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We propose a unified framework for testing various assumptions commonly made for covariance functions of stationary spatio-temporal
random fields. The methodology is based on the asymptotic normality of space–time covariance estimators. We focus on tests for full sym-
metry and separability in this article, but our framework naturally covers testing for isotropy and Taylor’s hypothesis. Our test successfully
detects the asymmetric and nonseparable features in two sets of wind speed data. We perform simulation experiments to evaluate our test
and conclude that our method is reliable and powerful for assessing common assumptions on space–time covariance functions.
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1. INTRODUCTION

Modeling space–time data often relies on parametric covari-
ance models (see, e.g., Cressie and Huang 1999; Gneiting 2002;
Stein 2005) and various assumptions, such as full symmetry
and separability. These assumptions are important because they
simplify the structure of the model and its inference and ease
the possibly extensive computational burden associated with
space–time data sets. But they are not appropriate in situa-
tions involving a lack of full symmetry due to, for example,
prevailing winds, water flows, and atmosphere circulation in
geoscience, meteorology, and ecology. For example, Gneiting,
Genton, and Guttorp (2007) suggested a lack of full symme-
try and separability for the Irish wind data described by Haslett
and Raftery (1989) based on graphical evidence. Jun and Stein
(2007) developed a space–time asymmetric covariance function
for modeling sulfate concentration levels to respect the appar-
ent space–time asymmetry displayed in their data. Cressie and
Huang (1999) suggested a nonseparable spatio-temporal co-
variance underlying a data set of tropical winds in the Pacific
Ocean based on a plot of the empirical space–time variogram.
The diagnostics used in those works are useful but difficult to
assess and are open to interpretation. This points to the need
for a unified approach for assessing properties of space–time
covariance functions.

Let {Z(s, t) : s ∈ R
d, t ∈ R} be a strictly stationary space–time

random field with covariance function C(h,u) = cov{Z(s, t),
Z(s + h, t + u)}, where h and u denote an arbitrary spatial
lag and time lag. The random field Z(s, t) has a fully symmet-
ric covariance function if C(h,u) = C(h,−u) or if C(h,u) =
C(−h,u). Among the class of fully symmetric covariances,
a covariance is separable if and only if C(h,u)/C(h,0) =
C(0,u)/C(0,0), that is, the space–time covariance can be fac-
tored into the product of a purely spatial covariance and a purely
temporal covariance. Note that a separable covariance function
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must be fully symmetric, but full symmetry does not imply sep-
arability. Spatial isotropy restricts C(h,u) to be a function de-
pending only on the Euclidean norm of h rather than on the lag
vector h itself. The relationships among several assumptions on
space–time covariance functions have been illustrated by Gneit-
ing et al. (2007).

This article provides a framework to assess all of the fore-
going assumptions at once, based on the asymptotic joint nor-
mality of sample space–time covariance estimators given in
Section 2.2. Let � be a set of space–time lags, and let m de-
note the cardinality of �. Let D be the domain of observa-
tions, and let Ĉ(h,u) denote an estimator of C(h,u) over D. Let
G = {C(h,u), (h,u) ∈ �}, and let Ĝ = {Ĉ(h,u), (h,u) ∈ �}
denote the estimator of G over D. We derive that the appro-
priately standardized Ĝ has an asymptotic multivariate normal
distribution for a random field with a fixed spatial domain and
an increasing temporal domain. The derivation does not require
any marginal or joint distributional assumptions other than mild
moment and mixing conditions on the strictly stationary ran-
dom field.

Many approaches have been proposed for testing specific
properties on covariance functions under various assumptions.
Mitchell, Genton, and Gumpertz (2006) proposed a likelihood
ratio test for separability of covariance models in the context
of multivariate repeated measures assuming the multinormal-
ity of observations. Mitchell et al. (2005) implemented this test
in the spatio-temporal context, although in a somewhat ad hoc
fashion. Scaccia and Martin (2002, 2005) presented a spectral
method for testing the symmetry and separability for spatial lat-
tice processes. Fuentes (2006) proposed a nonparametric test
for separability of a spatio-temporal process also based on a
spectral method. Lu and Zimmerman (2001) and Guan, Sher-
man, and Calvin (2004) developed nonparametric tests for spa-
tial isotropy based on the asymptotic joint distribution of sam-
ple variograms. Lu and Zimmerman (2005) proposed some di-
agnostic tests for reflection symmetry and complete symme-
try in spatial dependence based on the two-dimensional peri-
odogram.

We develop a unified methodology for all these assumptions
through contrasts of elements in Ĝ in a very general setting. For
each hypothesis, we choose an appropriate contrast. Our testing
approach can be widely applied and is easy to implement due to
the nonparametric basis from which the test is derived and the
simple form of the test statistics.
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The rest of the article is organized as follows. Section 2 de-
scribes our asymptotic regime and our test statistics and their
large-sample distributions, and discusses several related issues.
Section 3 applies our test for full symmetry and separability to
the Irish wind and Pacific Ocean data sets mentioned earlier.
Section 4 evaluates our tests by performing simulation experi-
ments. Section 5 discusses our testing approach and extensions
of our current examples and the Appendix gives a proof of The-
orem 1.

2. ASSESSMENT OF VARIOUS
COVARIANCE ASSUMPTIONS

2.1 Hypotheses

A very general form of hypothesis applied to many assump-
tions made for covariances is

H0 : Af(G) = 0, (1)

where A is a contrast matrix of row rank q and f = (f1, . . . , fr)T

are real-valued functions that are differentiable at G. For exam-
ple, the null hypothesis of full symmetry and separability ex-
actly follows this form. We choose these two specific assump-
tions to exemplify our methodology in testing a general class of
hypotheses.

According to the definitions of full symmetry and separabil-
ity, we give the null hypothesis for full symmetry, denoted by
H1

0 , and the null hypothesis for separability, denoted by H2
0 :

H1
0 : C(h,u) − C(h,−u) = 0, (h,u) ∈ �,

H2
0 :

C(h,u)

C(h,0)
− C(0,u)

C(0,0)
= 0, (h,u) ∈ �.

Observe that H1
0 and H2

0 are contrasts of covariances and con-
trasts of ratios of covariances. Thus H1

0 can be rewritten in the
form of A1G = 0, whereas H2

0 can be rewritten as A2f(G) = 0
for a specified � and matrices A1 and A2, where f takes pair-
wise ratios of elements in G. For example, if

� = {(0,0), (h1,u1), (h1,−u1), (h2,u2), (h2,−u2),

(h1,0), (0,u1), (h2,0), (0,u2)},
that is,

G = (
C(0,0),C(h1,u1),C(h1,−u1),C(h2,u2),C(h2,−u2),

C(h1,0),C(0,u1),C(h2,0),C(0,u2)
)T

,

then

A1 =
[

0 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0

]
,

f(G) =
(

C(h1,u1)

C(h1,0)
,

C(h1,−u1)

C(h1,0)
,

C(h2,u2)

C(h2,0)
,

C(h2,−u2)

C(h2,0)
,

C(0,u1)

C(0,0)
,

C(0,u2)

C(0,0)

)T

,

and

A2 =
⎡⎢⎣

1 0 0 0 −1 0
0 1 0 0 −1 0
0 0 1 0 0 −1
0 0 0 1 0 −1

⎤⎥⎦ .

Under the corresponding null hypotheses, we have that A1G =
0 and A2f(G) = 0. It is easily verified that H1

0 and H2
0 are sim-

ply two special cases of (1). In particular, for full symmetry
and separability, it is noteworthy that once H1

0 is rejected, H2
0 is

automatically rejected as well.

2.2 Test Statistics and Asymptotic Theory

Let Ĉn(h,u) denote a sample-based estimator of C(h,u)

based on observations in a sequence of increasing index sets
Dn, and let Ĝn = {Ĉn(h,u) : (h,u) ∈ �} denote the estimator of
G computed over Dn. We decompose Dn into Dn = F × In,
where F ⊂ R

d1 and In ⊂ R
d2 . Suppose that F is a fixed space

in the sense that finitely many observations are located within
this space, and that In is an increasing space. We account for
the shape of the space–time domain in which we observe data as
done by Sherman (1996). Let A denote the interior of a closed
surface contained in a d2-dimensional cube with edge length
1, and let An denote the inflation of A by a factor n. We de-
fine In = Z

d2 ∩An if the observations are regularly spaced and
In = An otherwise. This formulation allows for a wide variety
of space–time domains.

In many situations, the observations are taken from a fixed
space S ⊂ R

d at regularly spaced times Tn = {1, . . . ,n}. In this
particular case, d1 = d and d2 = 1 and we define the mixing
coefficient (e.g., Ibragimov and Linnik 1971, p. 306)

α(u) = sup
A,B

{|P(A ∩ B) − P(A)P(B)|,A ∈ F
0−∞,B ∈ F

∞
u

}
,

where F0−∞ is the σ -algebra generated by the past time process
until t = 0 and F∞

u is the σ -algebra generated by the future time
process from t = u. We assume that the mixing coefficient α(u)

satisfies the strong mixing condition

α(u) = O(u−ε) for some ε > 0. (2)

Let S(h) = {s : s ∈ S, s + h ∈ S}, and let |S(h)| be the number
of elements in S(h). We assume that the mean of Z is known
and equal to 0 in the following theorem, to make both the theo-
rem and proof concise. If we remove this assumption, we then
let Ĉ∗

n(h,u) and Ĝ∗
n denote the mean-corrected estimators of

C(h,u) and G. It is easy to show that Ĝ∗
n and Ĝn have the same

asymptotic properties. We define the estimator of C under the
mean-0 assumption as

Ĉn(h,u) = 1

|S(h)||Tn|
∑

s∈S(h)

n−u∑
t=1

Z(s, t)Z(s + h, t + u),

and assume the moment condition for Ĉn(h,u),

sup
n

E
{∣∣√|Tn|{Ĉn(h,u) − C(h,u)}∣∣2+δ} ≤ Cδ

for some δ > 0,Cδ < ∞. (3)

Theorem 1. Let {Z(s, t), s ∈ R
d, t ∈ Z} be a strictly stationary

spatio-temporal random field observed in Dn = S × Tn, where
S ⊂ R

d and Tn = {1, . . . ,n}. Assume that∑
t∈Z

∣∣cov{Z(0,0)Z(h1,u1),Z(s, t)Z(s + h2, t + u2)}
∣∣ < ∞ (4)
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for all h1,h2 ∈ S, s ∈ S(h2) and all finite u1 and u2. Then � =
limn→∞ |Tn|cov(Ĝn, Ĝn) exists, the (i, j)th element of which is

1

|S(hi)||S(hj)|
∑

s1∈S(hi)

∑
s2∈S(hj)

∑
t∈Z

cov{Z(s1,0)Z(s1 + hi,ui),

Z(s2, t)Z(s2 + hj, t + uj)}.
If we further assume that � is positive definite and that condi-
tions (2) and (3) hold, then

√|Tn|(Ĝn − G)
d−→ Nm(0,�) as

n → ∞.

For the proof see the Appendix.
The conditions assumed for Theorem 1 to hold are relatively

mild. The assumption on the temporal correlation given by
(2) holds for a large class of temporal processes, for example,
AR(1) processes with normal, double-exponential, or Cauchy
errors. The moment condition, (3), is only slightly stronger than
the existence of an asymptotic variance of the covariance esti-
mator given in the theorem by �.

In this theorem we allow the observations to be either regu-
larly spaced or irregularly spaced in S. However, even for irreg-
ularly spaced observations, we consider only the covariances of
observed spatial lags due to the often-limited number of obser-
vations in S. Note that in this section we require that the obser-
vations be taken at the same spatial locations over time, which
is very common for monitoring stations; for example, this is the
case for the Irish wind data and the Pacific Ocean wind data that
we analyze in Section 3.

The asymptotic distribution of Ĝn in other space–time
regimes can be stated in a similar fashion. For example, regimes
can be regularly spaced observations with an increasing spatio-
temporal domain, spatially irregularly spaced observations with
an increasing spatio-temporal domain, or irregularly spaced ob-
servations with an increasing spatio-temporal domain. Under
appropriate conditions, the asymptotic joint normality of Ĝn

holds in all of these types of data structures. This guarantees
the validity of our test over a wide variety of data structures
under mild assumptions on the domain shape and the strength
of dependence in the underlying space–time random field.

Replacing G with an estimator Ĝn in (1), we obtain a con-
trast vector for testing H0 as the estimated left side of (1),
C = Af(Ĝn). Specifically, the contrasts for testing H1

0 and H2
0

are given by

C1 = Ĉn(h,u) − Ĉn(h,−u), (h,u) ∈ �,

and

C2 = Ĉn(h,u)

Ĉn(h,0)
− Ĉn(0,u)

Ĉn(0,0)
, (h,u) ∈ �.

Apparently, C1 and C2 can be rewritten in the form of A1Ĝn and
A2f(Ĝn).

It is then straightforward to obtain the asymptotic distribution
of the test statistics based on the asymptotic joint normality of
Ĝn. By the multivariate delta theorem (e.g., Mardia, Kent, and
Bibby 1979, p. 52), we have that√|Tn|{f(Ĝn) − f(G)} d−→ Nr(0,BT�B), (5)

where Bij = ∂fj/∂Gi, i = 1, . . . ,m, j = 1, . . . , r. We form the
test statistic (TS) based on the contrasts of f(Ĝn) and obtain the
distribution of TS under the null hypothesis as

TS = |Tn|{Af(Ĝn)}T(ABT�BAT)−1{Af(Ĝn)} d−→ χ2
q (6)

for a matrix A with row rank q. The idea of using a quadratic
form to assess the discrepancy between two vectors emerged
from the work of Lu and Zimmerman (2001) and was later used
by Guan et al. (2004) to test isotropy of a spatial random field.
This idea lends itself naturally to testing general hypotheses of
the form (1) for spatio-temporal random fields.

By (6), we have that under H1
0 , the contrast C1 yields the test

statistic for full symmetry,

TS1 = |Tn|(A1Ĝn)
T(A1�AT

1 )−1(A1Ĝn)
d−→ χ2

q1
,

and under H2
0 , the contrast C2 yields the test statistic for separa-

bility,

TS2 = |Tn|
[
A2{f(Ĝn)}

]T
(A2BT�BAT

2 )−1[A2{f(Ĝn)}
]

d−→ χ2
q2

,

for matrices A1 and A2 with row ranks q1 and q2. We estimate
the matrix B empirically by replacing G with Ĝn in the esti-
mation. For the other types of domain, Dn, the distribution of
the test statistic can be derived in an analogous manner with the
normalizing sequence |In| replacing |Tn| and noting the corre-
sponding change in �.

2.3 Estimating �

The covariance matrix � defined in Theorem 1 is usually un-
known and thus must be estimated. Noting the large number
of elements in �, we apply a subsampling technique for this
estimation. Specifically, if the data are observed over a fixed
spatial domain S and an increasing time domain Tn as in Sec-
tions 3 and 4, then we form overlapping S × l(n) subblocks
using a moving subblock window along time. Much research
has addressed the choice of the optimal block length, l(n), in
the sense of minimizing the mean squared error (MSE) of esti-
mators in various contexts (see, e.g., Lahiri 2003). For simplic-
ity, we follow the approach of Carlstein (1986) to determine
the block length l(n). Although Carlstein gave a formula based
on nonoverlapping blocks, we use all overlapping blocks. This
reduces the variance of the variance estimator by a factor of
2/3 (Künsch 1989) and allows the use of slightly longer sub-
blocks by a factor of (3/2)1/3. The block length for a series
of length n is then l(n) = (

2γ

1−γ 2 )2/3( 3n
2 )1/3, where we estimate

γ by γ̂n = Ĉn(0,1)/Ĉn(0,0). This approach assumes that the
statistic of interest is the sample mean and that the temporal
correlation follows an AR(1) process with parameter γ . This
procedure often works well in practice. For more fully model-
free approaches, see the methods of, for instance, Lahiri (2003).

2.4 Choice of Contrast Matrices

In Section 2.1 we gave examples of the matrices used in
testing the appropriate linear hypothesis. The choices are not
unique, however, because we can choose a subset of rows from
A1 or A2 to obtain new test statistics for their corresponding
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tests. For example, we can pick only the first two rows of A2
to form a new test statistic with an asymptotic distribution that
follows χ2

2 . Although these tests will have approximately the
same sizes, the power depends on the specific choice.

Generally, it is preferable to use lags combining small spa-
tial and temporal lags, because typically covariance estimators
of smaller lags are obtained over more observations than larger
lags, and they play a more important role in making predictions
over the random field (see, e.g., Stein 1999). Given sufficient
data, however, we can also include a larger variety of lags in
terms of both space and time to ensure that we are assessing the
characteristics of the whole space–time random field. In addi-
tion, contingent on the understanding of the physical process,
we should definitely take the features of the physical process
into consideration while choosing testing lags. For example, if
the random field is related to the wind or precipitation, then it is
more appropriate to use the dominant wind direction as a guide
for choosing space–time lags with strong correlation, because
the wind plays an important role in governing the structure of
this type of random field.

3. DATA ANALYSIS

Starting in this section, we focus our research on the assess-
ment of full symmetry and separability. We apply our testing
procedures to the Irish wind data and the Pacific Ocean wind
data to illustrate how our methodology functions as a guide in
choosing covariance models for the data.

3.1 Irish Wind Data

The Irish wind data described by Haslett and Raftery (1989)
consist of time series of daily average wind speed at 11 synoptic
meteorological stations in Ireland during the period 1961–1978.
To normalize the data, we follow Haslett and Raftery (1989)
and Gneiting (2002) by taking a square root transformation and
subtracting the seasonal effects and the spatially varying mean
from the wind speed to obtain velocity measures before per-
forming our test.

Stein (2005) noted an apparent asymmetric property of the
covariance function by viewing variogram plots. Gneiting et al.
(2007) explored the validity of the assumptions of full symme-
try and separability of the covariance function and then fitted
a separable model, a fully symmetric model, and a general sta-
tionary covariance model on training data 1961–1970. They as-
sessed the prediction performance using these three fitted mod-
els on the test period of 1971–1978. Their findings suggest that
the data violate the assumptions of full symmetry and separabil-
ity. However, their parameter estimate λ̂ = .0573 seems reason-
ably close to λ = 0, indicating that full symmetry holds. (See
Sec. 4.1 for the formula involving λ and for its interpretation.)

To formally test the full symmetry and separability using the
data, we choose 5 pairs of stations among the 55 pairs, and
choose time lags u = 1 and 2 days, because the correlations for
the velocity measures decay rapidly in time (Gneiting 2002).
An apparently natural choice of the station pairs is the 5 pairs
with the shortest spatial distance ‖h‖ among the 55 pairs; how-
ever, the prevailing westerly wind (e.g., Gneiting et al. 2007)
suggests choosing the 5 pairs of stations with the smallest ratio
of h2/h1, where h1 and h2 are the east–west component and the
north–south component of the spatial lag h. We adopt the latter

choice in our test. To show the effects of testing lags so as to
provide guidance on how to choose them, we compare the test
based on the five station pairs with the smallest ratio to the tests
based on the five pairs with the largest ratio and with the short-
est ‖h‖. For each station pair, we choose time lags u = 1 and
2 days with the west station leading the east station, because
the wind propagates from west to east. The three sets of station
pairs are shown in Figure 1.

The set � contains 10 lags of the combination of 5 h’s and
2 u’s and the other lags introduced by these 10 lags in the test.
Thus m = r = 20 for the full symmetry test and m = 18, r = 12
for the separability test, whereas q = 10 for both tests. The test
statistics and p values for the full symmetry and separability
tests based on the five station pairs with the smallest ratio are
TS1 = 262.7 (p = 0) and TS2 = 445.2 (p = 0). Therefore, our
test results thoroughly reject the assumptions of full symmetry
and separability. This provides a theoretical basis for the state-
ment of asymmetry of Stein (2005) and gives strength to the
suggested model of Gneiting et al. (2007) that allows for a non–
fully symmetric (and thus nonseparable) covariance function.
Compared with the test based on the five station pairs with the
largest ratio, which gives TS1 = 20.2 and TS2 = 103.6, and the
test based on the five pairs with the smallest ‖h‖, which gives
TS1 = 132.9 and TS2 = 202.5, the test based on our choice de-
tects further departure from full symmetry and separability by

Figure 1. Irish Wind Stations and the Five Pairs Selected for the Test
( smallest h2/h1; largest h2/h1; shortest ||h||).
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taking the wind direction into account. We note that if the east
station is leading the west station in time for each pair, then the
value of TS2 drops significantly. (The value of TS1 remains the
same because H1

0 is invariant under time reversal.) This implies
that the power of the separability test is weakened by this choice
of testing lags.

3.2 Pacific Ocean Wind Data

The Pacific Ocean wind data consist of the east–west com-
ponent of the wind velocity vector from a region over the trop-
ical western Pacific Ocean for the period from November 1992
to February 1993. The winds are given every 6 hours and at a
17 × 17 grid with grid interval of about 210 km. (See Wikle
and Cressie 1999 for a more detailed description of the data.)
Cressie and Huang (1999) graphically showed an apparent non-
separability of the spatio-temporal covariance through an ex-
amination of the empirical space–time variogram plot. Based
on this, they fit several nonseparable covariance models to the
data. To verify the need for fitting a nonseparable model, we
performed our tests for full symmetry and separability to this
wind data.

We remove the time-averaged mean for each grid location
to create the mean-0 data set, as done by Wikle and Cressie
(1999). We choose three sets of east–west spatial lags, each
consisting of three distinct ‖h‖’s, and two sets of time lags,
each consisting of five distinct u’s. Because neither east wind
nor west wind is clearly predominant (e.g., Cressie and Huang
1999), we simply choose u with the east grid location lead-
ing the west grid location in time. The degrees of freedom are
q = 15 for all of the tests. The test results, given in Table 1,
indicate that our tests provide strong evidence against separa-
bility for all testing lags and against full symmetry for small
spatial lags. This corroborates the need for Cressie and Huang’s
nonseparable models. This table also clearly illustrates that dif-
ferent lags can lead to quite different p values for the test; for
example, it is not easy to detect the asymmetric property of the
covariance if we use large ‖h‖ rather than small ‖h‖. This is
in accordance with the empirical spatio-temporal variogram of
Cressie and Huang (1999). If we choose u with the opposite
leading direction (i.e., the west grid location leading the east
grid location in time), then the results are very similar to those
in Table 1; however, the results change if we choose h in the
north–south direction.

4. SIMULATION

We rejected full symmetry and separability in Sections 3.1
and 3.2. These conclusions will be strengthened if we assess

Table 1. Pacific Ocean Wind Data: Testing Full Symmetry
and Separability

Full symmetry Separability

||h|| u TS1 p value TS2 p value

1, 2, 3 1, 3, 5, 7, 9 152.7 <1.0e−16 459.7 <1.0e−16
1, 5, 10 1, 3, 5, 7, 9 85.6 6.5e−12 205.5 <1.0e−16
10, 11, 12 1, 3, 5, 7, 9 27.6 .025 40.4 .0004

1, 2, 3 1, 2, 3, 4, 5 96.8 5.1e−14 458.1 <1.0e−16
1, 5, 10 1, 2, 3, 4, 5 87.5 2.9e−12 130.3 <1.0e−16
10, 11, 12 1, 2, 3, 4, 5 24.7 .054 49.7 1.4e−5

NOTE: Units of ‖h‖: grid interval; units of u: 6 hours.

the size and power of our testing procedures. To do this, we
perform two simulations. In the first, we assess the test for full
symmetry and separability for the data structure in Section 3.1.
In the second, we study our test for separability for data on
a grid as in Section 3.2 over a range of grid sizes, temporal
lengths, and temporal correlations. Each situation is analyzed
over 1,000 simulated space–time data sets.

4.1 Full Symmetry and Separability in the Irish
Wind Data

We use the correlation model fitted to the Irish wind data of
Gneiting et al. (2007) to simulate a space–time random field, Z,
of size 11 × |Tn| at the 11 stations. Let �0 denote the spatio-
temporal correlation matrix of the vectorized Z, and let Z0
denote a vector of independent mean 0 standard normal vari-
ables. In this case �0 is of dimension 11n × 11n and Z0 is of
length 11n, where n = |Tn| = 3,650. An apparent way to simu-
late Z is through �

1/2
0 Z0, where �

1/2
0 can be computed using

an eigenvalue decomposition. But, it is not practical to gener-
ate Z in this manner because of the large dimension of �0. To
bypass this difficulty, we split the whole random field, Z, into
Z1, Z2, . . . ,Z�n/k�, each of size 11 × k. We assume that tem-
poral correlation exists only between the nearest neighbors of
Zi, i = 1,2, . . . , �n/k�. This assumption is justified by the neg-
ligible temporal correlation when the time lag exceeds a certain
value k. Here k = 15 suffices. Then the explicit form of the
conditional distribution of two jointly normal random vectors
allows us to generate the data consecutively. Specifically, we
generate an initial 11 × 15 Gaussian random field Z1, and then,
given Z1 = z1 generate Z2|(Z1 = z1), Z3|(Z2 = z2), and so on.
This procedure frees us from the restriction of the dimension
of �0, enabling generation of the space–time random field of a
size similar to the training data set on which the model is fitted.
The training period is 3,650 days, so we choose the space–time
random field of size 11 × 3,650.

The spatio-temporal correlation model used by Gneiting et
al. (2007) is given by

C(h,u)

= (1 − ν)(1 − λ)

1 + a|u|2α

[
exp

{
− c‖h‖

(1 + a|u|2α)β/2

}
+ ν

1 − ν
δh=0

]
+ λ

(
1 − 1

2ν
|h1 − ṽu|

)
+
,

where (·)+ = max(·,0) and the constants a and c are nonneg-
ative scale parameters of time and space. The smoothness pa-
rameter α, the space–time interaction parameter β , the nugget
parameter ν, and the symmetry parameter λ all take values in
[0,1]. The vector h = (h1,h2)

T comprises an east–west compo-
nent h1 and a north–south component h2. The scalar ṽ ∈ R is an
east–west velocity. When λ = 0, this model simplifies to a fully
symmetric model. Further assuming that β = 0, this model re-
duces to a separable model. Note that β controls the degree of
nonseparability.

We vary the parameters λ and β to study the behavior of our
test procedure under different settings. Specifically, we deter-
mine the size and power of our tests by setting λ and β at the
boundary values, and we also obtain the power of the test in
Section 3.1 by setting λ = .0573 and β = .681, which are the
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Table 2. Empirical Sizes and Powers for Testing Full Symmetry and Separability in the Irish Wind Speed Data
Based on Five Station Pairs With the Smallest Ratio h2/h1

λ β Full symmetry Separability

0 0 Size = .074 [.067] (.083) Size = .084 [.073] (.091)

0 1 Size = .070 [.081] (.092) Power = .945 [1.000] (.503)
.2 0 Power = 1.000 [.141] (1.000) Power = 1.000 [.510] (1.000)
.4 0 Power = 1.000 [.309] (1.000) Power = 1.000 [.959] (1.000)

.0573 0 Power = .900 [.095] (.529) Power = .985 [.125] (.445)
0 .681 Size = .095 [.075] (.078) Power = .717 [.929] (.306)
.0573 .681 Power = .876 [.083] (.478) Power = 1.000 [.941] (.867)

NOTE: The nominal level is .05. Sizes/powers in brackets are obtained by using the five station pairs with the largest ratio of h2/h1, and sizes/powers in
parentheses are obtained by using the five station pairs with the shortest ‖h‖.

estimates of those two parameters using the training data set.
We choose the same three sets of testing lags as in Section 3.1.
The empirical sizes with respect to the nominal level .05 and
powers are given in Table 2.

We first look at the results based only on our choice of test-
ing lags. Table 2 shows that the size of the test is close to the
nominal level and the power approaches 1 as λ or β increases.
In particular, when λ and β are set to the fitted values from the
Irish wind data, we have approximately 88% power against full
symmetry (λ = 0) and 100% power against separability (λ = 0
and β = 0) under these given parameter values. It makes sense
that we have greater power against the more restrictive hypoth-
esis of separability, but we have strong confidence in our con-
clusion of rejecting full symmetry as well. Next, we compare
the results from different sets of testing lags. The sizes from all
three sets of testing lags are not appreciably different; however,
the powers from the five station pairs with the largest ratio or the
shortest ‖h‖ drop sharply in many scenarios. This implies that
the physically motivated choice of space–time lags increases
the reliability of the test.

4.2 Separability for Gridded Data

This simulation experiment is focused on evaluating our sep-
arability test for gridded data, such as the Pacific Ocean wind
data. The Pacific Ocean wind data are collected over a medium-
sized spatial grid; however, we are interested in studying small
spatial grid sizes, which presents a more challenging setting for
our test. Along with evaluating our test in terms of size and
power, we assess the effect of estimation of the matrix � by
�̂ using subsampling, the grid size, the temporal size |Tn|, and
the temporal correlation on our test. We also compare our test
with the likelihood ratio test proposed by Mitchell et al. (2005).
To implement all of these tasks, we choose a first-order vector
autoregressive model, VAR(1), to simulate the random field, as
done by de Luna and Genton (2005). This model allows us to
obtain the asymptotic covariance matrix � explicitly (Priestley
1981, p. 693). In the VAR(1) process, Zt = RZt−1 + εt, where
Zt = (Z(s1, t),Z(s2, t), . . . ,Z(sK, t))T, K is the cardinality of S,
εt is a Gaussian multivariate white noise process with a spa-
tially stationary and isotropic exponential correlation function,
and R is a matrix of coefficients that determines the dependency
between Zt and Zt−1.

We first follow the setting of Mitchell et al. (2005) by choos-
ing the spatial covariance C(h,0) = exp(−‖h‖

φ
), φ = 3.476, and

R = ρI, where I denotes the identity matrix. This produces ran-
dom fields with a separable space–time covariance. We vary

grid size, temporal size |Tn|, and temporal correlation parame-
ter ρ in the simulation to assess their effect on the size of the
test. We choose two lags (‖h‖ = 1,u = 1) and (‖h‖ = 1,u = 2)

in the test, so the degrees of freedom of the test statistic are
q = 2. Let p1 denote the empirical size using the asymptotic
covariance matrix �, and let p2 denote the empirical size us-
ing �̂ estimated using the subsampling technique described in
Section 2.3. The nominal level is set to be .05, and the results
are summarized in Table 3. This table shows that the grid size
does not appreciably affect the size of the test and that the test
size is around .05 even with |Tn| = 200, whereas the parameter
ρ seems to bring the size upward slightly as it increases. Fig-
ure 2 displays the distribution of p values for a 3×3 grid when
|Tn| = 1,000. The boxplots indicate that the distributions of p1
and p2 are quite similar for each ρ, implying that estimating
� does not strongly affect the test. Comparing the boxplots for
each ρ shows that the performance of the separability test does
not strongly depend on ρ.

To assess power in this setting, we set the coefficients in R
as follows. For each (si, t), the coefficient is ρ for (si, t − 1),
whereas it is .05 for {(sj, t − 1) :‖sj − si‖ = 1}, and 0 for the
remaining (s, t − 1)’s. This produces nonseparable space–time
covariances. The powers of the tests for a 3 × 3 grid are given
in Table 4. As before, p1 and p2 denote powers under known
� and estimated �̂. Table 4 shows that although the power in-
creases mildly as ρ increases, the power increases significantly
as temporal size |Tn| increases. Yet �̂ has little effect on the
power, especially when |Tn| reaches 1,000.

To compare the size of our test to that of the likelihood ratio
test of Mitchell et al. (2005), we further obtain p2 = .059 for
ρ = .7 and p2 = .080 for ρ = .9 when |Tn| = 200 and the grid

Table 3. Empirical Sizes of the Separability Test for Gridded Data

|Tn| = 200 |Tn| = 500 |Tn| = 1,000

Grid size ρ p1 p2 p1 p2 p1 p2

3 × 3 .4 .033 .030 .046 .030 .052 .038
.6 .036 .049 .046 .045 .049 .044
.8 .040 .076 .043 .060 .053 .060

5 × 5 .4 .044 .033 .036 .028 .048 .032
.6 .040 .044 .035 .042 .044 .038
.8 .035 .057 .038 .053 .044 .048

7 × 7 .4 .045 .032 .046 .033 .048 .033
.6 .042 .055 .052 .048 .045 .039
.8 .042 .062 .058 .058 .046 .036

NOTE: Nominal level is .05. p1 represents sizes based on asymptotic covariance matrix; p2,
sizes based on subsampling estimation of the covariance matrix.
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Figure 2. Distribution of p Values for the Separability Test for a 3 × 3
Grid, |Tn| = 1,000 (p1: p values based on the asymptotic covariance ma-
trix; p2 : p values based on the subsampling estimation of the covariance
matrix).

size is 3 × 3. Comparing our p2’s with the values in Mitchell
et al. (2005) shows that the size of our test is much closer to the
nominal level for large ρ (i.e., for strong temporal correlation)
than the test of Mitchell et al. (2005).

5. DISCUSSION

Working with an appropriate covariance model is of great
importance in the analysis of space–time data and in the abil-
ity to make effective predictions. However, it is often not easy
to decide which class of models we should choose due to the
complex structure of the data. We have proposed a convenient
method applicable for testing the full symmetry and separabil-
ity of space–time covariance functions. Both the data analysis
and simulation results demonstrated the reliability and accuracy
of our method. Note that we discussed all of the tests in terms
of covariance estimators. But tests retain the same properties
if we replace the covariance estimators with correlation esti-
mators, because all asymptotic distributions are in the unit-free
chi-squared family of distributions. In addition, there are alter-
native covariance estimators to the moment estimator used in
this article, for example, the kernel smoothed covariance esti-
mator described by Hall, Fisher, and Hoffmann (1994).

Both H1
0 and H2

0 have no specific requirements for signs of
covariances, so they can be applied to random fields with ei-
ther positive or negative covariances, the latter are often exhib-

Table 4. Empirical Powers of the Separability Test for a 3 × 3 Grid

|Tn| = 200 |Tn| = 500 |Tn| = 1,000

ρ p1 p2 p1 p2 p1 p2

.4 .468 .382 .829 .797 .984 .977

.6 .565 .512 .916 .904 .997 .997

.8 .697 .658 .992 .984 1.000 1.000

NOTE: p1 represents powers based on asymptotic covariance matrix; p2, powers based on
subsampling estimation of the covariance matrix.

ited in hydrological and meteorological applications (e.g., Stol
1983). Once the data are detected to be incompatible with the
assumptions of full symmetry or separability, it is more appro-
priate to model the data using asymmetric or nonseparable co-
variance functions. Cressie and Huang (1999), Gneiting (2002),
Stein (2005), and Gneiting et al. (2007) proposed rich classes
of asymmetric or nonseparable covariance functions. They also
presented details of a strategy for fitting an appropriate model
by examining the data from different perspectives.

Our method can be naturally generalized to other tests, for
example, testing for spatial isotropy at a specific time point.
The null hypothesis in this case is

H3
0 : C(h1,u) − C(h2,u) = 0,

(h1,u), (h2,u) ∈ �,h1 = h2, but ‖h1‖ = ‖h2‖,
with the corresponding contrast

C3 = Ĉn(h1,u) − Ĉn(h2,u),

(h1,u), (h2,u) ∈ �,h1 = h2, but ‖h1‖ = ‖h2‖.
Consider, for example,

A3 =
[0 1 0 −1 0 0 0 0 0

0 0 1 0 −1 0 0 0 0
0 0 0 0 0 1 0 −1 0

]
,

in the context of � in Section 2.1. Then H3
0 : A3G = 0, and

C3 can be rewritten in the form of A3Ĝn, where h1 = h2, with
‖h1‖ = ‖h2‖ and u1 = u2. Guan et al. (2004) used this setup to
test for isotropy for spatial data using the variogram in place of
the covariance function that we have considered here. The vari-
ogram has some natural advantages for purely spatial data (see,
e.g., Cressie 1993), but the notion of separability for space–time
processes is defined naturally in terms of the covariance func-
tion rather than the variogram function.

As another example, we have Taylor (1938)’s hypothesis,
which addresses the relationship between the purely spatial and
purely temporal covariances by examining whether there ex-
ists a velocity vector v ∈ R

d such that C(0,u) = C(vu,0) for
all u (see Gneiting et al. 2007 for a recent account). Cox and
Isham (1988) discussed some restrictions for a specific covari-
ance function to satisfy Taylor’s hypothesis. If the vector v
is known, then, analogously to Section 2.2, we write the null
hypothesis as H4

0 : C(0,u) − C(vu,0) = 0 and the contrast as
C4 = Ĉn(0,u)−Ĉn(vu,0). Given � including the involved lags,
we can find a matrix, say A4, to make A4G = 0 under the null
hypothesis. The rest of the test is completely analogous to the
previous tests. If the vector v is unknown, then the test could
be used in an exploratory fashion by viewing the testing results
over a range of vectors v.

APPENDIX: PROOF OF THEOREM 1

Let Tn(u) = {t : t ∈ Tn, t + u ∈ Tn}. First, we have

cov{Ĉn(hi,ui), Ĉn(hj,uj)}

= 1

|S(hi)||Tn|
1

|S(hj)||Tn|
×

∑
s1∈S(hi)

∑
t1∈Tn(ui)

∑
s2∈S(hj)

∑
t2∈Tn(uj)

cov
{
Z(s1, t1)
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× Z(s1 + hi, t1 + ui),Z(s2, t2)Z(s2 + hj, t2 + uj)
}

= 1

|S(hi)||S(hj)|
×

∑
S(hi)

∑
S(hj)

∑
Tn(uj)−Tn(ui)

cov
{
Z(s1,0)Z(s1 + hi,ui),

Z(s2, t)Z(s2 + hj, t + uj)
} |Tn(ui) ∩ {Tn(uj) − t}|

|Tn|2 .

Applying condition (4) and Kronecker’s lemma, we conclude that

|Tn| × cov{Ĉn(hi,ui), Ĉn(hj,uj)}

→ 1

|S(hi)||S(hj)|
∑
S(hi)

∑
S(hj)

∑
t∈Z

cov
{
Z(s1,0)Z(s1 + hi,ui),

Z(s2, t)Z(s2 + hj, t + uj)
}
.

Letting An = √|Tn|{Ĉn(h,u)−Cn(h,u)}, we prove An
d→ N(0, σ 2)

by applying a blocking technique and telescope arguments. Specifi-
cally, we divide the whole field into blocks along time; that is, there is
no division in space S. Figure A.1 shows a schematic illustration when
d = 2. Let l(n) = nα and let m(n) = nα − nη , for some 1/(1 + ε) <

η < α < 1. Divide the original field Dn into nonoverlapping cylin-
ders, Di

l(n)
= S × Ti

l(n)
, i = 1, . . . , kn, where |Ti

l(n)
| = l(n); within each

cylinder, further obtain Di
m(n)

= S × Ti
m(n)

, which shares the same

center as Di
l(n)

. Thus dist(Di
m(n)

,Di′
m(n)

) ≥ nη for i = i′. Let an =∑kn
i=1 ai

n/
√

kn, a′
n = ∑kn

i=1(ai
n)′/√kn, where ai

n = √
m(n){Ĉi

n − C}
and (ai

n)′ have the same marginal distributions as ai
n but are indepen-

dent. Let φ′
n(x) and φn(x) be the characteristic functions of a′

n and an.
The proof comprises the following three steps:

S1: An − an
p→ 0.

S2: φ′
n(x) − φn(x) → 0.

S3: a′
n

d→ N(0, σ 2).

Figure A.1. Partition of the Space–Time Random Field for the Proof
of Theorem 1.

Proof of S1

Let Dm(n) denote the union of all Di
m(n)

, and let Tm(n) denote

the union of all Ti
m(n)

. Specifically, |Tm(n)| = knm(n) and |Dm(n)| =
|S||Tm(n)|. Observe that

an = 1√
kn

kn∑
i=1

ai
n =

√∣∣Tm(n)
∣∣(ĈDm(n) − C

)
and |Tn|

|Tm(n)| → 1, |Dn|
|Dm(n)| → 1. Thus we get cov(An,an) → σ 2 and

var(An − an) → 0.

Proof of S2

We use telescope arguments here. Let ι denote the imaginary num-

ber. We define Ui = exp(ιx
ai

n√
kn

), Xj = ∏j
i=1 Ui and Yj = Uj+1. Ex-

tending theorem 17.2.1 (p. 306) and the telescope argument (p. 338)
of Ibragimov and Linnik (1971) to our space–time context, we have

cov(Xj,Yj) ≤ 16α(nη) = O(n−εη)

by (2) and

|φ′
n(x) − φn(x)| ≤ 16knO(n−εη) = O(n1−α−εη).

The last equality in the foregoing expression follows from
O(kn) = O( n

nα ) = O(n(1−α)). Because 1/(1 + ε) < η < α < 1,
1 − α − εη < 1 − η − εη < 0. Then |φ′

n(x) − φn(x)| → 0.

Proof of S3

Observe that E(|(ai
n)′|2+δ) < Cδ for some constant Cδ . Because

(ai
n)′ are iid,

var

{ kn∑
i=1

(ai
n)′

}
= knvar{(ai

n)′}.

Defining σ 2
n = var{(ai

n)′}, we have σ 2
n → σ 2 from the proof of S1.

Thus

lim
n→∞

kn∑
i=1

E(|(ai
n)′|2+δ)√

[var{∑kn
i=1(ai

n)′}]2+δ

≤ lim
n→∞ Cδ

kn

(knσ 2
n )(2+δ)/2

= 0.

Therefore, applying Lyapounov’s theorem, we have

1√
kn

kn∑
i=1

(ai
n)′ d−→ N(0, σ 2).

The Cramér–Wold device proves the joint normality.

[Received July 2006. Revised January 2007.]
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