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Abstract

We derive the exact probability density function of the maximum of arbitrary absolutely continuous dependent random

variables and of absolutely continuous exchangeable random variables. We show this density is related to the family of

fundamental skew distributions. In particular, we examine the case where the random variables have an elliptically

contoured distribution. We study some particular examples based on the multivariate normal and multivariate Student t

distributions, and discuss numerical computation issues. We illustrate our results on a genetic selection problem and on an

autoregressive time series model of order one.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let X ¼ ðX 1; . . . ;X nÞ
T be an absolutely continuous random vector, which will be assumed to have a

probability density on Rn. We are interested in the problem of finding the exact distribution of the maximum
X ðnÞ ¼ max1pipn fX ig. The solution is well known in the case of independent and identically distributed (i.i.d.)
random variables X 1; . . . ;X n, see Gumbel (1958). The asymptotic distributions of X ðnÞ have received
considerable attention, both in the i.i.d. setting, see e.g. David (1981, Chapter 8) and references therein, and
under some form of dependence such as m-dependence, see e.g. Watson (1954) and Ghosh (1972). An
approximate formula for the distribution of X ðnÞ in the case of normal dependent random variables has been
derived by Greig (1967). The exact probability density function of X ðnÞ when X is an exchangeable multivariate
normal random vector, i.e. its covariance matrix is equicorrelated, has been considered by Tong (1990, p. 126),
who proposed to derive this density as a location mixture of the distribution corresponding to the maximum of
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i.i.d. normal random variables. Thus, an integration problem needs to be solved in order to use Tong’s result.
We provide another exact form of this density and give also an extension to arbitrary dependent random
variables, not necessarily normal and/or exchangeable. In particular, when the parent distribution of X is
exchangeable, we show that the exact distribution of X ðnÞ belongs to the family of fundamental skew
distributions recently introduced by Arellano-Valle and Genton (2005). Specifically, let X ¼ ðYjZX0Þ, where
Y 2 Rk is a random vector with probability density function f Y, Z 2 Rm is a random vector, and the notation
ZX0 is meant component-wise. Then Arellano-Valle and Genton (2005) say that X has a k-dimensional
fundamental skew (FUS) distribution with probability density function:

f XðxÞ ¼ K�1m f YðxÞQmðxÞ; x 2 Rk, (1)

where QmðxÞ ¼ PðZX0jY ¼ xÞ and Km ¼ EðQmðYÞÞ ¼ PðZX0Þ. In particular, when f Y is a symmetric
probability density function (i.e. f Yð�yÞ ¼ f YðyÞ for all y 2 Rk), (1) defines the fundamental skew-symmetric
(FUSS) class of distributions. Note that Km is a normalizing constant and the term Qm may be interpreted as a
function causing skewness in the density f X. Indeed, we consider Y conditionally on ZX0 and this selection
mechanism induces skewness, see Arellano-Valle et al. (2006) for a unified view on skewed distributions
resulting from selections.

Our motivation comes from a genetic selection problem in agricultural research, originally considered by
Rawlings (1976) and Hill (1976, 1977), and more recently by Tong (1990, p. 129). To describe the problem
briefly, suppose that an agricultural genetic selection project involves n animals, for example pigs, and the top
performer is to be selected for breeding. Let X 1; . . . ;X n be the measurements of a certain biological or physical
characteristic of the n animals, such as the body weights or back fats of the pigs. The animal with score X ðnÞ is
to be selected. If X 1; . . . ;X n are independent with mean m, then the common mean of the observations of off-
springs of the selected animal with score X ðnÞ is EðX ðnÞÞ, and therefore the expected gain in one generation is
EðX ðnÞÞ � m. However, the assumption of independence is often not satisfied since the animals under selection
are usually genetically related. This is the case, for example, when the pigs are from the same family and have
the same parents. In this situation, a variance components model is generally assumed by geneticists, which
means that X ¼ ðX 1; . . . ;X nÞ

T has an exchangeable multivariate normal distribution (Tong, 1990, p. 108) with
a common mean m, a common variance s2 and a common correlation coefficient r 2 ½0; 1Þ. In summary, the
distribution of X is assumed to be multivariate normal Nnðm1n;s2fð1� rÞIn þ r1n1

T
n gÞ, with r 2 ½0; 1Þ, 1n 2 Rn

a vector of ones, and In 2 Rn�n the identity matrix. Our goal is to derive an explicit form for the probability
density function of X ðnÞ in the above context in order to study its shape with respect to r, but also in more
general settings of dependence.

The structure of the paper is set up as follows. In Section 2, we derive our main results, namely the exact
probability density function of X ðnÞ for arbitrary absolutely continuous dependent random variables and for
absolutely continuous exchangeable random variables. In particular, we examine the case where the random
variables have an elliptically contoured distribution (Fang et al., 1990). In Section 3, we study some particular
examples based on the multivariate normal and multivariate Student t distributions, and discuss numerical
computation issues. Extensions of the results in this paper to the exact distribution of linear combinations of
order statistics from dependent random variables can now be found in Arellano-Valle and Genton (2007).

2. Main results

2.1. Dependent random variables

Although the next result is straighforward to derive, its importance lies in the link between the exact
distribution of the maximum and FUS distributions of the form (1).

Proposition 1. Let X ¼ ðX 1; . . . ;X nÞ
T be an absolutely continuous random vector. The probability density

function f X ðnÞ
of X ðnÞ is

f X ðnÞ
ðxÞ ¼

Xn

i¼1

f X i
ðxÞFX�i jX i¼xðx1n�1Þ; x 2 R,
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where f X i
is the marginal probability density function of X i and FX�ijX i¼x is the conditional cumulative

distribution function of X�i ¼ ðX 1; . . . ;X i�1;X iþ1; . . . ;X nÞ
T given X i ¼ x.

Proof. Let F X ðnÞ be the cumulative distribution function of X ðnÞ. Then, for all x, we have

FX ðnÞ ðxÞ ¼ PðX ðnÞpxÞ

¼
Xn

i¼1

PðX ipxjX i � X jX0; 8jaiÞPðX i � X jX0; 8jaiÞ

¼
Xn

i¼1

F X i jX i�X jX0; 8jaiðxÞPðX i � X jX0; 8jaiÞ,

implying that

f X ðnÞ
ðxÞ ¼

Xn

i¼1

f X ijX i�X jX0; 8jaiðxÞPðX i � X jX0; 8jaiÞ.

Thus, the proof follows by noting from Bayes’ theorem that

f X ijX i�X jX0; 8jaiðxÞ ¼ f X i
ðxÞ

PðX i � X jX0; 8jaijX i ¼ xÞ

PðX i � X jX0; 8jaiÞ
: &

We consider next the class of elliptically contoured distributions for the random vector X. Following Fang
et al. (1990), we say that X 2 Rn has an elliptically contoured distribution with location vector l, scale matrix
S, and density generator hðnÞ, if its probability density function has the form

f nðx; l;S; h
ðnÞ
Þ ¼ jSj�1=2hðnÞ½ðx� lÞTS�1ðx� lÞ�; x 2 Rn,

and we use the notation X�ECnðl;S; h
ðnÞ
Þ. Denote the cumulative distribution function of X by

Fnðx; l;S; h
ðnÞ
Þ. It is well known that elliptically contoured distributions are closed under marginalization

and conditioning. In particular, if X�ECnðl;S; h
ðnÞ
Þ and we consider, for a fixed i, the partition given by

X ¼
X�i

X i

 !
; l ¼

l�i

mi

 !
; S ¼

S�i�i R�ii

Ri�i Sii

 !
,

then X i�EC1ðmi;Sii; h
ð1Þ
Þ with density f 1ðx; mi;Sii; h

ð1Þ
Þ ¼ hð1Þðz2i Þ=

ffiffiffiffiffiffi
Sii

p
, where zi ¼ ðx� miÞ=

ffiffiffiffiffiffi
Sii

p
, and

ðX�ijX i ¼ xÞ�ECn�1ðl�i:iðxÞ;S�i�i:i; h
ðn�1Þ

z2
i

Þ, where

l�i:iðxÞ ¼ l�i þ ðx� miÞR�ii=Sii and S�i�i:i ¼ S�i�i � R�iiR
T
�ii=Sii

are the conditional location and scale, respectively, and

h
ðn�1Þ

z2
i

ðuÞ ¼ hðnÞðuþ z2i Þ=hð1Þðz2i Þ; uX0

is the conditional density generator. Thus, since

FX�ijX i¼xðx1n�1Þ ¼ Fn�1ðx1n�1; l�i:iðxÞ;S�i�i:i; h
ðn�1Þ

z2
i

Þ,

we have the following result based on Proposition 1.

Proposition 2. Let X ¼ ðX 1; . . . ;X nÞ
T be a random vector with elliptically contoured distribution,

X�ECnðl;S; h
ðnÞ
Þ. The probability density function f X ðnÞ

of X ðnÞ is

f X ðnÞ
ðxÞ ¼

Xn

i¼1

f 1ðx; mi;Sii; h
ð1Þ
ÞFn�1ðx1n�1; l�i:iðxÞ;S�i�i:i; h

ðn�1Þ

z2
i

Þ; x 2 R,

where zi ¼ ðx� miÞ=
ffiffiffiffiffiffi
Sii

p
.
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2.2. Exchangeable random variables

When the absolutely continuous random vector X ¼ ðX 1; . . . ;X nÞ
T is exchangeable, we have for all i that

f X i
¼ f X n

and FX�i jX i
¼ FX�njX n

. Therefore, by Proposition 1, the computation of the probability density
function of X ðnÞ simplifies as follows.

Corollary 1. Let X ¼ ðX 1; . . . ;X nÞ
T be an absolutely continuous exchangeable random vector. Then, the

probability density function f X ðnÞ
of X ðnÞ is

f X ðnÞ
ðxÞ ¼ nf X n

ðxÞFX�njX n¼xðx1n�1Þ; x 2 R. (2)

When X�ECnðl;S; h
ðnÞ
Þ is an exchangeable elliptically contoured random vector, l ¼ m1n and

S ¼ s2fð1� rÞIn þ r1n1
T
n g, where r 2 ½0; 1Þ, implying that mi ¼ m, Sii ¼ s2, l�i ¼ m1n�1, R�ii ¼ s2r1n�1,

S�i�i ¼ s2fð1� rÞIn�1 þ r1n�11
T
n�1g. Therefore, based on Proposition 2 and zi ¼ z ¼ ðx� mÞ=s,

l�i:iðxÞ ¼ ðmþ srzÞ1n�1, S�i�i:i ¼ s2ð1� rÞfIn�1 þ r1n�11
T
n�1g, we have the following result.

Corollary 2. Let X ¼ ðX 1; . . . ;X nÞ
T be an exchangeable random vector with elliptically contoured distribution,

X�ECnðm1n;s2fð1� rÞIn þ r1n1
T
n g; h

ðnÞ
Þ, r 2 ½0; 1Þ. The probability density function f X ðnÞ

of X ðnÞ is

f X ðnÞ
ðxÞ ¼ nf 1ðx; m;s

2; hð1ÞÞF n�1ð
ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
z1n�1; 0; In�1 þ r1n�11

T
n�1; h

ðn�1Þ

z2
Þ; x 2 R,

where z ¼ ðx� mÞ=s.

On the other hand, if D 2 Rðn�1Þ�n denotes the difference matrix such that
DX ¼ ðX 2 � X 1;X 3 � X 2; . . . ;X n � X n�1Þ

T, and DXX0 means X 2 � X 1X0; . . . ;X n � X n�1X0, i.e.
X 1pX 2p � � �pX n, then under exchangeability we have

PðDXX0Þ ¼
1

n!
and PðDXX0jX n ¼ xÞ ¼

FX�n
ðx1n�1Þ

ðn� 1Þ!
; x 2 R.

From the latter fact, (2) can be rewritten as

f X ðnÞ
ðxÞ ¼ n!f X n

ðxÞPðDXX0jX n ¼ xÞ; x 2 R, (3)

which coincides with f X njDXX0ðxÞ ¼ f X n
ðxÞPðDXX0jX n ¼ xÞ=PðDXX0Þ, x 2 R, i.e. the probability density

function of X n given DXX0. This implies the following result.

Corollary 3. Let X ¼ ðX 1; . . . ;X nÞ
T be an absolutely continuous exchangeable random vector. Then,

X ðnÞ ¼
d
ðX njDXX0Þ. (4)

The result in Corollary 3 means that the distribution of X ðnÞ is intimately related to a specific selection
mechanism when X 1; . . . ;X n are exchangeable random variables. Moreover, when the marginal density f X n

is
symmetric, the resulting density (3) is in the FUSS family (1) with k ¼ 1 and m ¼ n� 1. The multiplicative
factor n!PðDXX0jX n ¼ xÞ in the density (3) is causing skewness in f X ðnÞ

although f X n
might be symmetric. If

f X n
is not symmetric, the density (3) is still of the form given by the fundamental skew density (1). When

X 1; . . . ;X n are not exchangeable random variables, it follows from the proof of Proposition 1 that the
distribution of X ðnÞ can be represented as a finite mixture of the FUS distributions resulting from
ðX ijX i � X jX0; 8jaiÞ, i ¼ 1; . . . ; n.

An extension of Corollary 3 to linear combinations of order statistics from a random vector with i.i.d.
components has recently been derived by Crocetta and Loperfido (2005), who also established a link to FUSS
distributions in that setting.

3. Examples

We examine closely the important cases of the multivariate normal and Student t distributions.
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3.1. Multivariate normal distribution

The density generator of the multivariate normal distribution is simply given by hðnÞðvÞ ¼ ð2pÞ�n=2 expð�v=2Þ
and hðkÞa ðvÞ ¼ hðkÞðvÞ for all k ¼ 1; . . . ; n� 1, so that f nðx; l;S; h

ðnÞ
Þ ¼ fnðx; l;SÞ and F nðx; l;S; h

ðnÞ
Þ ¼

Fnðx; l;SÞ, the multivariate normal probability density and cumulative distribution functions, respectively.
Moreover, the conditional density generator hðnÞa is the same as hðnÞ. Therefore, Proposition 2 and Corollary 2
immediately yield the following two important results.

Corollary 4. Let X ¼ ðX 1; . . . ;X nÞ
T be a random vector with a multivariate normal distribution, X�Nnðl;SÞ.

The probability density function f X ðnÞ
of X ðnÞ is

f X ðnÞ
ðxÞ ¼

Xn

i¼1

f1ðx; mi;SiiÞFn�1ðx1n�1; l�i:iðxÞ;S�i�i:iÞ; x 2 R, (5)

where f1 is the marginal probability density function of X n.

Corollary 5. Let X ¼ ðX 1; . . . ;X nÞ
T be an exchangeable random vector with a multivariate normal distribution,

X�Nnðm1n;s2fð1� rÞIn þ r1n1
T
n gÞ, r 2 ½0; 1Þ. The probability density function f X ðnÞ

of X ðnÞ is

f X ðnÞ
ðxÞ ¼ nf1ðx; m;s

2ÞFn�1ð
ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
z1n�1; 0; In�1 þ r1n�11

T
n�1Þ; x 2 R, (6)

where z ¼ ðx� mÞ=s and f1 is the marginal probability density function of X n.
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Normal Exchangeable: n=5

-4

Fig. 1. Density of X ðnÞ for a sample of size n ¼ 5 based on an exchangeable standard multivariate normal distribution with correlation

r ¼ 0; 0:1; . . . ; 0:9. The bold curve is the density for r ¼ 0. The dashed curve is the density for the limiting case r ¼ 1, and thus also the

marginal density of the sample.
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Fig. 2. Density of X ðnÞ for a sample of size n ¼ 5 based on a normal AR(1) time series with correlation r ¼ 0;�0:1; . . . ;�0:9 (left panel)

and with correlation r ¼ 0; 0:1; . . . ; 0:9 (right panel). The bold curve is the density for r ¼ 0. The dashed curve is the marginal density of

the sample.
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When n ¼ 2, the density (6) reduces to 2f1ðx; m;s
2ÞF1ðx; m;s2fð1þ rÞ=ð1� rÞgÞ, which is the density of a

very particular FUSS distribution called skew-normal, see e.g. the book recently edited by Genton (2004) for a
survey. This result has originally been given by Roberts (1966) and recently rediscovered by Loperfido (2002).

Algorithms for numerical evaluation of multivariate normal cumulative distribution functions
have been studied by Genz (1992) and made available in the library mvtnorm of the statistical software
R (R Development Core Team, 2004). We make use of this computing power to study the shape of the
distribution of X ðnÞ in two settings involving the multivariate normal distribution.

The first setting is the genetic selection problem described in the introduction. We set n ¼ 5, m ¼ 0, s2 ¼ 1,
and let r ¼ 0; 0:1; . . . ; 0:9. Fig. 1 depicts the resulting plots based on the density (6) in Corollary 5. The bold
curve is the density for r ¼ 0. The dashed curve is the density for the limiting case r ¼ 1, and thus also the
marginal density of the sample. We see that the larger the correlation r, representing the heritability of the
animals, the closer the density is to the standard normal density.

The second setting comes from time series analysis. We consider an autoregressive process of order one,
denoted by AR(1), defined at time t by X t ¼ rX t�1 þ �t, where �t are i.i.d. Nð0; 1� r2Þ and r 2 ð�1; 1Þ. A
sample X ¼ ðX 1; . . . ;X nÞ

T from the AR(1) process has therefore a multivariate normal distribution
X�Nnð0;SÞ, with Sij ¼ rji�jj, i; j ¼ 1; . . . ; n. We set n ¼ 5 and let r ¼ 0;�0:1; . . . ;�0:9. Fig. 2 depicts the
resulting plots based on the density (5) in Corollary 4, for rp0 (left panel) and for rX0 (right panel). The bold
curve is the density for r ¼ 0. The dashed curve is the marginal density of the sample. We see that the larger
the positive correlation r, the closer the density is to the standard normal density.

Fig. 3 depicts the density of X ðnÞ for a sample of size n ¼ 10; 20; 50; 100 based on an exchangeable standard
multivariate normal distribution with r ¼ 0:3. The dashed curve is the marginal density of the sample.

3.2. Multivariate Student t distribution

The density generator of the Student t distribution with n degrees of freedom is hðnÞðvÞ ¼

cðn; nÞnn=2fnþ vg�ðnþnÞ=2, vX0, with cðn; nÞ ¼ G½ðnþ nÞ=2�=ðG½n=2�pn=2Þ and the conditional density generator
is hðn�1Þa ðvÞ ¼ cðn� 1; nþ 1Þðnþ aÞðnþ1Þ=2fnþ aþ vg�ðnþnÞ=2. Denote this distribution by Studentnðl;S; nÞ with
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Fig. 3. Density of X ðnÞ for a sample of size n ¼ 10; 20; 50; 100 based on an exchangeable standard multivariate normal distribution with

r ¼ 0:3. The dashed curve is the marginal density of the sample.
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probability density tnðx; l;S; nÞ and cumulative distribution function Tnðx; l;S; nÞ. Proposition 2 and
Corollary 2 yield the following results.

Corollary 6. Let X ¼ ðX 1; . . . ;X nÞ
T be a random vector with a multivariate Student t distribution with n degrees

of freedom, X�Studentnðl;S; nÞ. The probability density function f X ðnÞ
of X ðnÞ is

f X ðnÞ
ðxÞ ¼

Xn

i¼1

t1ðx; mi;Sii; nÞTn�1 x1n�1; l�i:iðxÞ;
nþ z2i
nþ 1

S�i�i:i; nþ 1

� �
; x 2 R,

where t1 is the marginal probability density function of X n and z2i ¼ ðx� miÞ
2=Sii.

Corollary 7. Let X ¼ ðX 1; . . . ;X nÞ
T be an exchangeable random vector with a multivariate Student t distribution

with n degrees of freedom, X�Studentnðm1n;s2fð1� rÞIn þ r1n1
T
n g; nÞ, r 2 ½0; 1Þ. The probability density function

f X ðnÞ
of X ðnÞ is

f X ðnÞ
ðxÞ ¼ nt1ðx; m;s2; nÞTn�1

ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
z1n�1; 0;

nþ z2

nþ 1
fIn�1 þ r1n�11

T
n�1g; nþ 1

� �
; x 2 R, (7)

where t1 is the marginal probability density function of X n and z2 ¼ ðx� mÞ2=s2.

Algorithms for numerical evaluation of multivariate Student t cumulative distribution functions have been
studied by Genz and Bretz (2002) and also made available in the statistical software R. Returning to the setting
of the genetic selection problem described in the introduction, we investigate the shape of X ðnÞ when
X�Studentnðm1n;s2fð1� rÞIn þ r1n1

T
n g; nÞ. We set n ¼ 5, m ¼ 0, s2 ¼ 1, n ¼ 3, and let r ¼ 0; 0:1; . . . ; 0:9. Fig. 4
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Fig. 4. Density of X ðnÞ for a sample of size n ¼ 5 based on an exchangeable standard multivariate Student t distribution with n ¼ 3 degrees

of freedom and correlation r ¼ 0; 0:1; . . . ; 0:9. The bold curve is the density for r ¼ 0. The dashed curve is the density for the limiting case

r ¼ 1, and thus also the marginal density of the sample.
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depicts the resulting plots based on the density (7) in Corollary 7. The bold curve is the density for r ¼ 0. The
dashed curve is the density for the limiting case r ¼ 1, and thus also the marginal density of the sample. We see
that the larger the correlation r, representing the heritability of the animals, the closer the density is to the
standard Student t density.
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