a.·|ω/ is bounded away from 0 and ∞, and the experi-
mental errors "i are independent with zero means and uniformly bounded variances. In particu-
lar, t.·|θ/ and a.·|ω/ could be any one of the models that were introduced in Sections 2.2 and 2.3
respectively. In model (8), Yi denotes star brightness and is measured on a logarithmic scale in
units of apparent magnitude.

As in Section 2.1, g0 is assumed to be a smooth periodic function with period 1. Therefore, even
if the regression mean, g.x/=a.x|ω/g0{t.x|θ/}, were a conventional periodic function, without
any amplitude or time change, the period, p say, would be inherited from the time change func-
tion t.x|θ/, which here would be linear: t.x|θ/=x=p and θ=p, a scalar. We shall take a.0|ω/=1
if x=0 is the earliest time point on our scale, so that amplitude is inherited from g0.

Similar results, and in particular identical convergence rates of estimators, are obtained for
a variety of processes Xi that are weakly stationary and weakly independent. They include the
cases where the Xis are n points of a homogeneous Poisson process with intensity μ−1 on the
positive real line, or n independent random variables, each uniformly distributed on the interval
[0, nμ] or the values of ‘jittered grid’ data jμ+Vj, where the variables Vj are independent and
identically distributed on a finite interval. In each of these cases the average spacing between
adjacent data is asymptotic to μ as n →∞. To avoid aliasing, particularly in cases where the
period θ does not change over time, the Xis should not be located on a grid.

2.5. Estimators
To estimate g0, ω and θ, put

ĝ0{t.x|θ/|θ, ω}=∑

i

a.Xi|ω/−1Yi Ki.x|θ/
/∑

i

Ki.x|θ/, .9/

S.θ, ω/=∑

i

[Yi −a.Xi|ω/ ĝ0{t.Xi|θ/|θ, ω}]2, .10/

where Ki.x|θ/=K[{x.θ/−Xi.θ/}=h], K is a kernel function, h is a bandwidth,

x.θ/= t.x|θ/−�t.x|θ/�,

Xi.θ/= t.Xi|θ/−�t.Xi|θ/�,

and �u� denotes the largest integer strictly less than u.
Let .θ, ω/ = .θ̂, ω̂/ be the minimizer of S.θ, ω/. Then, potentially using, to construct ĝ0, a

bandwidth which is different from that employed at equations (9) and (10), our estimator of
g0 is ĝ0.·|θ̂, ω̂/. Estimators of the time change function tx = t.x|θ0/ and amplitude function
ax = a.x|ω0/ are given by t̂x = t.x|θ̂/ and âx = a.x|ω̂/ respectively. We estimate g, defined at
equation (2), as ĝ.x/= âx ĝ0.t̂x/.

2.6. Hypothesis tests
We illustrate our approach by considering a particular case, where

(a) ax ≡1, so that the amplitude does not alter,
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(b) tx is given by equation (4) or, equivalently, the period evolves linearly, as 1=t′x =θ1 +θ2x,
and

(c) we test H0 : θ2 =0 against H1 : θ2 	=0 or H2 : θ2 > 0, i.e. we test the null hypothesis of per-
fect periodicity against the alternative of linearly changing period or linearly increasing
period respectively.

Modification of cases (a)–(c) for other contexts is straightforward.
The suggested procedure is as follows.

Step 1: estimate θ = .θ1, θ2/ and g0, and thence g, under H1.
Step 2: compute residuals by subtracting the estimator of g.Xi/ from Yi.
Step 3: standardize the residuals by correcting for scale and centring. Scale correction would
be particularly appropriate if standard deviation estimates were available for each observa-
tion; this is sometimes the case for star brightness data (see for example Hall et al. (2000)).
Step 4: using steps 1–3, and perhaps employing a parametric estimate for g0 that is suggested
by the non-parametric estimate, simulate under H0.
Step 5: using the technique of step 4, and the percentile method bootstrap, calculate an upper
critical point for the distribution of |θ̂2|, if we are testing against H1, or for the distribution
of θ̂2, if we are testing against H2.
Step 6: reject H1 or H2 if the observed value of |θ̂2| or θ̂2 respectively exceeds the upper critical
point.

When implementing the bootstrap in step 5 we condition on the observation times Xi, and
so the resampling operation involves resampling only from the collection of standardized resid-
uals. If we have standard deviation estimates available, then, having drawn a residual that we
want to attach to the function value at time Xi, we first rescale it by multiplying by the standard
deviation estimate that is associated with that time.

3. Numerical properties

3.1. Summarizing remark
We shall illustrate the performance and properties of our inferential method for evolving peri-
odic functions in four settings: a model with evolving period and amplitude, where data are
generated by using simulation; a model with evolving period, where data are generated by using
a combination of simulated and real data; a real data set, where earlier analysis was under the
assumption that the period was constant; the data for the Mira variable R Hydrae, which were
described in Section 1. Throughout we use a Nadaraya–Watson non-parametric regression esti-
mator (9) with Epanechnikov kernel. We constrain the estimator to be periodic on the interval
[0, 1] using data on [−h, 1 + h] by periodic extension, where h is a bandwidth. The choice of
bandwidth has virtually negligible effect, and so we set h=0:1 throughout.

3.2. Simulation study with synthetic observation times
Here the model is that at equation (2), with the linear model (4) for period, the linear model (7)
for amplitude and g0 given by g0.x/= sin.2πx/ on the interval [0,1], extended to the positive real
line by periodicity. This simple choice of g0 is typical of light curve functions for certain variable
stars having non-constant periods and amplitudes. See, for example, the case of R Hydrae in
Section 3.5. We took the design points Xi to be uniformly distributed on the interval [0, n], with
sample size n=250, 500, 1000, 1500. The parameters for the amplitude and period were chosen
to be ω1 =1=n, θ1 =2 and θ2 =2=n, in accordance with the theoretical setting that was described
in Sections 2.2 and 2.3. Simulations with larger values of θ1, e.g. θ1 = 50 or θ1 = 100, lead to
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Table 1. Biases and variances for the model with linearly evolving period and amplitude treated
in Section 3.2

n b(ω̂1) b(θ̂1) b(θ̂2) n3 var(ω̂1) n3 var(θ̂1) n5 var(θ̂2)

σ =0.05
250 4:92×10−4 1:73×10−5 −1:37×10−7 0.38 1.61 7.68
500 2:52×10−4 1:72×10−6 −1:19×10−8 0.38 1.31 5.63

1000 1:26×10−4 −7:00×10−7 1:86×10−9 0.39 0.97 3.91
1500 8:34×10−5 −5:33×10−7 1:91×10−10 0.35 1.10 4.49

σ =0.20
250 4:84×10−4 1:09×10−5 −5:29×10−8 3.28 14.11 60.35
500 2:29×10−4 7:54×10−6 −2:83×10−8 3.04 12.90 57.55

1000 1:27×10−4 4:60×10−6 −8:37×10−9 3.38 12.65 55.11
1500 8:33×10−5 −1:27×10−7 −1:79×10−9 3.05 12.36 56.27

similar results. However, small values of θ1 are believed to be more difficult to handle, since
fewer observations per period are then available. The errors "i in model (8) were taken to be
normal N.0, σ2/, with σ = 0:05 and σ = 0:20. Biases and variances are calculated by averaging
over 500 simulations.

In Table 1 we report the biases of the various estimators, e.g. b.ω̂1/ = ¯̂ω1 − ω1. The biases
and variances decrease with increasing sample size. The values of n3=2|b.ω̂1/|, nj+1=2|b.θ̂j/|,
n3 var.ω̂1/ and n2j+1 var.θ̂j/ are bounded as n increases.

3.3. Simulation study with observation times taken from real data
Here we borrowed the irregular design points Xi from the star HIP 023743, which is discussed
in Section 3.4, with sample size n = 129 and data distributed on the interval [0, 1283] days. In
other respects the data were generated as indicated at equation (2), with the linear model (4) for
the period and a constant unit amplitude. Our goal is to illustrate properties of the hypothesis
test that was described in Section 2.6. Again, we took g0 to be given by g0.x/= sin.2πx/ on the
interval [0,1], extended to the positive real line by periodicity. The parameters for the linearly
evolving period are chosen to be θ1 =2 and θ2 =0, 10−10, 10−9, . . . , 10−5. The errors "i in model
(8) are taken to be normal N.0, σ2/, with σ=0:05 or σ=0:20. The level for the percentile method
bootstrap test is set to 5%. We create 400 bootstrap samples as described in Section 2.6 and
use Fourier series methods to estimate g0. Empirical levels and powers are calculated over 500
simulations and are reported in Table 2. We see that the empirical level of our test of H0 :θ2 =0
against H1 :θ2 	=0 is close to the 5% nominal level. The empirical power reveals that departures
from the null hypothesis of the order of 10−5 can be detected in this setting.

Table 2. Empirical values of the significance level and power for the model with linearly
evolving period treated in part of Section 3.3

σ Rejection rates (%) for the following values of θ2:

θ2 =0 θ2 =10−10 θ2 =10−9 θ2 =10−8 θ2 =10−7 θ2 =10−6 θ2 =10−5

0.05 4.8 5.2 5.0 6.6 21.4 100.0 100.0
0.20 5.4 5.4 6.0 7.0 9.4 42.8 100.0
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3.4. First real data example
Here we consider brightness data Yi (i=1, . . . , 129) on the star HIP 023743 from the Hipparcos
photometry. This star, of the RS CVn type, has been studied before under the assumption that
the period is constant, estimated to be 80.9 days. See Eyer and Genton (1999), who used a
robust wave variogram approach for inference. On the basis of model (2) with constant period
and amplitude, we obtain an estimate of θ̂1 = 81:36 days for the period. The small difference
between those two estimates can be partly attributed to the fact that in the present paper we do
not use robust procedures.

If we allow for a linearly evolving period in model (2), we obtain the estimates θ̂1 =79:44 and
θ̂2 = 3:146 × 10−3. Using the hypothesis testing method that was outlined in Section 2.6, this
value of θ2 is seen to be highly significantly different from 0, at the 5% level. The period of HIP
023743 was apparently increasing, at a rate of about 1:15 days per year, during the observation
time interval.

3.5. Second real data example
We now return to the brightness data Yi .i=1, . . . , 2315/ on the Mira variable R Hydrae, which
were depicted in Fig. 1. (The observation times of these data show significant randomness,
although, since each is confined to only a small portion of night hours, the times may appear,
from a distance, to be located at points of a grid.) First, we fit model (2) with linearly evolving
period and amplitude to the 1900–1950 data set, and we obtain the estimates ω̂1 =3:694×10−7,
θ̂1 =419:3 and θ̂2 =−1:441×10−3. This corresponds effectively to a decrease in the period from
about 419 to 394 days during 1900–1950, but accompanied by an increase in the semiamplitude
from about 1.707 to 1.718 magnitude. Fig. 2(a) depicts the result of folding the R Hydrae data by
using the model and estimates that were noted above. We have superimposed a non-parametric
estimate of g0 (the full curve). The corresponding minimum of the criterion S, which is defined
by equation (10), is 925.2.

If, instead, we fold the data with the parameters corresponding to the changes in period and
amplitude that were reported by Zijlstra et al. (2002), we obtain a result which does not reflect
the data set quite as well; see Fig. 2(b). The corresponding minimum of S is 2908.

Next, we investigate potential departures from a constant period of 385 days during 1950–
2001. We fit model (2) with linearly evolving period and constant amplitude, and we obtain
the estimates θ̂1 =394:1 and θ̂2 =−5:872×10−3. Using the hypothesis testing method that was
outlined in Section 2.6, this value of θ2 is seen to be highly significantly different from 0, at
the 5% level. Therefore, one could argue that the period of R Hydrae further decreased during
1950–2001 to about 383 days in 2001. Fig. 2(c) depicts the result of folding the R Hydrae data
by using the model and estimates that were noted above.

4. Theoretical properties

For transparency and brevity we shall treat polynomial models for time change and amplitude,
and also a simple model for the distribution of the Xis. See assumptions (a)–(f) below. Modified
versions of our argument are valid for any of the models for tx and ax that were introduced in
Sections 2.2 and 2.3; the arguments give estimators with the same convergence rates as those
discussed below. Likewise, the convergence rates that we give continue to hold if the model for
the Xis is altered to either of models (a) and (c) that were discussed in Section 2.4.

However, for the tx- and ax-models that we consider in assumptions (b) and (c) below,
and for the alternative models that were discussed in Sections 2.2 and 2.3, our convergence
rates are contingent on the assumption that supj.nj−1|θj|/ and supj.nj|ωj|/ are bounded
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in n. This constrains us away from the unrealistic setting where the period and amplitude
alter by an order of magnitude as the length of the observation interval [0, n] increases. If the
constraint should fail then convergence rates can be quite different from those given below.

In assumptions (b) and (c) below we actually impose a negligibility condition, specifically that
supj.nj−1|θj|/ and supj.nj|ωj|/ both converge to 0 as n→∞. This ensures that the covariance
matrix of the joint estimators of θ and ω has a simple asymptotic form. Rates do not alter
if supj.nj−1|θj|/ and supj.nj|ωj|/ are merely bounded, but the limiting covariance matrix is
different.

Next we state our assumptions. Suppose that the data pairs .Xi, Yi/ are generated by model
(8), and that the observation times Xi all lie in [0, n]. We ask the following.

(a) For g0: g0 is periodic with minimal period equal to 1, has two bounded derivatives and
is not identically constant.

(b) For tx: tx = t.x|θ/ is given by the k-parameter polynomial model (6), where θ1 > 0 is fixed
and θ2, . . . , θk vary with n, satisfying sup2�j�k.nj−1|θj|/→0.

(c) For ax: ax = a.x|ω/ is given by the l-parameter polynomial model (7), where ω1, . . . , ωl

vary with n and satisfy sup1�j�l.n
j|ωj|/→0.

(d) For the error distribution: the errors "i are independent and identically distributed with
zero mean, E.|"|c/<∞ for some c> 2, and var."i/=σ2.

(e) For the observation times: X1, . . . , Xn are generated by model (b) from Section 2.4, and in
particular represent values of n independent and identically distributed random variables
that are uniformly distributed on [0, n].

(f) For h and K: h = cn−d , where c > 0 and 1
4 < d < 1

3 , and K is a symmetric, compactly
supported density with three continuous derivatives on the real line.

Let U denote a random variable having the uniform distribution on [0, 1], define J1 =−.θ0
1/−2

and Jr = 1 if r � 2, and let Σ denote the symmetric .k + l/× .k + l/ matrix of which the .r, s/th
component is

JrJs E{g′
0.U/2}{.r + s+1/−1 − .r +1/−1.s+1/−1} .11/

if 1� r, s�k,

E{g0.U/2}{.r1 + s1 +1/−1 − .r1 +1/−1.s1 +1/−1} .12/

if .r, s/= .k + r1, k + s1/ with 1� r1, s1 � l and

−Jr E{g0.U/g′
0.U/}{.r + s1 +1/−1 − .r +1/−1.s1 +1/−1} .13/

if 1� r�k and s=k+ s1 with 1� s1 � l. We further assume that Σ is non-singular, which imposes
minor conditions on the possible values that can be taken by the moments E{g0.U/i g′

0.U/j} for
.i, j/= .0, 2/, .2, 0/, .1, 1/. Define

Θ̂= .n.θ̂1 −θ0
1/, . . . , nk.θ̂k −θ0

k//T,

Ω̂= .n.ω̂1 −ω0
1/, . . . , nl.ω̂l −ω0

l //T,

and put Φ̂= .Θ̂T, Ω̂T/T, a column vector of length k + l.

Theorem 1. Assuming requirements (a)–(f) above, and that Σ is non-singular,

n1=2Φ̂ is asymptotically normally distributed with zero mean
and variance matrix Σ−1σ2: .14/
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Fig. 2. Folded plot with non-parametric estimation of g0 for the Mira variable R Hydrae: (a) after fitting line-
arly increasing period and amplitude to the 1900–1950 data set by using the method suggested in this paper;
(b) after fitting linearly increasing period and amplitude to the 1900–1950 data set by using an alternative
method; (c) after fitting linearly increasing period to the 1950–2001 data set by using the method suggested
in this paper
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Fig. 2 (continued )

Since Φ̂= .Θ̂T, Ω̂T/T then result (14) implies that

nj.θ̂j −θ0
j /=Op.n−1=2/ for 1� j �k, .15/

nj.ω̂j −ω0
j /=Op.n−1=2/ for 1� j � l: .16/

These results continue to hold if we drop the condition of identical distribution in assumption
(d), assuming instead, for example, that the errors "i are distributed as σi", where supi.σi/<∞
and E.|"|c/<∞ for some c>2. Likewise, conditions (15) and (16) continue to hold if the condi-
tions sup2�j�k.nj−1|θj|/→0 and sup1�j�l.n

j|ωj|/→0, in assumptions (b) and (c) respectively,
are replaced by the assumptions that sup2�j�k.nj−1|θj|/ and sup1�j�l.n

j|ωj|/ are bounded
as n→∞.

These convergence rates are so fast that first-order asymptotic theory for our estimator of g0
is identical to its counterpart that would obtain if the values of θ0 and ω0 were known. Indeed,
if h is chosen so that condition (15)–(16) holds, for example, satisfying assumption (f), and if we
then select a new bandwidth h=h1, of the size that would be appropriate for estimating g0 non-
parametrically, then ĝ0.·|θ̂, ω̂/, which is defined in Section 2.5, satisfies ĝ0.·|θ̂, ω̂/= ĝ0.·|θ0, ω0/+
op{.nh1/−1=2}. An appropriate choice of h1 is one that satisfies h1 �n−1=2+δ for some δ > 0.

Standard methods for deriving bootstrap properties may be used to show that under mild
additional assumptions, in particular continuity of the error distribution, the hypothesis tests
that were discussed in Section 2.6 have asymptotically correct coverage. Furthermore, those
tests can distinguish alternatives that are distant n−3=2 from the null hypothesis.

To formalize the latter result, let us take the specific example that was given in Section 2.6. In
particular, assume that ax≡1 and tx is given by equation (4) with θ1 > 0 fixed and θ2 = cn−3=2,
for c fixed. Take c 	= 0 in the case of a test against H1, and c > 0 for a test against H2. Let Pc

denote probability measure under Hj, for j =1 or j =2 and for a particular value of c. Then,
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lim
|c|→∞

lim inf
n→∞ {Pc.test rejects H0|Hj is true/}=1:

This result is intuitively clear from result (14).
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Appendix A: Derivation of asymptotic properties

A.1. Preliminaries for proof
In view of model (8),

Yj −a.Xj|ω/ ĝ0{t.Xj|θ/|θ, ω}=Rj.θ, ω/+Sj.θ, ω/,

where

Rj.θ, ω/=R.Xj|θ, ω/,
Sj.θ, ω/= "j −S.Xj|θ, ω/,

R.x|θ, ω/=a.x|ω0/ g0{t.x|θ0/}−a.x|ω/
B.x|θ, ω/

A.x|θ/
,

S.x|θ, ω/=a.x|ω/
D.x|θ, ω/

A.x|θ/
,

A.x|θ/=
ν∑

i=1
Ki.x|θ/,

B.x|θ, ω/=
ν∑

i=1

a.Xi|ω0/g0{t.Xi|θ0/}
a.Xi|ω/

Ki.x|θ/,

D.x|θ, ω/=
ν∑

i=1

"i

a.Xi|ω/
Ki.x|θ/:

Arguing as in Hall et al. (2000) it may be shown that the contribution that is made by S.Xj|θ, ω/ to
Sj.θ, ω/ is asymptotically negligible, as also is the stochastic contribution that is made by R.x|θ, ω/, i.e.,
defining πA.x|θ, ω/=E{A.x|θ, ω/} and πB.x|θ, ω/=E{B.x|θ, ω/}, putting

πR.x|θ, ω/=a.x|ω0/ g0{t.x|θ0/}−a.x|ω/
πB.x|θ, ω/

πA.x|θ/
,

and taking .θ̂, ω̂/ to be the minimizer of Σj {"j −πR.Xj|θ, ω/}2 rather than of S.θ, ω/ at equation (10),
.θ̂ −θ0, ω̂ −ω0/ has the sought asymptotic normal distribution.

Moreover, also as in Hall et al. (2000), πR.x|θ, ω/=p.x/TΘ+q.x/TΩ+ . . . , where p.x/ and q.x/ denote
a k-vector and an l-vector respectively, and, from this point down to equation (23) below, ‘. . .’ indicates
terms that are quadratic in Θ and/or Ω. Up to terms that do not influence the limiting distributions of Θ̂
and Ω̂, those quantities minimize

ν∑
j=1

{"j −p.Xj/
TΘ−q.Xj/

TΩ}2:

Thus, n1=2.Θ̂T, Ω̂T/T is asymptotically normally distributed with zero means and variance Σ−1σ2, where

Σ=E{.p.X/T, q.X/T/T.p.X/T, q.X/T/}: .17/

We shall show in the next section that p= .p1, . . . , pk/
T and q= .q1, . . . , ql/

T, where
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pr.x/=−Jr{.x=n/r − .r +1/−1} g′
0{t.x|θ0/}, .18/

qs.x/={.x=n/s − .s+1/−1} g0{t.x|θ0/}, .19/

for 1� r � k and 1� s� l. Substituting these definitions into equation (17) we obtain, up to a term which
converges to 0 as n→∞, the matrix Σ that is defined at expressions (11)–(13).

A.2. Derivation of p and q at equations (18) and (19)
Without loss of generality, K is supported on [−1, 1]. Given η ∈ .0, 1

2 / and c>1, let In.η/ denote the set of
x ∈ [0, cn] such that t.x|θ0/ is at least η from the nearest integer. Put ṫ.x|θ/= @t.x|θ/=@θ, and let C denote
a generic positive constant, not depending on n but potentially different at each appearance. Note that
|t.x|θ/− t.x|θ0/|�C‖θ −θ0‖. Therefore, if

(a) ‖θ −θ0‖�Cη and
(b) x∈In.η/

then �t.x|θ/�=�t.x|θ0/�, and so

t.x|θ/−�t.x|θ/�−{
t.x|θ0/−�t.x|θ0/�}= t.x|θ/− t.x|θ0/: .20/

Provided that

K

[
t.x1|θ/−�t.x1|θ/�−{t.x2|θ/−�t.x2|θ/�}

h

]
	=0,

we have −h < t.x1|θ/ − �t.x1|θ/� − {t.x2|θ/ − �t.x2|θ/�} < h, and if also t.x1|θ/ − �t.x1|θ/� ∈ [Ch, 1 − Ch]
then x2 ∈In.h/. Therefore, if

(c) x∈ [Ch, 1−Ch] and
(d) Ki.x|θ1/ 	=0, where θ1 denotes either θ or θ0,

then Xi ∈In.h/. Hence, using the fact that (a) and (b) together imply equation (20), we deduce that if (c),
(d) and

(e) ‖θ −θ0‖�Ch hold,

then

Ki.x|θ/=K

[
t.x|θ0/−Xi.θ

0/+ t.x|θ/− t.x|θ0/−{t.Xi|θ/− t.Xi|θ0/}
h

]

=Ki.x|θ0/−h−1{ṫ.Xi|θ0/− ṫ.x|θ0/}T.θ −θ0/ K′
i.x|θ0/+ . . . , .21/

where K′
i.x|θ/ is defined to equal K′[{x.θ/−Xi.θ/}=h].

By Taylor series expansion of a.Xi|ω/−1 we may show that

R.x|θ, ω/=a.x|ω0/

[
g0{t.x|θ0/}− G.x|θ/

A.x|θ/

]
+Q.x|θ0, ω0/.ω −ω0/+ . . . , .22/

where

Q.x|θ, ω/= G.x|θ/

A.x|θ/
ȧ.x|ω/− H.x|θ/

A.x|θ/
,

G.x|θ/=
ν∑

i=1
g0{t.Xi|θ0/}Ki.x|θ/,

H.x|θ/=
ν∑

i=1

g0{t.Xi|θ0/} ȧ.Xi|ω0/

a.Xi|ω0/
Ki.x|θ/:

Using equation (21) to expand G.x|θ/=A.x|θ/ by Taylor series, in equation (22), about θ = θ0, and
defining
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L.x|θ/=
ν∑

i=1
{ṫ.Xi|θ/− ṫ.x|θ/} g0{t.Xi|θ/}K′

i.x|θ/,

N.x|θ/=
ν∑

i=1
{ṫ.Xi|θ/− ṫ.x|θ/}K′

i.x|θ/,

P.x|θ, ω/=a.x|θ, ω/

{
L.x|θ/

A.x|θ/
− G.x|θ/ N.x|θ/

A.x|θ/2

}
,

T.x|θ, ω/=a.x|ω/

[
g0{t.x|θ/}− G.x|θ/

A.x|θ/

]
,

we may show that

R.x|θ, ω/=T.x|θ0, ω0/+h−1 P.x|θ0, ω0/T.θ −θ0/+Q.x|θ0, ω0/T.ω −ω0/+ . . .:

Retracing this argument with quantities replaced by their expected values, we obtain

πR.x|θ, ω/=πT .x|θ0, ω0/+h−1πP .x|θ0, ω0/T.θ −θ0/+πQ.x|θ0, ω0/T.ω −ω0/+ . . . , .23/

where, for W equal to G, H , L or N, πW =E.W/, and

πP .x|θ, ω/=a.x|θ, ω/

{
πL.x|θ/

πA.x|θ/
− πG.x|θ/πN.x|θ/

πA.x|θ/2

}
,

πQ.x|θ, ω/= πG.x|θ/

πA.x|θ/
ȧ.x|ω/− πH .x|θ/

πA.x|θ/
,

πT .x|θ, ω/=a.x|ω/

[
g0{t.x|θ/}− πG.x|θ/

πA.x|θ/

]
:

Starting from equation (23), conventional bias expansions for kernel estimators show that, with qs

defined as at equation (19) and with

ρ.x/= .nh2/−1 a.x|θ0, ω0/[E{L.x|θ0/}−g0{t.x|θ0/}E{N.x|θ0/}],

we have

πR.x|θ, ω/=ρ.x/T.θ −θ0/+q.x/TΩ+ . . .: .24/

Here the ‘. . .’ terms consist of quadratic contributions, plus quantities that are of order h2 and which,
in view of the assumptions that are imposed on the bandwidth, make an asymptotically negligible final
contribution.

Write lr.x/ for the rth component of h−1 E{L.x|θ0/}, multiplied by −.θ0
1/2 in the case r =1. Put t′.u|θ/=

.@=@u/ t.u|θ/. If t.x|θ0/−�t.x|θ0/�∈ .Ch, 1−Ch/ and c > 1 then �t.x−hu|θ0/�=�t.x|θ0/� for all x∈ [0, cn]
and all |u|�1, and so

t.x−hu|θ0/−�t.x−hu|θ0/�= t.x|θ0/−�t.x|θ0/�−hu t′.x|θ0/+o.h|u|/:
This leads to the formula

lr.x/=h
n−1∑
j=1

[g′
0.v/{t−1.j +v|θ0/r −xr}+ r g0.v/ t−1.j +v|θ0/r−1].t−1/′.j +v|θ0/+o.nr+1h/,

where v = v.x/ = t.x|θ0/ − �t.x|θ0/�. Similarly, writing nr.x/ for the rth component of h−1 g0{t.x|θ0/}×
E{N.x|θ0/}, multiplied by −.θ0

1/2 when r =1, we obtain

nr.x/=h
n−1∑
j=1

r g0.v/ t−1.j +v|θ0/r−1.t−1/′.j +v|θ0/+o.nr+1h/:

Therefore, defining ρr.x/ to equal the rth component of ρ.x/, we deduce that

ρr.x/= .nh/−1 a.x|θ0, ω0/{lr.x/−nr.x/}=nrpr.x/+ . . . ,

with pr given at equation (18). From this result and equation (24) we see that πR.x|θ, ω/ = p.x/TΘ +
q.x/TΩ+ . . . , where, from equation (24) the ‘. . .’ terms make an asympotically negligible final contribu-
tion, which establishes equations (18) and (19).
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