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Summary

The robustness problem is tackled by adopting a parametric class of distributions flexible enough
to match the behaviour of the observed data. In a variety of practical cases, one reasonable option
is to consider distributions which include parameters to regulate their skewness and kurtosis. As
a specific representative of this approach, the skew-t distribution is explored in more detail and
reasons are given to adopt this option as a sensible general-purpose compromise between robustness
and simplicity, both of treatment and of interpretation of the outcome. Some theoretical arguments,
outcomes of a few simulation experiments and various wide-ranging examples with real data are
provided in support of the claim.
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1 Introduction

1.1 Motivation and General Remarks

One approach to the robust estimation problem is based on the introduction of a parametric
class of probability distributions whose tail behaviour can be regulated by one of the component
parameters, hence allowing to accommodate the presence of possible outliers by a suitably chosen
tail parameter. Two well-known formulations which follow this approach are Box & Tiao (1973)
and Lange et al. (1989); as a reference distribution for data modelling, they adopt the so-called
exponential power distribution (Subbotin, 1923) and the Student’s t, respectively. The use of
these distributions in the data-fitting process goes back however many years; see Box & Tiao
(1973) and Lange et al. (1989) for references to earlier work.

An important advantage of this sort of formulation with respect to other approaches to
robustness is an explicit statement of the probabilistic setting, leading to a clearer interpretation of
the results, as compared, for instance, to M-estimators. This aspect becomes especially relevant in
the case of asymmetric distribution of the outlying observations. While most robustness studies
employ symmetric error distributions with heavy tails but are otherwise regular, there is empirical
evidence that, when present in real data, outlying observations display other forms of departures
from the normal distribution. An important one is that real data are often asymmetrically
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Robust Likelihood Methods 107

distributed, as reported by Hill & Dixon (1982); see also Stigler (1977). Under asymmetric
data distribution, the quantity to which an M-type estimator converges when the sample size
diverges is in general not available in an explicit form, since it is given by the solution of an
equation involving the expected value of a non-linear transformation of the observed random
variable; see, for instance, Huber (1981, pp. 132–133). Only under symmetry of the underlying
distribution and of the psi-function employed, can one state immediately that this solution is the
centre of symmetry of the distribution.

On the contrary, the maximum likelihood estimates (MLEs) converge to clearly defined
quantities, namely the parameters of the specified class of distributions. There is, of course,
the issue of adequacy of the fitted parametric class, to ensure that the minimal Kullback–Leibler
discrepancy between the actual data distribution and the chosen parametric class is as small as
possible, ideally zero. This requirement can be tackled with the adoption of a sufficiently flexible
class of distributions.

The last sentence opens immediately the subsequent issue: how much flexible? The formulation
to be adopted in the rest of the paper allows selection of any degree of flexibility between a
“base” distribution (the normal one, say) and a non-parametric approach. In practice, one will
often choose an intermediate option, but choice of the degree of flexibility does not have a
precise answer, especially in general terms, without reference to a specific context. However, as
a general-purpose strategy, a plausible option is to select a class of distributions which include
parameters to regulate skewness and kurtosis, and this is the direction that we will explore in
greater detail. For an alternative route, based on a non-parametric form of perturbation of a
parametric “base” distribution of elliptical type, see Ma et al. (2005) and Ma & Hart (2007).

To develop the above-described program, we work within the general framework of distribu-
tions whose probability density function is, up to a location parameter, of type

f (x) = 2 f0(x) G{w(x)}, x ∈ R
d , (1)

where f0(·) is a density function in R
d , symmetric in the sense that f0(x) = f0(−x) for all

x ∈ R
d , G(·) is a one-dimensional cumulative distribution function whose derivative G ′ exists

and satisfies G ′(x) = G ′(−x), and w(·) is a real-valued odd function in R
d , hence w(−x) =

−w(x) ∈ R for all x ∈ R
d . The term “symmetric” will be used throughout this paper in the

sense just indicated. The essence of the proof that (1) produces a proper density function is
contained in the following simple argument: if X and Y are independent random variables of
dimension 1 and d, with densities G ′ and f0, respectively, then X − w(Y ) has a symmetric
density such that 2P{X − w(Y ) ≤ 0} = 1; the complete argument is given in Proposition 1 of
Azzalini & Capitanio (2003). For an overview of the work developed in connection with (1), we
refer the reader to the book edited by Genton (2004) and the review paper of Azzalini (2005);
here we will only mention results of direct relevance to the present paper.

1.2 Some Skewed Distributions and Related Inferential Issues

The basic case of (1) is obtained for d = 1 on setting f0(x) = φ(x) and G = �, the N(0, 1)
density function and distribution function, respectively, and w(x) of the linear type. With the
addition of a location parameter, ξ , and scale parameter, ω, we obtain the univariate skew-normal
(SN) distribution studied by Azzalini (1985), that is,

fSN(x ; ξ, ω, α) = 2ω−1 φ(z) �(αz), x ∈ R, (2)

where z = ω−1(x − ξ ) and α ∈ R is a shape parameter; on setting α = 0 we return to the normal
distribution.
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Figure 1. Profile log-likelihoods for the shape parameter α of the univariate SN, SEP2, and ST distributions fitted to the
variable Ht of the AIS data.

Although, as stated in Section 1.1, we will focus on other forms of (1), notably those where
f0(x) is a density with heavy tails, it is, however, appropriate to digress slightly to recall some
problematic aspects connected to inference for (2), as discussed by Azzalini (1985), Azzalini &
Capitanio (1999, Section 5), Pewsey (2000) and Chiogna (2005), because of their connection
with our subsequent developments.

One of these problematic aspects is that the profile log-likelihood for the shape parameter
α of the univariate SN distribution always has a stationary point at α = 0, leading to the
singularity of the Fisher information matrix of the three parameters in (2). Except for very
peculiar cases, this stationary point at α = 0 does not correspond to the maximum of the profile
log-likelihood function, and it really is a saddle point. This issue is now illustrated on data
collected at the Australian Institute of Sport (AIS) on 202 athletes and described by Cook &
Weisberg (1994). Figure 1 depicts the profile log-likelihood for the shape parameter α of the
univariate SN distribution (dashed curve) fitted to the variable describing the height (Ht) of
the athletes. The vertical dashed line at α = 0 identifies the stationary point. This problem can
be circumvented by using a suitable reparametrization, which has been examined by Azzalini
(1985) and Chiogna (2005) in the scalar case. Pewsey (2006) has shown that the aforementioned
problem is not unique to the univariate SN distribution. It also occurs for other univariate skewed
distributions based on a normal kernel φ and skewing functions of the form G(αx), if G satisfies
the conditions for (1) and in addition G′′(0) exists, hence it is 0.
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Another peculiar aspect connected to the inference on the parameters of (2) is that the MLE of α

can take on boundary values ±∞, sometimes even for samples not exhibiting extreme skewness.
The probability of this event vanishes as the sample size increases, but it is non-negligible for
small sample size, especially if |α| is large.

Bearing in mind the discussion of Section 1.1, an appropriate choice for f0(x) in (1) is the
exponential power distribution (Subbotin, 1923). In order to model simultaneously skewness and
heavy tails, Azzalini (1986) introduced the univariate skew-exponential power (SEP) distribution,
in two variant forms. We consider the type-II version (SEP2) with density

fSEP2(x ; ξ, ω, α, ψ) = 2 Cψ ω−1 exp{−|z|2ψ/(2ψ)} �{sgn(αz)|αz|ψ/
√

ψ}, x ∈ R, (3)

where Cψ = [2(2ψ)1/(2ψ)−1�{1/(2ψ)}]−1, z = ω−1(x − ξ ), ξ ∈ R, ω > 0, α ∈ R, and ψ > 0.
The skewness is regulated by the shape parameter α and the tails of the distribution are controlled
by ψ . The normal distribution is obtained when α = 0 and ψ = 1. DiCiccio & Monti (2004)
have recently investigated likelihood inference for the univariate SEP2 distribution, with only
a slight change in the parameterization. In particular, they have proved that in the normal case,
corresponding to α = 0 and ψ = 1, the Fisher information matrix of the four parameters in (3)
is singular. This problem is similar to the one described above for the SN distribution.

Figure 1 depicts the profile log-likelihood for the shape parameter α of the univariate SEP2
distribution (dashed-dotted curve) fitted to the variable Ht of the AIS data. The rather unpleasant
shape of the SEP2 profile log-likelihood function exhibited here is not a unique case. Although
it does not appear in all possible samples, it is not rare at all to encounter a multimodal SEP2
profile log-likelihood, sometimes with an even more irregular shape. Another problem with
the multivariate exponential power is the lack of closure of this family under marginalization,
which makes it not an appealing model for multivariate data. On the other hand, the exponential
power, hence the SEP, enjoys the useful feature of allowing both lighter as well as heavier tails
compared to the normal ones, depending on whether ψ < 1 or ψ > 1. Although there are
arguments in both directions, it seems to us that the disadvantages of the SEP family overtake
the advantages, at least if we do not have a specific context in mind, and prefer to move in another
direction.

An alternative option for modelling skewness and heavy tails is to consider a skew-t
distribution, which arises when f0(x) in (1) is a Student’s t density function. The specific form
which we will consider is the one studied by Branco & Dey (2001, 2002) and in equivalent forms
by Azzalini & Capitanio (2003) and Gupta (2003); see also Kim & Mallick (2003) for additional
results. Other forms of skew-t distribution have been considered by Jones & Faddy (2003), Sahu
et al. (2003) and Ma & Genton (2004). We follow the notation of Azzalini & Capitanio (2003)
for the skew-t (ST) distribution whose density in the univariate case takes the form

fST(x ; ξ, ω, α, ν) = 2ω−1 t(z; ν) T (αz
√

(ν + 1)/(ν + z2); ν + 1), x ∈ R, (4)

where z = ω−1(x − ξ ), t and T denote the univariate standard Student t density function
and distribution function, respectively, and ξ ∈ R, ω > 0, α ∈ R, and ν denote the degrees of
freedom. The skewness is regulated by the shape parameter α and the tails of the distribution are
controlled by ν. The regular t distribution is recovered by setting α = 0; the SN distribution is
obtained when ν → ∞ and the normal distribution when both α = 0 and ν → ∞.

Figure 1 depicts the profile log-likelihood for the shape parameter α of the univariate ST
distribution (solid curve) fitted to the variable Ht of the AIS data. This curve appears to be very
well behaved with a single maximum and no stationary point at the origin α = 0. The absence
of a stationary point at α = 0 is not specific to this example. Indeed, it appeared regularly in all
numerical examples of Azzalini & Capitanio (2003), and remarked as a welcome feature, but
no theoretical support of this empirical fact has been provided. Confirmation of this property is
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important to remove or at least alleviate the need for an alternative parameterization, as the one
required for the SN case, leading to a simpler inference.

To anticipate the overall content of the paper, this can be schematically summarized as follows.
We argue that the univariate ST distribution (4) and its multivariate extension represent a flexible
general-purpose class of distributions, suitable to handle adequately a variety of practical cases.
In addition, we show that the ST family alleviates some of the inferential problems associated with
similar families, specifically the SN and the SEP2 families. In particular, we provide evidence
that the Fisher information matrix associated with the univariate ST distribution (4) is never
singular at α = 0 for finite values of the degrees of freedom ν. Moreover, some numerical work
supports the conjecture that the same property carries on in higher dimensions.

A good portion of this paper is largely concerned with maximum likelihood inference for the
parameters of the ST distribution, in the univariate and in the multivariate case. In particular,
the properties of the profile log-likelihood of the shape parameters are studied in Section 2.
The finite-sample performance of the MLEs in the univariate and bivariate case are investigated
with simulations in Section 3. Examples of application of the ST model in regression problems,
time series, spatio-temporal modelling, and classification, are reported in Section 4. The paper
concludes with a discussion in Section 5. Proofs are given in the Appendix.

2 Likelihood Inference

2.1 SN and Other Skewed Variants of the Normal Distribution

As mentioned in the Introduction, some of the distributions of type (1) lead to a profile
log-likelihood function with some peculiar behaviour at the point α = 0. One aspect of this
phenomenon is that the profile log-likelihood function always has a stationary point at α = 0,
irrespective of the sample observations. A connected unusual feature is that the expected Fisher
information is singular at α = 0, although the estimation problem is identifiable.

These facts have been noticed by Azzalini (1985) for the basic situation of a simple random
sample from (2), and they have been extended by Pewsey (2006) to the case where the term
� in (2) is replaced by any scalar distribution function G such that G ′ is a symmetric density.
Further extensions in various directions are possible, some of which are discussed in the rest of
this section.

One of these extensions refers to the family of flexible skew-symmetric (FSS) distributions
introduced by Ma & Genton (2004) with density

fFSS(x ; ξ, ω, α1, . . . , αK ) = 2ω−1 f0(z) G{PK (z)}, x ∈ R, (5)

where f0 and G are symmetric univariate density function and distribution function, respectively,
PK (x) = α1x + α3x3 + · · · + αK xK is an odd polynomial of degree K (i.e. a polynomial including
only terms of odd degree), z = ω−1(x − ξ ), ξ ∈ R, ω > 0, and α1, α3, . . . , αK ∈ R are shape
parameters. The symmetric density function f0 is obtained when α1 = α3 = · · · = αK = 0.
If a random sample y1, . . . , yn is drawn from a random variable with density (5), then the
corresponding log-likelihood function is


(ξ, ω, α1, . . . , αK ) = constant − n log ω +
n∑

i=1

log f0(zi ) +
n∑

i=1

log G{PK (zi )} (6)

where zi = ω−1(yi − ξ ) for i = 1, . . . , n.
The following result shows that the FSS distribution has a stationary point in the profile log-

likelihood for the shape parameters when the “base” function f0 is the normal density and the
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shape parameters are all equal to zero. It therefore represents an extension of the similar result
of Pewsey (2006) from the case where the argument of G is α x to the case of an odd polynomial.
Its proof is given in the Appendix.

PROPOSITION 1. Denote by y1, . . . , yn a random sample of size n ≥ 3 from an FSS distribution
with density function given by (5) when f0 = φ, the standard normal density. Assume G is a
continuously differentiable symmetric univariate distribution function. If we denote the sample
mean by ȳ and the sample variance by s2, then

(1) ξ = ȳ, ω = s, α1 = α3 = · · · = αK = 0, is a solution to the score equations for (6);
(2) with the additional assumption that G′′ is continuous, the expected Fisher information

matrix is singular when α1 = α3 = · · · = αK = 0; moreover, if K = 1, then the observed
Fisher information matrix is singular when α1 = 0.

Consider now a different setting, concerning the multivariate skew-normal distribution, which
is the d-dimensional extension of (2), denoted by SNd (ξ , �, α). This has been introduced by
Azzalini & Dalla Valle (1996), but here we will adopt the alternative although mathematically
equivalent parameterization used by Azzalini & Capitanio (1999), so that the density function
at x ∈ R

d is

fSN(x ; ξ, �, α) = 2 φd (x − ξ ; �) �{α	ω−1(x − ξ )}, (7)

where φd (x; �) denotes the Nd (0, �) density function, ω is the diagonal matrix formed by the
square root of the diagonal elements of �, and ξ and α are now d-dimensional vectors.

In many cases, when n independent observations are considered, the location parameter ξ i of
the i-th individual is related to a set of p covariates xi via a linear regression model of the form

ξi = β	xi (8)

where β is a p × d matrix of parameters (i = 1, . . . , n). Denote by X the n × p matrix whose i-th
row is x	

i and by y the n × d matrix whose i-th row is y	
i if yi is the observed response vector

generated by (7), for i = 1, . . . , n.
In this setting, Azzalini & Capitanio (1999, Section 6.1) have shown that it is convenient to

reparameterize the problem using η = ω−1α in place of α. This device separates the parameters
in the expression of the log-likelihood 
(β, �, η) in the following sense: for fixed β and η,
maximization of 
 with respect to � is equivalent to maximizing the analogous function for
normal variates for fixed β, which has the well-known solution

�̂β = n−1u	
β uβ

where uβ = y − Xβ. On replacing this expression of �̂β in 
, we obtain the profile log-likelihood


∗(β, η) = constant − 1

2
n log |�̂β | + 1	

n ζ0(uβ η) (9)

where ζ 0(x) = log{2�(x)}, and it is intended that the notation ζ 0(x) when x is a vector denotes
the vector formed by the component-wise evaluation of the function. Besides decreasing the
dimensionality of the numerical maximization problem, 
∗(β, η) has the advantage that its
partial derivatives are available in explicit form, offering additional numerical efficiency; these
are

∂
∗

∂β
= X	uβ �̂−1

β − X	ζ1(uβ η )η	, (10)

International Statistical Review (2008), 76, 1, 106–129
C© 2007 The Authors. Journal compilation C© 2007 International Statistical Institute



112 A. AZZALINI & M.G. GENTON

∂
∗

∂η
= u	

β ζ1(uβ η), (11)

where ζ 1(x) denotes the derivative of ζ 0(x).
In addition, it is easy to show, from these partial derivatives, that the point with coordinates

(β̃, 0), where β̃ = (X	 X )−1 X	y, is a stationary point for (9), under the mild condition that 1n

belongs to the space spanned by the columns of X . In fact, the two summands on the right-hand
side of (10) are both 0 at (β̃, 0); nullity of (11) follows immediately on writing ζ 1(uβ 0) =
1n2φ(0) and recalling that u	

β̃
1n = 0. We therefore have obtained another extension of the result

mentioned at the beginning of this section, namely that α = 0 is always a stationary point of the
profile log-likelihood from a multivariate SN regression model, irrespectively of the observed
y.

Furthermore, the adoption of the reparameterization (9) and the fact that (β̃, 0) is a stationary
point for the profile log-likelihood holds more generally for any family similar to (7) but with
�(·) replaced by any other distribution function G(x) such that G ′ exists and is symmetric about
0. Under this new setting, ζ 0(x) and ζ 1(x) in (9)–(11) must denote log {2 G(x)} and its derivative,
respectively; for the rest, the above argument holds unchanged.

Since η = 0 corresponds to α = 0 and a stationary point of 
∗ corresponds to a stationary point
of 
, we have the conclusion that the log-likelihood function of a multivariate linear regression
model with error structure of type (7), possibly with G in place of �, has a stationary point at
(β̃, �̂β̃ , 0) for all samples, under the above-mentioned mild condition on X . We can summarize
our conclusion in the following statement.

PROPOSITION 2. Consider the case of n independent d-dimensional observations, such that the
i-th of these is sampled from the density function

fSNG(x ; ξi , �, α) = 2 φd (x − ξi ; �) G
{
α	ω−1(x − ξi )

}
, x ∈ R

d , (12)

where G is a continuous distribution function with symmetric density, ξ i follows the multivariate
regression model (8) which includes an intercept term (i = 1, . . . , n), and the other ingredients
are as in (7). Then the likelihood equations for (β, �, α) have a stationary point at β = β̃, � =
�̂β̃ , α = 0.

We have therefore seen various cases where distributions of type (1) give rise to a stationary
point of the profile log-likelihood function at α = 0. Since, however, all these cases refer to
distributions where f0 in (1) is of normal type, a natural question of interest is whether this
unusual behaviour of the profile log-likelihood holds also for f0 �= φ.

For simplicity of argument, we restrict our discussion to the case d = 1 and density functions
of type (5), but the same sort of logic applies more generally. If we consider the likelihood
equations associated to (6), evaluated at the point α1 = α3 = · · · = αK = 0, the corresponding
value of ξ is required to satisfy

n∑
i=1

h((yi − ξ )/ω) = 0 (13)

where h(x) = − f ′
0 (x)/f0(x); see (23) and (26) in the Appendix for a detailed derivation. In case

f0 ≡ φ, then h(x) = x and clearly ξ̂ = ȳ, the arithmetic mean of the observations, is a solution to
(13). A relatively lesser known fact is that the converse is true: essentially, if the sample mean
is a solution to (13) for all possible samples, then f0 is the normal density, under some very
mild regularity conditions. This property represents a classical characterization theorem of the
normal distribution, whose roots go back to Gauss; see Azzalini & Genton (2007) for a recent
account.
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The property just mentioned implies that other symmetric distributions besides the normal
one cannot have a stationary point at α = 0 for all possible samples. It is indeed easily possible to
construct counter-examples for a given choice of f0 and specific patterns of the samples. To this
end, consider any symmetric density f0, such that h is an odd function, and select a sample whose
values are symmetrically placed around an arbitrary center of symmetry, m say; this requires that
a sample value is equal to m if the sample size is odd. Then it is immediate that m coincides with
the sample mean and it satisfies (13), irrespective of the value of ω, even if f0 �= φ. However,
such a sample pattern occurs with probability 0. All of this supports the idea, although it does
not provide a formal proof, that the above-mentioned issue of a stationary point of the profile
log-likelihood function at α = 0 does not arise with distributions of type (1) when f0 �= φ.

On another front, a different sort of problem is, in principle, due to the existence of poles in the
log-likelihood function. Fernández & Steel (1999) have proved that this phenomenon arises in a
regression context where the error term has a symmetric Student’s t distribution with unspecified
ν ∈ (0, ∞). However, these poles are confined to the interval (0, ν0) of ν, where ν0 depends
on the design matrix X and y and it typically is very small compared to practically all relevant
values; for instance, in the case of a simple random sample with no ties, ν0 = d/(n − 1). It
is plausible that the same mechanism operates also with the ST distribution, but Azzalini &
Capitanio (2003) have reported that these poles are in practice hard to locate and, when located,
substantially smaller than the already small upper bound ν0. Specifically, in one case there was
a pole at ν = 0.06 when ν0 = 8/13, and otherwise the maximum of the log-likelihood was at
ν̂ = 1.14. From a practical viewpoint, such extreme values like ν = 0.06 are not really relevant,
because of the completely peculiar behaviour of the corresponding distribution, and there is no
real limitation in excluding values of ν which are so close to 0.

2.2 Multivariate ST Distribution

For dealing with multivariate data, we consider the d-dimensional version of the ST distribution
(4), denoted by STd (ξ , �, α, ν). Its density function at x ∈ R

d , in the form adopted by Azzalini
& Capitanio (2003), is

fST(x ; ξ, �, α, ν) = 2 td (x − ξ ; �, ν) T

{
α	ω−1(x − ξ )

(
ν + d

ν + Q(x)

)1/2

; ν + d

}
, (14)

where Q(x) = (x − ξ )	�−1(x − ξ ) and

td (x ; �, ν) = �((ν + d)/2)

|�|1/2(νπ )d/2 �(ν/2)

(
1 + Q(x)

ν

)−(ν+d)/2

denotes the commonly adopted form of d-dimensional Student’s t distribution with 0 location,
� scale matrix and ν degrees of freedom. Notice that, owing to the form of the “base” function
f0 = td , there is a single parameter ν to regulate the tail thickness of all components of td , hence
also of f ST.

From (14), it is immediate to write down the log-likelihood function for a regression model
of type (8) and ST error terms. For numerical computation of the MLEs, it is advantageous to
make use of the expressions of the derivatives of the log-likelihood, available in the full version
of the paper of Azzalini & Capitanio (2003).

Because of the algebraic complication it is difficult to examine precisely the formal properties
of this log-likelihood function. It is, however, plausible that the property of non-stationary point
at α = 0 carries on from the univariate to the multivariate ST. This statement is illustrated
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Figure 2. Profile log-likelihood for the shape parameters α1 and α2 of the bivariate ST distribution fitted to the variables
(Wt, Ht) of the AIS data. Note that there is no indication of a stationary point at (0,0).

in Figure 2 which refers to the weight (Wt) and height (Ht) of the AIS data already used for
Figure 1. Consider the profile log-likelihood function


∗(α) = max
ξ,�,ν


(ξ, �, α, ν; Ht, W t)

where α ∈ R
2 and the corresponding deviance function

D(α) = 2 {
∗(α̂) − 
∗(α)}
where α̂ denotes the MLE of α. This function is displayed in Figure 2 in the form of a set of
contour levels. Since these contour levels correspond to percentage points of the χ2

2 distribution,
then each contour level selects a confidence region at the quoted confidence level. The set of
confidence levels considered here has been stretched far beyond common values so that the outer
curve includes the origin, to illustrate the lack of a stationary point of the “deviance” function
at the origin. Also, notice that for more standard values of the confidence level (typically up to
0.95) the shape of the regions is reasonably close to ellipsoids.

3 Monte Carlo Simulation Study

We investigate the finite-sample performance of the MLEs of the univariate and bivariate ST
distribution by means of a Monte Carlo simulation study. As indicated in the Introduction, the
likelihood function of the SN distribution may sometimes reach its maximum at the boundary
of the shape parameter space. For small-to-moderate sample sizes, this problem occurs with
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positive probability given in the univariate case with a single shape parameter by

Pr(Z > 0)n + Pr(Z < 0)n, (15)

where Z ∼ SN1(0, 1, α) and n is the sample size. For the univariate ST distribution, this problem
occurs with the same probability since

Pr(X > 0) = Pr(Z/D > 0) = Pr(Z > 0), (16)

where X ∼ ST1(0, 1, α, ν) and D is a suitable positive random variable.
Currently, there are essentially three approaches to deal with this issue. The first one, which

will be implemented in this study for the ST distribution, is similar to the procedure proposed by
Azzalini & Capitanio (1999). It is based on the fact that when either of the parameters α or ν is
large, then the shape of the ST density function remains almost unchanged if either parameter is
substantially increased. This suggests replacing the MLE of (α, ν), in samples where it occurred
on the boundary, by the smallest value (α0, ν0) such that H0 : (α, ν) = (α0, ν0) is not rejected by a
likelihood ratio test statistic based on the χ2

d+1 distribution at a fixed level, q say. This approach,
based on the deviance function, is fairly easy to implement, even in the multivariate case.

As a variant form of this “deviance approach,” one could decide to apply the same scheme in
all cases, not only when the MLE hits the boundary of the parameter space. This option has the
advantage of being a more homogeneous approach, at the cost of additional complication even
for the larger portion of cases when it is not needed. Indeed, both ways are conceivable; however,
for simplicity reasons, we opted for using the MLE when the deviance approach is not needed.

A second approach to the boundary problem of the MLE has recently been proposed by Sartori
(2006), and it consists in constructing a modified score function as an estimating equation. The
resulting modified maximum likelihood estimator for the shape parameter of the univariate SN
distribution has been proved to be always finite. The method has been applied to the univariate
ST distribution although only for fixed degrees of freedom. No proof of the finiteness of the
resulting shape estimator has been provided in this case. One drawback of this approach is that
the multivariate case has currently not been addressed.

Finally, a third approach arises from the Bayesian paradigm and consists in computing Jeffreys’
prior distribution for the shape parameter. Liseo & Loperfido (2006) have shown that, in the
case of the univariate SN distribution with a single shape parameter, the Jeffreys’ prior is proper.
In that setting, Bayes & Branco (2007) have shown that the Jeffreys’ prior is well approximated
by a Student’s t distribution. This guarantees the finiteness of the shape estimator resulting from
the mode of the posterior distribution. Unfortunately, neither the ST distribution case nor the
multivariate setting seems to have been investigated so far.

3.1 Univariate ST Distribution

In this simulation experiment, the parameters of the univariate ST distribution were set to
ξ = 0, ω = 1, α = 2, 5, ν = 5, 10, the sample sizes to n = 100, 200, 400, and the levels to q = 0,
0.5, 0.9. The “deviance approach” is implemented for situations where either of |α̂| or ν̂ is larger
than 100. We used 1,000 simulation replicates. Because the estimators of the shape and degrees
of freedom (df) parameters are sometimes infinite, we measure the accuracy of the estimator θ̂

of the parameter θ by

m(θ̂ ) = mediani=1,...,B{θ̂i − θ}, (17)

and

iqr (θ̂ ) = interquartile rangei=1,...,B{θ̂i − θ}, (18)

International Statistical Review (2008), 76, 1, 106–129
C© 2007 The Authors. Journal compilation C© 2007 International Statistical Institute



116 A. AZZALINI & M.G. GENTON

Table 1
Univariate ST distribution with ν = 5: simulations with 1,000 replicates of maximum likelihood estimation adjusted with the
“deviance approach”.

α n q m(ξ̂ ) m(ω̂) m(α̂) m(ν̂) % refit

iqr (ξ̂ ) iqr (ω̂) iqr (α̂) iqr (ν̂)

2 100 0 −0.024 0.039 0.204 0.776 —
0.234 0.459 1.388 6.631

2 100 0.5 −0.008 0.015 0.138 0.776 10.6
0.229 0.449 1.326 6.534

2 100 0.9 0.008 −0.008 0.043 0.776 10.6
0.246 0.438 1.386 6.163

2 200 0 −0.009 0.015 0.090 0.292 —
0.160 0.308 0.917 3.244

2 200 0.5 −0.007 0.015 0.087 0.292 3.0
0.160 0.307 0.902 3.244

2 200 0.9 −0.006 0.012 0.077 0.292 3.0
0.162 0.301 0.904 3.244

2 400 0 −0.006 0.007 0.034 0.130 —
0.109 0.198 0.633 2.055

2 400 0.5 −0.006 0.007 0.034 0.130 0.6
0.109 0.198 0.633 2.055

2 400 0.9 −0.006 0.007 0.033 0.130 0.6
0.109 0.198 0.631 2.055

5 100 0 −0.005 0.034 0.466 0.692 —
0.109 0.198 0.631 2.055

5 100 0.5 −0.003 0.031 0.338 0.692 11.8
0.117 0.337 3.606 6.665

5 100 0.9 0.002 0.017 0.201 0.668 11.8
0.117 0.321 3.444 6.149

5 200 0 0.001 0.011 0.213 0.348 —
0.079 0.219 2.171 3.099

5 200 0.5 0.001 0.011 0.194 0.348 3.5
0.078 0.219 2.157 3.099

5 200 0.9 0.001 0.010 0.175 0.348 3.5
0.078 0.218 2.173 3.099

5 400 0 −0.004 0.011 0.067 0.248 —
0.051 0.151 1.477 1.745

5 400 0.5 −0.004 0.011 0.067 0.248 1.4
0.051 0.151 1.477 1.745

5 400 0.9 −0.004 0.011 0.067 0.248 1.4
0.051 0.151 1.477 1.745

where the number of replicates is B = 1,000 in our setting. Tables 1 and 2 report the results of the
simulation study along with the percentages of refit in the last column, which therefore indicates
the fraction of cases where the MLE was modified according to the “deviance approach”. This
percentage decreases with increasing sample size, but it increases with larger shape and df
parameters. There is an appreciable bias only for df, when n = 100 or 200. The “deviance
approach” sometimes alleviates the bias problem for α and ν for small sample size. The bias on
location and scale parameters is usually small. The difference between the “deviance approach”
using q = 0.5 and q = 0.9 is small when the df is small, but becomes more important for
large df.

3.2 Bivariate ST Distribution

In this simulation experiment, the parameters of the bivariate ST distribution were set to
ξ 1 = ξ 2 = 0, �11 = �22 = 1, �12 = 0, (α1, α2) = (2, 2), (2, 5), (5, 5), ν = 5, the sample sizes to
n = 100, 200, 400, and the levels to q = 0, 0.5, 0.9. The “deviance approach” is implemented for
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Table 2
Univariate ST distribution with ν = 10: simulations with 1,000 replicates of maximum likelihood estimation adjusted with the
“deviance approach”.

α n q m(ξ̂ ) m(ω̂) m(α̂) m(ν̂) % refit

iqr (ξ̂ ) iqr (ω̂) iqr (α̂) iqr (ν̂)

2 100 0 −0.016 0.052 0.185 5.920 —
0.225 0.352 1.349 11989.310

2 100 0.5 0.018 −0.031 −0.024 2.373 32.9
0.243 0.396 1.286 15.963

2 100 0.9 0.069 −0.135 −0.318 0.329 32.9
0.360 0.439 1.511 6.904

2 200 0 −0.012 0.030 0.086 1.722 —
0.164 0.279 0.892 24.271

2 200 0.5 −0.002 0.014 0.023 1.654 18.5
0.158 0.285 0.848 13.617

2 200 0.9 0.015 −0.036 −0.080 0.714 18.5
0.190 0.292 0.926 7.804

2 400 0 −0.012 0.019 0.080 1.268 —
0.122 0.212 0.692 10.102

2 400 0.5 −0.011 0.017 0.061 1.268 9.0
0.116 0.209 0.653 9.881

2 400 0.9 −0.007 0.014 0.040 1.197 9.0
0.118 0.203 0.625 8.033

5 100 0 −0.004 0.032 0.535 4.754 —
0.110 0.275 3.394 12238.742

5 100 0.5 0.011 0.005 −0.051 4.101 33.8
0.111 0.311 3.137 30.522

5 100 0.9 0.026 −0.029 −0.580 1.851 33.8
0.121 0.296 3.162 15.835

5 200 0 −0.006 0.021 0.285 2.032 —
0.071 0.204 2.231 20.259

5 200 0.5 0.001 0.016 0.095 2.032 16.4
0.070 0.218 2.151 17.461

5 200 0.9 0.004 0.007 −0.024 1.696 16.4
0.072 0.205 2.163 13.502

5 400 0 −0.002 0.013 0.180 1.394 —
0.056 0.147 1.490 9.374

5 400 0.5 −0.002 0.012 0.122 1.394 7.0
0.056 0.148 1.476 9.374

5 400 0.9 −0.001 0.010 0.089 1.394 7.0
0.055 0.147 1.508 9.121

situations where either of the quantities ‖α̂‖ or ν̂ is larger than 100. We used 1,000 simulation
replicates. Table 3 reports the results of the simulation study along with the percentages of refit in
the last column. The percentage of refit is smaller than in the univariate case and there is no refit
for n = 400, suggesting again that the problem of boundary values disappears for large sample
sizes. The overall behaviour of the “deviance approach” in Table 3 is similar to the univariate
case, although there seems to be some bias for α in small sample sizes.

4 Examples

4.1 Stack-Loss Data

The stack-loss data presented by Brownlee (1960, pp. 491–500) represent a classical
benchmark for the performance of multiple regression procedures, largely in connection with
robustness, presence of outliers and related issues. In this context, the data have been used for
numerical illustration by a very large number of authors, as documented in detail by Dodge
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Table 3
Bivariate ST distribution with ν = 5: simulations with 1,000 replicates of maximum likelihood estimation adjusted with the
“deviance approach”.

α1 α2 n q m(ξ̂1) m(ξ̂2) m(�̂11) m(�̂12) m(�̂22) m(α̂1) m(α̂2) m(ν̂) % refit

2 2 100 0 −0.017 −0.019 0.047 −0.015 0.046 0.349 0.359 0.592 —
2 2 100 0.5 −0.017 −0.019 0.047 −0.015 0.046 0.232 0.267 0.622 4.2
2 2 100 0.9 −0.017 −0.019 0.047 −0.015 0.046 0.232 0.267 0.622 4.2
2 2 200 0 −0.010 −0.002 0.008 −0.007 0.018 0.122 0.143 0.328 —
2 2 200 0.5 −0.010 −0.002 0.008 −0.007 0.018 0.121 0.140 0.328 0.1
2 2 200 0.9 −0.010 −0.002 0.008 −0.007 0.018 0.121 0.140 0.328 0.1
2 2 400 0 −0.002 0.004 0.012 −0.008 0.012 0.044 0.046 0.118 —
2 2 400 0.5 −0.002 0.004 0.012 −0.008 0.012 0.044 0.046 0.118 0
2 2 400 0.9 −0.002 0.004 0.012 −0.008 0.012 0.044 0.046 0.118 0

2 5 100 0 −0.002 −0.001 0.050 −0.001 0.023 0.469 1.099 0.645 —
2 5 100 0.5 −0.002 −0.001 0.050 −0.001 0.023 0.115 0.208 0.880 12.3
2 5 100 0.9 −0.002 −0.001 0.050 −0.001 0.023 0.115 0.208 0.880 12.3
2 5 200 0 0.004 −0.007 0.019 −0.004 0.019 0.135 0.356 0.212 —
2 5 200 0.5 0.004 −0.007 0.019 −0.004 0.019 0.122 0.331 0.215 0.8
2 5 200 0.9 0.004 −0.007 0.019 −0.004 0.019 0.122 0.331 0.215 0.8
2 5 400 0 −0.001 0.002 0.009 0.004 −0.003 0.058 0.106 0.007 —
2 5 400 0.5 −0.001 0.002 0.009 0.004 −0.003 0.058 0.106 0.007 0
2 5 400 0.9 −0.001 0.002 0.009 0.004 −0.003 0.058 0.106 0.007 0

5 5 100 0 0.004 −0.019 0.019 −0.005 0.048 1.562 1.625 0.597 —
5 5 100 0.5 0.004 −0.019 0.019 −0.005 0.048 −0.250 −0.094 1.510 21.0
5 5 100 0.9 0.004 −0.019 0.019 −0.005 0.048 −0.250 −0.094 1.510 21.0
5 5 200 0 0.007 −0.003 0.003 −0.008 0.018 0.400 0.513 0.257 —
5 5 200 0.5 0.007 −0.003 0.003 −0.008 0.018 0.307 0.408 0.271 1.7
5 5 200 0.9 0.007 −0.003 0.003 −0.008 0.018 0.307 0.408 0.271 1.7
5 5 400 0 0.002 −0.002 −0.003 −0.002 0.003 0.208 0.194 0.107 —
5 5 400 0.5 0.002 −0.002 −0.003 −0.002 0.003 0.208 0.194 0.107 0
5 5 400 0.9 0.002 −0.002 −0.003 −0.002 0.003 0.208 0.194 0.107 0

(1996). The data refer to n = 21 days of observations on a chemical process for which a variable
of interest, y = Stack-loss, is related to three other chemical variables, namely x1 = Air
flow, x2 = Water temperature and x3 = Acid concentration.

While it is possible to argue that a suitable formulation leads to a generalized linear model
with no evidence of outliers (Nelder, 2000), here we are concerned with the comparison of the
behaviour of the proposed methodology and similar ones when the fitted models are assumed to
be of linear regression type.

Consider a regression model with explanatory variables X = (1, x1, x2, x3) and a response
variable y of type

y = Xβ + ε, (19)

with error component ε having an ST distribution. All numerical computations, including those
described in subsequent sections, have been performed in the R computing environment (R
Development Core Team, 2006). Model fitting of the ST and SN regression models has been
accomplished using the R package sn (Azzalini 2006).

The parameter estimates and standard errors for model (19) are reported in Table 4. These
estimates, except clearly the shape parameter, are very close to those obtained by Lange et al.
(1989) fitting a similar model with an error term having a symmetric Student’s t distribution.
Besides the results of Lange et al. (1989), a number of other papers mentioned by Dodge (1996)
indicate a strongly heavy-tailed distribution of the error term. Since the above value of the shape
parameter is close to 0, the other parameters are not changed appreciably with respect to the
symmetric t case. The discrepancy of α̂ from 0 is so small compared to its standard error that a
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Table 4
Stack-loss data: Parameter estimates and standard errors for model (19).

Constant Air flow Water temp. Acid conc. Scale Shape Df

Estimate −38.05 0.86 0.48 −0.08 0.98 0.28 1.14
Standard error 3.75 0.06 0.15 0.06 0.44 0.65 0.53

Table 5
Stack-loss data: Summary index of discrepancy Q(p) between
observed and fitted values for a linear regression model with
three covariates. The minimum for each p is in bold font.

p 0.5 1 2

LS 30.1 49.7 178.8
Huber 28.3 46.1 190.5
LTS 25.4 49.4 322.6
ST 25.0 43.4 240.0

formal test does not seem necessary. While one could remark that for this data set the addition
of a skewness parameter has not led to any appreciable improvement of fit with respect to the
usual t distribution, it is required that the wider model with ST errors is first fit to the data to
reach this conclusion.

In computing the fitted values ŷ corresponding to a model of the above type, the skewness of
the error component must be taken into account via an expression of type

ŷ = X β̂ + Mε

where β̂ denotes the estimates of β and Mε is a suitable quantity which reflects the lack of centring
of the error term. In a sense, the obvious choice for Mε is to set it equal to E{ε} computed at the
estimated values of the fitted ST distribution, since this option leads to an unbiased estimate of
the expected value of y for given X , up to the approximation due to replacing the true parameters
ω, α, ν, by their estimates. This route is the one taken by Azzalini & Capitanio (2003, Section
5.2) and by Sahu et al. (2003, Section 6.2).

There are, however, reasons to consider other options: (1) when the estimate ν̂ of the degrees
of freedom does not exceed 1, the above choice of Mε does not produce a finite value; (2) even if
ν̂ is above 1 but it is not much larger, the corresponding estimate of E{ε} fluctuates very widely.
The case under consideration is of the latter type; if E{ε} is computed for a range of values of
ν within one standard error from ν̂, the result ranges from 0.457 to ∞. On the basis of these
remarks, a more stable and generally admissible choice for Mε is advisable. In the subsequent
numerical work, Mε has been taken to be the median of the fitted distribution of ε. For the
stack-loss data, the corresponding range of Mε is from 0.245 to 0.301, when ν varies within one
standard error from ν̂.

To compare the performance of the present methodology with some of the main alternatives
currently in use, the summary index

Q(p) =
n∑

i=1

|yi − ŷi |p, (p = 0.5, 1, 2), (20)

has been adopted. The resulting numerical values are shown in Table 5 which, besides the ST
fit, reports the corresponding values for other methods, namely classical least squares (denoted
LS in the subsequent tables), an M-estimate using the Huber’s psi-function (denoted Huber), and
the least trimmed sum of squares (denoted LTS) studied by Rousseeuw & Leroy (1987). The
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Table 6
Austrian bank interest rates data: Parameter estimates and standard errors for
model (21).

β0 β1 Scale Shape Df

Estimate 0.18 0.98 0.08 0.15 1.13
Standard error 0.19 0.02 0.02 0.28 0.24

numerical fitting of the Huber and LTS estimates has been accomplished with the aid of the R
package MASS associated to Venables & Ripley (2002), keeping the tuning parameters of the
procedures at their default values. Clearly, when p = 2, the least-squares fit is known beforehand
to be superior, but it is useful to have a perception of the relative loss of other methods. Inspection
of Table 5 indicates an overall satisfactory behaviour of ST with respect to other methods, when
the previous remark is taken into account.

4.2 Austrian Bank Interest Rates Data

These data consist of n = 91 monthly interest rates of an Austrian bank. They have been
analyzed already by Künsch (1984) and Ma & Genton (2000) in the context of robust time series
analysis. Indeed, the series contains three large outliers for the months 18, 28 and 29, and this
severely affects the classical model-fitting techniques.

Consider an autoregressive model of order one, AR(1), for Y (t), the interest rate at month t,
of type

Y (t) = β0 + β1Y (t − 1) + ε(t) , (21)

with β0 ∈ R, |β1| < 1, and i.i.d. error components ε(t) having an ST distribution. This error dis-
tribution models possible innovation outliers (Denby & Martin, 1979), but can also downweight
the effect of other types of outliers as we show in this section. The corresponding parameter
estimates and standard errors are reported in Table 6.

The shape parameter is close to 0, indicating negligible asymmetry in the distribution of
the errors. The small df parameter reflects heavy tails due to the outliers. Figure 3 depicts
PP-plots for a normal and ST fit to the error components ε(t). The PP-plot for the ST fit follows
the diagonal line very closely, indicating a much better fit than the normal one. Moreover, the
inappropriateness of the normal distribution is apparent not only for a few points related to
outliers but for the whole set of data points, whereas the ST fit accommodates all points. In
computing the fitted values Ŷ (t) corresponding to the AR(1) model above, the skewness of the
error component must be taken into account via an expression of type

Ŷ (t) = β̂0 + β̂1Y (t − 1) + Mε ,

where β̂0 and β̂1 denote the estimates of β0 and β1, and Mε is the median of the fitted distribution
of ε(t), similarly to the stack-loss data analysis.

The classical least squares (LS) method for fitting an AR(1) model of type (21) to the Austrian
bank interest rates data yields β̂0 = 1.93 and β̂1 = 0.79, which are quite different from the ST
fit. Note that compared to the ST fit, the LS estimate of β1 is pushed towards 0 because of
the presence of outliers, a well-known weakness of the LS estimator in the AR(1) time series
model; see Genton & Lucas (2003) for further discussions. Künsch (1984) uses optimal robust
estimators in the sense that, among all M-estimators with a bound on their influence function,
they minimize the trace of the corresponding asymptotic covariance matrix. His method produces
the estimates β̂0 = 0.37 and β̂1 = 0.96, which are quite close to the ST fit. Figure 4 depicts the
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Figure 3. Austrian bank interest rates data: PP-plots for normal and ST fit.

autoregression lines fitted by LS, Künsch’s optimal robust estimator, and ST. In this case, the
ST and the Künsch estimates behave very similarly, while the LS autoregression line is severely
influenced by two leverage points in the middle-right area of the plot. From this figure, it is clear
that the LS fit does not represent the “main body” of the data well.

To compare the performance of the ST methodology with some of the main alternatives
currently in use, the summary index Q(p) defined in (20) has been adopted. The resulting
numerical values are reported in Table 7 which, besides the ST fit, reports the corresponding
values for Künsch’s optimal robust estimator and for least squares. Inspection of Table 7 indicates
an overall satisfactory behaviour of ST with respect to other methods.

4.3 Wind Speed Data

Although its contribution to global power production is still slight, the use of wind to generate
power is increasingly important from both the financial as well as ecological perspectives. In
particular, an ability to forecast wind power production is extremely important to those managing
the supply of power over national grids, see Genton & Hering (2007) for a recent discussion.
Gneiting et al. (2006) proposed a regime-switching space–time model for short-term forecasts
of wind speed based on the alternation of westerly and easterly winds near the Stateline wind
energy centre in the US Pacific Northwest. We propose to study the spatial distribution of wind
speed by means of the ST distribution.

International Statistical Review (2008), 76, 1, 106–129
C© 2007 The Authors. Journal compilation C© 2007 International Statistical Institute



122 A. AZZALINI & M.G. GENTON

21110198

8
9

1
0

1
1

1
2

Y
(t

)

LS

Kunsch

ST

Figure 4. Austrian bank interest rates data: autoregression lines produced by different methods.

Table 7
Austrian bank interest rates data: Summary index of discrepancy
Q(p) between observed and fitted values for an AR(1) model.
The minimum for each p is in bold font.

p 0.5 1 2

LS 37.5 21.5 17.5
Künsch 32.1 18.9 18.8
ST 31.8 18.9 19.1

The wind speed data consists of hourly average wind speed collected at three meteorological
towers: Goodnoe Hills (gh), Kennewick (kw), and Vansycle (vs). Those towers are approximately
located on a line and ordered from west to east. We consider the wind speed from 25 February to
30 November 2003 recorded at midnight, a time when wind speeds tend to peak. In this region,
wind patterns are mostly westerly and sometimes easterly. This information is coded in the sign
of the wind speed data: a positive sign represents a westerly wind direction, with an angle in the
interval (−π /2, π /2) radians, and a negative sign represents an easterly wind direction, with an
angle in the interval (π /2, 3π /2) radians.

Denote by Y (t) the three-dimensional vector of wind speed at the towers recorded at time
t = 1, . . . , 278. A Ljung–Box test indicates some serial correlation at the Goodnoe Hills
tower, but not at the other two towers. Consequently, we decide to treat the observations as being
independent and identically distributed. We use an ST model for the distribution of Y (t). Figure 5
depicts bivariate scatter plots of the wind speed data at the three towers along with the contours
of the fitted ST distribution. The plots reveal both skewness and heavy tails. The indices of
skewness of the three univariate distributions obtained by marginalization of the fitted trivariate
distribution are γ̂1 = −3.45, γ̂2 = −1.45, and γ̂3 = −2.20 indicating negative skewness at all
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gh
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Figure 5. Wind speed data: bivariate scatter plots and fitted ST contours.

three towers, the strongest being at Goodnoe Hills. This asymmetry, due to prevailing westerly
winds, has also been noted by Gneiting et al. (2006). The heavy tails behaviour is confirmed
by the estimated degrees of freedom ν̂ = 4.0, indicating the presence of extreme wind speeds.
Figure 6 presents QQ-plots for a normal and an ST fit. The plots indicate that the ST model
brings significant improvements over the normal distribution.

4.4 Vowel Recognition Data

Another field of potential application of the SN and ST distributions is the context of
classification methods. Some initial work in this direction has been conducted by Azzalini &
Capitanio (1999) based on SN distribution. For similarity with the traditional linear discriminant
analysis, they have kept the scale matrix � and the skewness vector parameter α constant among
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Figure 6. Wind speed data: QQ-plots for normal and ST fit.

sub-populations, varying only the location parameter ξ k , say, with the subpopulation index
k = 1, . . . , K. Hence the discriminant function in use has been of the form

log fSN(x ; ξk, �, α) + log πk, x ∈ R
d , (22)

where f SN denotes the SN density and π k the prior probability of the k-th subpopulation.
Obviously, one is not compelled to keep � and α constant for all subpopulations, but relaxing

this assumption inflates substantially the number of parameters to be estimated. A more attractive
option seems to be replacing the SN density in (22) by the analogous ST density, with only one
extra parameter ν to be estimated.

This approach has been experimented on the vowel recognition data which consist of a set
of records on 10 continuous variables generated by the pronunciation of the 11 vowel sounds
of the English language, plus the label of the vowel category. The 11 vowel sounds have been
recorded from the pronunciation of various speakers, producing two tables of 528 and 426
rows, respectively. These data represent a popular and quite severe benchmark for classification
methods, using the first table for training a given method to recognize the vowel on the basis
of the 10 continuous variables and the second table for testing its performance. Among others,
these data have been considered by Hastie et al. (1994) who have used them to compare the
performance of a range of classification methods; also, they have provided a more detailed
description of the genesis of the data.

There are therefore K = 11 subpopulations in d = 10 dimensions involved, requiring to estimate
11 × 10 + 10 × 11/2 + 10 = 175 parameters for the SN formulation (22) and 176 parameters
for the similar ST formulation, in addition to the prior probabilities. For the latter component, we
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Table 8
Vowel recognition data: Percentages of misclassified cases.

Percentage of error On training data On test data

LDA 32 56
SN 29 51
ST 27 47
LINR 48 67
LOGR 22 51
QDA 1 53

have adopted the standard option of using the frequencies in the training set to estimate the π k’s.
Estimation of the f SN and f ST parameters via maximum likelihood has required some numerical
care due to high dimensionality of the parameter space. This fact has affected especially ST
estimation, since for the SN case the search can effectively be reduced to consider a parameter
space in 120 dimensions, using the technique of Section 2.1 based on (9)–(11).

The parameters estimated from the training data have been inserted in the discriminant function
of form (22), in its variants with the SN and ST densities, and applied to the test data. The observed
percentages of misclassified cases are given in Table 8, which also includes the corresponding
value using the normal distribution, i.e. using linear discriminant analysis (LDA).

It was expected that the use of SN and ST distribution leads to some improvement with respect
to the normal associated to LDA, because of the nesting of the parametric classes. It is, however,
good to see that in practical terms the effect is non-negligible. In addition, it is worth noticing
that the addition of a single extra parameter leading from the SN class to the ST class produces
a noticeable improvement.

Table 8 also reports misclassification rates from Hastie et al. (2001, p. 85) for linear regression
(LINR) of a class indicator matrix, logistic regression (LOGR), and quadratic discriminant
analysis (QDA). The ST discriminant function on the test data still produces smaller error rates
than for those three methods. It is interesting to note that QDA requires to estimate 11 × 10 +
11 × 10 × 11/2 = 715 parameters compared to only 176 for the ST formulation.

To get a more comprehensive view of the performance of the method, consider the top part of
table 5 of Hastie et al. (1994) which includes several competing methods. The error rate of 47%
of the ST discriminant function on the test data is not as good as the similar figure produced
by the best classification methods, which score down to a 39% error rate. One must, however,
take into account that these methods are substantially more complex and targeted specifically to
classification. Indeed, the ST classification compares favourably even with many of those, and
loses only with the most sophisticated ones.

5 Discussion

We have advocated the use of flexible parametric classes as an attractive alternative to
the classical robustness approach. In particular, we have focused on the multivariate skew-t
distribution along with the maximum likelihood method, and we have shown that the multivariate
ST distribution has better inferential properties than the SN and SEP2 families. For the SN
family, a more regular behaviour of the log-likelihood function can be achieved by a suitable
re-parameterization, which has also the advantage of simpler interpretation of the parameters;
for a discussion of this point, see, for instance Section 2.4 of Azzalini (2005). In fact, as for
interpretability of parameters, a similar form of reparameterization is convenient even for ST
distribution.

We have illustrated the advantages of our approach on various data sets and settings. In
particular, the multivariate ST distribution is a flexible and parsimonious parametric alternative
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to multivariate nonparametric density estimation. The latter is well known to suffer from the
curse of dimensionality when several variables are considered simultaneously, for instance, such
as in the example of the vowel recognition data. The flexibility of the ST distribution compared
to the SN is due to a single additional parameter, namely the degrees of freedom, which results
also in the parsimony of the model.

One potential disadvantage, though, is that there is only one parameter that regulates the
tail behaviour of all variables. If, for example, one variable has Gaussian tails whereas another
has Cauchy tails, then the single degrees of freedom parameter has to provide a compromise
between those two tail behaviours. One general approach would be to consider some other
multivariate t distributions with multiple degrees-of-freedom parameters, such as those proposed
by Miller (1968), as the “base” function f0 in (1). Unfortunately, those proposals do not have
appealing parametric forms and rely on complicated hypergeometric functions that would prevent
their use in routine applied work. A relatively simpler formulation, at least for the bivariate
case, is the one of Jones (2002); see also additional proposals reviewed in chapters 4 and
5 of Kotz & Nadarajah (2004). These various formulations tend, apparently inevitably, to be
appreciably more complicated from the formal viewpoint, often already in the expression of the
density, let alone higher-order moments. While there certainly exist cases for which this extra
complication is definitely required, it seems to us that our previous remark still holds, namely
that the multivariate ST distribution provides a reasonable compromise between flexibility and
mathematical tractability, making it a particularly attractive general-purpose tool.
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Résumé

Le problème de la robustesse est attaqué en adoptant une classe paramétrique de distributions qui sont suffisamment
flexibles pour représenter le comportement des observations. Dans une variété de cas pratiques, une option raisonnable
est de considérer des distributions qui incluent des paramètres pour régler leur asymétrie et leur aplatissement. Comme
représentant spécifique de cette approche, la distribution t asymétrique est explorée plus en détail et des raisons sont
apportées pour adopter cette option comme un compromis judicieux et à tous usages entre la robustesse et la simplicité
du traitement et de l’interprétation des résultats. Quelques arguments théoriques, les résultats de simulations et divers
exemples sur des données réelles sont fournis afin de soutenir cette affirmation.

Appendix

Proof of Proposition 1: (1) Consider the log-likelihood function (6) associated to the sample
y1, . . . , yn . The partial derivatives of order one of the log-likelihood are

∂


∂ξ
= − 1

ω

[
n∑

i=1

f ′
0(zi )

f0(zi )
+

n∑
i=1

P ′
K (zi )

g{PK (zi )}
G{PK (zi )}

]
,

∂


∂ω
= − 1

ω

[
n +

n∑
i=1

zi
f ′
0(zi )

f0(zi )
+

n∑
i=1

zi P ′
K (zi )

g{PK (zi )}
G{PK (zi )}

]
,

∂


∂α j
=

n∑
i=1

z j
i

g{PK (zi )}
G{PK (zi )} , j = 1, 3, . . . , K ,

where zi = ω−1(yi − ξ ) and g = G ′. Setting vi = f ′
0(zi )/f0(zi ) and wi = g{PK (zi )}/G{PK (zi )},

the solutions to the score equations satisfy

−v̄ = α1w̄ + 3α3z2w + · · · + KαK zK−1w, (23)

0 = 1 + zv + α1zw + 3α3z3w + · · · + KαK zK w, (24)

0 = z j w, j = 1, 3, . . . , K (25)

where a notation of the form z j w denotes the average of the component-wise evaluation of the
sample values of z j w .

From (24) and (25), zv = −1 for any solution. For α1 = α3 = · · · = αK = 0 to be a solution
to the score equations requires v̄ = 0 from (23), that is,

n∑
i=1

f ′
0{(yi − ȳ)/ω}

f0{(yi − ȳ)/ω} = 0. (26)

Consequently, w̄ = 2g(0), ξ = yw/w̄ = ȳ and ω = ξ v̄ − vy = −vy, which for f0 = φ, the
standard normal density, simplifies to ω = s. This is true whatever the choice of G.
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(2) Setting ui = f ′′
0 (zi )/f0(zi ) and ti = g ′{PK (zi )}/G{PK (zi )}, straightforward but tedious

computations yield expressions for the second-order partial derivatives of the log-likelihood
function (6). At α1 = α3 = · · · = αK = 0, they simplify to

∂2


∂ξ 2
= − n

ω2
[v2 − ū],

∂2


∂ω2
= − n

ω2
[z2v2 − z2u + 1],

∂2


∂α2
j

= 2nz2 j [g′(0) − 2g2(0)], j = 1, 3, . . . , K ,

∂2


∂ξ∂ω
= − n

ω2
[zv2 − zu],

∂2


∂ξ∂α j
= − n

ω
[2g(0) j z j−1], j = 1, 3, . . . , K ,

∂2


∂ω∂α j
= − n

ω
[2g(0) j z j ], j = 1, 3, . . . , K ,

∂2


∂α j∂αk
= 2nz j+k[g′(0) − 2g2(0)], j, k = 1, 3, . . . , K .

When f0 = φ, we have ū = 0, v2 = z2 = 1, zv2 = zu = z3 and z2u + 1 = z2v2 = z4, and thus
the following additional simplifications occur:

∂2


∂ξ 2
= − n

ω2
,

∂2


∂ω2
= −2n

ω2
,

∂2


∂ξ∂ω
= 0.

Thus, the first and third rows of the observed Fisher information matrix, corresponding to ξ and
α1, are

n
(

1
ω2 0 1

ω
2g(0) 1

ω
2g(0)3z2 1

ω
2g(0)5z4 · · · 1

ω
2g(0)K zK−1

)
,

n
(

1
ω

2g(0) 0 4g2(0) 4g2(0)z4 4g2(0)z6 · · · 4g2(0)zK+1
)
.

Taking expectations and using the well-known fact that E{ j z j−1} = E{z j+1} for the Gaussian
distribution, we see that those two rows are proportional by the factor ω2g(0), and thus the
expected Fisher information matrix is singular. Note that for K = 1, the observed Fisher
information matrix is already singular, as noted by Pewsey (2006). This is true whatever the
choice of G, and thus completes the proof of the statement.
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