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Abstract We analyze and model the structure of spatio-temporal wildfire ignitions
in the St. Johns River Water Management District in northeastern Florida. Previous
studies, based on the K -function and an assumption of homogeneity, have shown that
wildfire events occur in clusters. We revisit this analysis based on an inhomogeneous
K -function and argue that clustering is less important than initially thought. We also
use K -cross functions to study multitype point patterns, both under homogeneity and
inhomogeneity assumptions, and reach similar conclusions as above regarding the
amount of clustering. Of particular interest is our finding that prescribed burns seem
not to reduce significantly the occurrence of wildfires in the current or subsequent year
over this large geographical region. Finally, we describe various point pattern models
for the location of wildfires and investigate their adequacy by means of recent residual
diagnostics.
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1 Introduction

The spatio-temporal pattern of wildfire occurrences in the St. Johns River Water Man-
agement District (SJRWMD) of northeastern Florida is necessary information for
state officials so that optimal firefighting resources and development projects can be
placed in appropriate areas. A previous study by Genton et al. (2006) has analyzed
this data using the second-moment K -function (Ripley 1977; Diggle 1983, p. 47) to
determine whether this space-time point pattern shows a departure from complete
spatial randomness. Complete spatial randomness (CSR), in this case, would indicate
no significant spatial correlation between the wildfire occurrences, while a departure
from CSR would indicate clustering or regularity of wildfire ignitions. One common
assumption with this type of analysis (see also Podur et al. 2003) is that the point
pattern of events has a constant intensity, λ, representing the mean number of events
per unit area.

The study by Genton et al. (2006) used a dataset of reported wildfire occurrences
in the SJRWMD that was collected by the Florida Division of Forestry from 1981 to
2001 containing the location (latitude and longitude of the centroid of the cadastral
section) of the initial fire ignition, the date, the cause, the size of the fire in acres, and
the fuel type (neither size nor fuel type were used in this study). In addition, the Florida
Division of Forestry provided a GIS coverage which accurately maps 98% of reported
locations of wildfire ignitions and acres burned. The SJRWMD covers 31,681 km2 in
northeastern Florida, see Fig. 1. All reported wildfire occurrences in this area were
considered in the analysis except for those in the Ocala National Forest due to data
constraints on federal lands. Over the 21 year period, there were 31,693 fire ignitions
recorded.

The first objective of this paper is to examine the assumption of constant intensity
and reanalyze the wildfire data from the SJRWMD region using an inhomogeneous
version of the K -function. Specifically, we intend to determine whether the use of an
intensity function that depends on locations alters the inference on departure from CSR
reported by Genton et al. (2006). Upon reanalysis, we found that departures from CSR
are less likely to occur when estimating the K -function from an inhomogeneous point
process. This result leads us to question the homogeneity assumption with this data,
as well as the common assumption of homogeneity, when testing for CSR of a point
process. The behavior of the K -function under homogeneous and inhomogeneous
estimates of the intensity is further evaluated with a small simulation study; when trend
is present in a point pattern, the homogeneous K -function overstates the departure of
the pattern from CSR. From the modeling point of view, this information is important
because it suggests that a (parametric or nonparametric) trend should be included in a
model for wildfire ignitions.

In addition to detection of clustering among points, the relationship between points
of two types is investigated with the K -cross function. The causes of fires are divided
into 4 categories: accidents, arson, lightning, and railroads, and are also marked by
the year the fire occurred. A pair of marks is selected, such as arson and lightning,
and the K -cross function is designed to detect whether or not there is clustering or
inhibition between the types of points. In other words, do arson fires occur more or
less commonly near lightning fires, or are arson fires distributed with no regard to
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Fig. 1 St. Johns River Water Management District as a section of Florida (courtesy of the St. Johns River
Water Management District)

the locations of lightning fires? From a temporal perspective, the K -cross function is
applied to pairs of sequential years to determine whether or not high fire years are
followed by low or high fire years. The K -cross function has both a version assuming
constant intensity and an inhomogeneous counterpart. As with the K -function, the
degree of clustering is greatly reduced when an inhomogeneous trend is assumed.

123



228 Environ Ecol Stat (2009) 16:225–250

Under this assumption, no temporal patterns are detected, and only arson and accident
fires show a tendency to cluster.

Prescribed burns are a common fire suppression management strategy and have
been shown to be effective in localized areas. Data on the locations of prescribed
burns between 1993 and 2001 was available, and the K -cross function can be used
to evaluate the efficacy of prescribed burning on a large scale (both spatially and
temporally). Prescribed burns for a given year are compared with wildfires in its year
and the following year with the K -cross function; results show that for each pair of
years, there is not significant evidence to reject CSR between the prescribed burn
locations and the wildfire locations. This may have implications for use of prescribed
burning except in specialized circumstances.

Finally, a few simple models for wildfire point patterns are built based on clues
from the data. These models determine the form of the intensity estimators for the
inhomogeneous K and K -cross functions. New residual diagnostics introduced by
Baddeley et al. (2005) allow us to graphically compare the models to assess fit. These
models may allow us to simulate and reproduce the patterns that are seen in the wildfire
ignitions and will be building blocks for future models based on covariates such as
humidity, temperature, rainfall, and fuel type, see Butry et al. (2008) for regression
models based on such covariates.

The structure of the article is the following. In Sect. 2, we revisit the analysis of
the SJRWMD wildfire data based on an inhomogeneous K -function and argue that
clustering is less important than initially thought based on our simulation results.
In Sect. 3, we use K -cross functions to study multitype point patterns, both under
homogeneity and inhomogeneity assumptions, and reach similar conclusions as above
regarding the amount of clustering. In particular, we find that prescribed burns seem
not to reduce significantly the occurrence of wildfires in the current or subsequent
year. In Sect. 4, we describe various point pattern models for the location of wildfires
and investigate their adequacy by means of recent residual diagnostics. All numerical
computations are carried out with the R statistical package spatstat (Baddeley and
Turner 2005). We conclude in Sect. 5.

2 Inhomogeneous point patterns

The previous analysis of Genton et al. (2006) used the K -function as a measure
of departure from CSR with three common assumptions: homogeneity (first-order
intensity is constant), stationarity (second-order intensity depends on the distance
between events, not the exact location), and isotropy (second-order intensity depends
on the distance, not direction) of a point process.

2.1 Intensity

The first step in our analysis is to investigate the assumption of homogeneous intensity.
We will use a chi-squared test of independence to determine if the intensity of points in
one area differs significantly from the intensity of points in other areas. This analysis
was done by dividing the SJRWMD region into subregions and then counting the
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Table 1 Chi-squared test
statistics based on 3 and 9
equally sized subregions of the
SJRWMD

Fire cause X2 for 3 divisions X2 for 9 divisions

All 4,042.9 6,401.1
Accident 2,158.6 2,807.8
Arson 1,438.3 3,670.6
Lightning 1,569.3 2,096.5
Railroad 418.7 621.8

number of fire events within each subregion. Due to the irregular shape of the region,
the divisions were made horizontally to maintain approximately equal sizing of each
subregion. The chi-squared test statistic is

X2 =
m∑

i=1

(Ni − N̄ )2

N̄
, (1)

where m is the number of subregions, Ni is number of observed events in subregion
number i and N̄ = 1

m

∑m
i=1 Ni is the mean or expected number of events in each

subregion under the assumption of homogeneity (Diggle 1983, p. 33). We maintained
the chi-squared test of independence condition that no more than 20% of the cells can
have expected counts less than five by restricting the number of subregions to three and
nine. The three subregion test was used to evaluate an overall homogeneity while the
nine subregion test was used to evaluate more regional homogeneity. We calculated
X2 for each subregion type and for all of the data over the 21 years as well as for the
data divided into fire causes, see Table 1. At a 99% level, all of these chi-squared test
statistic values are extremely large compared to χ2

2,0.99 = 9.21 and χ2
8,0.99 = 20.09

indicating that we have significant evidence for an inhomogeneous intensity.

2.2 Inhomogeneous intensity

We will employ the same second-order statistic, the K -function, in our analysis but
will only change the assumption of homogeneous intensity to include all possible
intensities. Intuitively the K -function can be described as

K (r) = λ−1E (number of events within distance r of a randomly chosen event),

(2)

where E represents the mathematical expectation and λ is the (constant) mean number
of events per unit area.

By using the inhomogeneous K -function to reanalyze the data, we remove the
assumption of an underlying homogeneous point process while still assuming isotropic
stationarity. Intuitively, the inhomogeneous K -function has the same interpretation as
the homogeneous K -function (2), except that the intensity of events is no longer
constant but depends on the location of the events. It is defined as
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Kinhom(r) = 1

ν(B)
E

⎛

⎝
∑

xi ∈X∩B

∑

x j ∈X\{xi }

I (‖xi − x j‖ ≤ r)

λ(xi )λ(x j )

⎞

⎠ , (3)

where B ∈ B0, the class of bounded Borel sets in R
d , d ≥ 1 , ν(B) represents the

area of B, I is the indicator function, X is the set of all events xi and x j , and r is
the maximum considered distance between xi and x j (Baddeley et al. 2000). We can
still interpret the K -function intuitively as in (2), but now the intensity is a function
evaluated at both locations xi and x j , that is, λ(xi ) represents the mean number of
events occurring at location xi . We use the following estimator of the inhomogeneous
K -function:

K̂inhom(r) = 1

ν(D)

∑

xi ∈X∩D

∑

x j ∈{X∩D}\xi

I (‖xi − x j‖ ≤ r)

λ̂(xi )λ̂(x j )wxi ,x j

, (4)

where D is the complete domain of the dataset and wxi ,x j is Ripley’s edge correction
factor.

Specifically, in both analyses, the L-function was employed since it is easier to
visualize a departure from CSR. The L-function is defined as

L(r) =
√

K (r)

π
. (5)

By transforming the K -function in this manner, L(r) = r under CSR. We can use this
line through the origin as a reference to compare with our estimated values from the
data. Additionally, we simulated 100 values of L(r) under CSR with the estimated
intensity function and used the minimum and maximum values to construct a con-
fidence envelope around the line L(r) = r . If the estimated L(r) falls outside this
simulated confidence envelope then we reject the null hypothesis of CSR.

In order to compute K̂inhom(r), we first need an accurate estimate of the intensity
at each event location. Estimators of this nonconstant intensity to use in formula (4)
can be obtained using a fitted parametric model or with nonparametric estimation.
First, a model can be fitted to the data to describe both the “spatial trend” and “random
interactions” of events. A class of parametric functions flexible enough to model the
spatial trend for a given year or for a given cause in this dataset is the exponential of
a fifth degree polynomial. Formally, the intensity can be modeled by

λ(x) = eθ
T

px , (6)

where x = (x, y), and θ = (θ1, θ2, . . . , θ21)
T

is a 21 × 1 vector of coefficients for the
vector px = (1, x, y, x2, xy, y2, x3, x2 y, xy2, y3, x4, x3 y, x2 y2, xy3, y4, x5, x4 y,

x3 y2, x2 y3, xy4, y5)
T
. The coefficients θ are obtained from the maximum

pseudolikelihood model-fitting procedure in spatstat, and the corresponding
intensity estimator for the points of each type can be used in (4).
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Nonparametric estimation of the intensities (Diggle 1985; Møller and
Waagepetersen 2003, p. 36), is another option for substitution into (4). A nonparamet-
ric kernel estimator of the intensity λ(x) with bandwidth b over the domain A is

λ̂b(x) = 1

pb(x)

n∑

i=1

1

b2 k

(
x − xi

b

)
, (7)

where pb(x) = ∫
A b−2k((x − u)/b)du serves as the edge correction. The choice of

the kernel, k, is not as important as the chosen bandwidth; we use the Gaussian kernel
with scale parameter σ acting as the bandwidth. Too large a choice of σ reduces the
estimate to the one for constant intensity; whereas, too small a choice of σ will capture
local trends instead of the global trend.

With so many choices for intensity estimates, it is not obvious how to choose a
“good” one. We fitted many parametric models and nonparametric models. Evaluating
the trend and interaction components of a point process will be discussed in Sect. 4,
and justification of the models chosen herein will be given.

2.3 Comparison of the results

The dataset consists of 31,693 wildfire ignition observations from 1981 to 2001 which
is divided into the four causes of fires: accidents, arson, lightning, and railroads. After
this division there are 14,535 fires due to accidents, 9,351 fires due to arson, 7,134
fires due to lightning, and 673 fires due to railroads. Because railroad fires are too few
for some of the estimation procedures, we will only consider fires caused by accident,
arson, and lightning. Figure 2 gives a representation of the density of all of the fire
locations for the region and also plots each of accident, arson, and lightning caused fires
alone. The sizes of the datasets by cause are still quite large, and for estimation purposes
we must divide accident, arson, and lightning fires further into year categories from
1981 to 2001 creating 63 separate datasets. Even after this partitioning the datasets
consist of a large number of wildfire incidents that must all be simultaneously used
in the computations of L-functions and intensity estimates. Using an approximation
to the homogeneous L-function based on the Fast Fourier Transform does reduce
the size of the computations enough to handle datasets as large as accident, arson,
and lightning (see Genton et al. 2006); however, no such equivalent approximation
exists for the inhomogeneous case. Due to computational difficulties in calculating
the L-function with nonparametric intensity estimators, the results for the estimated
L-function are all computed using an intensity function in the form of an exponential
of a fifth degree polynomial depending on the spatial coordinates.

In addition to computing the inhomogeneous L-functions for the data, we replicated
the previous analysis based on the homogeneity assumption. These replications were
used as standards to which to compare results. Due to the large number of datasets, we
choose only to show the comparisons with arson fires in 1996 and 1997, with lightning
fires in 1988 and 1997, and with accident fires in 1988 and 1997, see Figs. 3–5. All
the datasets follow a similar pattern and are well represented by the behavior seen in
these examples.
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Fig. 2 Locations of all reported fires, and all reported fires sorted by accident, arson, or lightning caused
fires in the St. Johns River Water Management District from 1981 to 2001

Two phenomena are apparent in comparing the homogenous L-function with the
inhomogeneous L-function. The confidence envelopes widen for the inhomogeneous
L-function, an indicator of greater variability in the intensity estimate. This also
increases the region in which the data would support the null hypothesis of complete
spatial randomness. In Fig. 3, this widening is especially apparent for small values
of the radius r . Note also in Fig. 4 that only 135 lightning fires occurred in 1997, as
opposed to 313 in 1988, accounting for the more erratic confidence envelopes in 1997.
Secondly, the values of the L-function over almost all values of r decrease for the in-
homogeneous estimate. This indicates that the homogeneous L-function appears to
overestimate the interaction between the points when the trend across the dataset has
not been taken into account.

For arson caused wildfires in 1996, the homogeneous L-function indicates cluster-
ing in these points up through 25 km, but the inhomogeneous L-function flirts with
the upper bound through 15 km and then remains near the reference line thereafter. A
similar pattern is exhibited in 1997, except that the strength of the clustering appears
much stronger in the homogeneous case, and then the observed L-function in the
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Fig. 3 Homogeneous and inhomogeneous L-function for arson wildfires, 1996 and 1997

inhomogeneous case is clearly above the upper bound through 10 km. In both years,
significant clustering is detected within the arson fires, even given the adjustment for
the spatial trend.

When the intensity of lightning fires is modeled inhomogeneously, the common
finding that lightning fires are clustered (as in Genton et al. 2006) is called into ques-
tion. Figure 4 shows that in both 1988 and 1997, while the homogeneous L-function
detects significant clustering, the inhomogeneous L-function does not lie outside of
the simulation envelopes. Therefore, even though a location may have an abundance
of lightning fires, they do not appear to be significantly clustered together. Most light-
ning fires occur within a few miles of the coastline (see Fig. 2). This new finding
suggests that incorporating a spatial trend is sufficient for describing the relationship
among lightning wildfires. What has previously been interpreted as clustering among
lightning fires may truly be due to the general ecological conditions, not interaction
among the fires.
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Fig. 4 Homogeneous and inhomogeneous L-function for lightning wildfires, 1988 and 1997

Accidental wildfires (Fig. 5) are the largest category containing 14,535 observa-
tions. Due to the nature of accidents being haphazard, this category accounts for many
different types of fires, such as camping fires, equipment fires, and fires caused by
children. All of these types of fires should be clustered around areas where people
work, live, and recreate, and both homogeneous and inhomogeneous estimates of
the L-function indicate some significant clustering, although it is reduced under the
inhomogeneous intensity estimates. Like arson fires, this is another type of fire where
significant clustering is observed even after adjusting for the trend in the data.

2.4 Simulation study

Throughout the previous analysis, we have stated that the homogeneous L-function
is overestimating the amount of clustering present in the point pattern. Clustering and
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Fig. 5 Homogeneous and inhomogeneous L-function for accident wildfires, 1988 and 1997

interaction are two types of interpoint interaction, both of which the L-function is
designed to detect. However, when a trend is present in the data as well as interaction,
the inhomogeneous L-function seems to be better at detecting the interaction than the
homogeneous L-function is. The wildfire locations in this dataset do display trend,
as detected by the chi-squared test in Sect. 2.1. Therefore, we present the results of a
simulation study to show the need to model the trend component of a point pattern in
order to find interaction between the points.

Three types of point patterns are simulated: Geyer saturation process (no trend with
interaction), inhomogeneous Strauss function with a strong, negative association (trend
with interaction), and inhomogeneous Poisson process (trend without interaction). The
specific trend functions and parameter specifications are taken from Baddeley et al.
(2005). A realization from each of these point processes was generated on a unit square.
In each case, both the homogeneous and inhomogeneous L-function was computed to
test for departure from complete spatial randomness. For the homogeneous L-function,
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Fig. 6 The top panels represent a single realization of a point pattern with given trend and interaction
components. The middle panels are the homogeneous intensity L-functions computed for each of 100
simulated datasets. The bottom panels are the inhomogeneous intensity L-functions computed for each of
the same 100 simulated datasets

we assumed a constant intensity across the entire region. In the inhomogeneous case,
we computed the intensity at each location using the trend function with which the point
process was simulated. This process of simulating a realization of the point process
and testing deviation from CSR was completed 100 times. A single realization of
each of these three processes is given in the top panels of Fig. 6. The corresponding
homogeneous and inhomogeneous L-functions for all 100 simulations are plotted
underneath its point pattern.

When no trend is present, the intensity estimate for the inhomogeneous L-function
is the same as the constant intensity used for the homogeneous L-function, so nothing
is gained by using the inhomogeneous L-function in this case. Both functions detect the
clustering at small distances r . However, when a trend is present, there are differences
between the homogeneous and inhomogeneous L-function. With interaction as well
as trend (middle column of panels in Fig. 6), the homogeneous L-function detects
some inhibition at small distances, but the inhomogeneous L-function exhibits a much
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greater degree of inhibition over all distances. But what is of greatest interest to us are
the results in the final column of panels in Fig. 6. The L-function is computed here
on datasets with trend but no interaction. In testing for clustering or inhibition, the
null hypothesis is that there is no interaction, so this is what we should assume. When
there truly is no interaction in these particular datasets, the homogeneous L-function
is consistently greater than the inhomogeneous L-function. This indicates that the
homogeneous L-function is misinterpreting the trend as clustering. Therefore, when
trend is present in a dataset, incorporating this trend into the intensity estimation is
important to accurately detect interpoint interaction.

3 Multitype point patterns

The locations of the wildfires comprise a spatial point pattern that is marked by both
year and cause. Spatial interaction between points of two types occurs when events
of each type are either closer or farther away than expected under the assumption
that the two processes are independent. Questions such as “Are fires occurring in
1995 clustered around fires that occurred in 1994, or are they farther apart?” and
“Do more accident caused fires occur nearby arson fires?” can be answered by
analyzing the data with a function called K-cross and its relatives. Two versions of
K-cross are applied to the SJRWMD data and compared—one assuming the process
of each type is homogeneous and another assuming two inhomogeneous point
processes.

3.1 K-cross function

The K-cross function is an extention of the K-function and includes information on
the marks associated with each location. To begin, the point pattern is assumed to have
a constant intensity for all of the points of both types. Proposed first by Ripley (1981),
the K -cross function is

Ki j (r) = λ−1
j E (number of type j events within distance r

of a randomly chosen type i event), (8)

where λ j is the (constant) intensity of the marginal pattern of type j . If the bivariate
spatial process is also stationary, in addition to homogeneous, then Ki j = K ji .

The estimator of Ki j is a moment based estimator. Using notation borrowed from
Schabenberger and Gotway (2005, p. 104), let the events of type i in a circle of area
A, denoted ν(A), be observed with intensity λi and be referenced by the location x.
Events of type j in A then have intensity λ j with location y. Ripley’s bias corrected
estimator of Ki j is then

K̂i j (r) = 1

λ̂ j
· 1

λ̂iν(A)

∑

k

∑

l

I (‖xk − yl‖ ≤ r)

wxk ,yl

, (9)
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where wxk ,yl is an edge correction representing the proportion of the circumference
of the circle centered at location xk with radius ‖xk − yl‖ that lies inside of the region
A. The estimator of the intensity for points of each type is λ̂ j = n j

ν(D)
, where n j is the

number of events of type j in the entire domain D. This is the maximum likelihood
unbiased estimate when the process is a homogeneous Poisson process. The package
spatstat has a function available to compute this estimator of Ki j (r).

When the events of type i are independent of the events of type j, Ki j (r) reduces
to πr2, regardless of the pattern of either type of event. Instead of plotting K̂i j (r), it
is then common to estimate and plot the L-cross function, defined as

Li j (r) =
√

Ki j (r)

π
. (10)

The L-cross function has the nice property that under independence of the types of
points, Li j (r) = r , which is the reference line through the origin. Thus, it is straight-
forward to compare the observed data to what is expected under the null hypothesis.
For example, if Li j (20) = 15, then there are 5 fewer points of type j at a radius of
20 units from a randomly selected point of type i than would be expected if the two
types of processes were completely independent of each other. Values of Li j (r) less
than r indicate inhibition between the two types of points, and values greater than r
indicate clustering between the two types of points.

For ease of comparison, both an L-index and simulation envelopes are computed.
The L-index, defined by Genton et al. (2006) for the case of a homogeneous L-function,
is an approximation of the area between L̂i j (r) and the reference line. This is done
by summing L̂i j (r) − r over a range of values of r up to 45 km. This L-index will be
particularly useful in comparing the change in the area between L̂i j (r) and r over pairs
of sequential years. In addition, simulation envelopes are formed using estimates of
the intensity of events of type i, λ̂i , and of type j, λ̂ j , assuming that each process is a
homogeneous Poisson process. A set of points using each of the estimated intensities is
simulated. Points simulated using λ̂i are marked as type i points, and points simulated
using λ̂ j are marked as type j points. These points are combined to create a single
bivariate marked dataset. One hundred such datasets are simulated, L̂i j (r) is computed
for each dataset, and the maximum and minimum L̂i j (r) out of all 100 datasets are
taken to be the upper and lower bounds of the envelope. If L̂i j (r) from the observed
data crosses outside the upper or lower bounds, then the relationship between the types
of points is considered to be significantly clustered or inhibited, respectively.

The one assumption that has already been seen to be violated is the assumption that
the points are homogeneously distributed throughout the domain. In fact, similarly
to the K-function, the significance of the interaction between types of points can be
inflated when this assumption is not taken into consideration. The intensity estimators
now become a function of location within the domain, λ̂i (x) and λ̂ j (y), where x
and y are any bidimensional locations in the domain. The spatstat package will
compute L̂i j (r) allowing for different estimators of intensity. The simulated datasets
used to create the simulation envelopes must also be updated to adapt to the removal
of this assumption. Now, the nonconstant intensity for the points of type i and type j
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Fig. 7 L-cross function plotted for arson versus lightning fires in 1988 with homogeneous (left) and
inhomogeneous, parametric (right) intensity estimators

are estimated, and points are simulated with these estimates and marked accordingly.
Points simulated using λ̂i (x) and points simulated using λ̂ j (y) are combined into a
single dataset, and this procedure is repeated to create 100 datasets. Now, L̂i j (r) is
computed for each dataset using inhomogeneous estimates of the intensity of each
dataset, and the maximum and minimum L̂i j (r) over the 100 simulated datasets are
the upper and lower bounds of the simulation envelope.

3.2 Comparison of the results

Because of the computational challenge of some of the calculations, interactions
between causes were evaluated only for the years 1988 and 1997. The number of
railroad caused fires during those two years was 58 and 6, respectively, which are
too few to analyze. Instead, just comparisons between arson, accident, and lightning
caused fires are made for the causes. In addition, temporal patterns are explored by
examining the interaction between fires occurring in different years.

In examining the causes, each pair showed significant clustering using the constant
intensity estimator, but most of the pairs had insignificant interaction with the para-
metric and nonparametric intensity estimators. Figure 7 demonstrates this situation.
In the left panel using the constant intensity, as the radius around a randomly chosen
arson caused fire increases, the number of fires caused by lightning within that circle
is also increasing. The observed L-cross function is outside of the simulation envelope
for almost every value of r , making it seem as if there is clustering between fires
caused by lighting and those caused by arson. However, once the intensity estimation
is changed to the parametric form in (6), the L-cross function (in the right panel) stays
entirely inside of the simulation envelope. The interpretation here is that after adjusting
for spatial trend, arson caused fires and lightning caused fires are distributed across
the domain completely independently of each other. Given a particular location, there
is no significant interaction between arson and lightning caused fires. The L-cross
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Fig. 8 L-cross function plotted for arson versus accident fires in 1988 with homogeneous (left) and inho-
mogeneous, parametric (right) intensity estimators

function plotted with the nonparametric intensity estimator yields the same result.
Since lightning is a natural phenomenon, and arson is a man-made phenomenon, it
may be expected that they should act independently of each other.

However, there is one comparison between the three causes that remains significant
regardless of the intensity estimator. Between arson fires and accident fires there is
significant clustering in 1988 as seen in Fig. 8 up to around 35 km. Thus, for shorter
distances, more accident fires occur near arson fires and vice versa. Since accidents
and arson are both caused by humans, we may expect them to both be occurring in
or near locations where people recreate and live. Using nonconstant estimates of the
intensities does not change this conclusion.

Genton et al. (2006) observed that a sequence of years with many fire events seemed
to be followed by years with a low number of fire events. In this exploratory stage
of the data analysis, it would then be reasonable to examine pairs of years over time
to look for patterns. Pairs of years compared were those 1 year apart (81–82, 82–83,
etc.); 2 years apart (81–83, 82–84, etc.); 3 years apart (81–84, 82–85, etc.); 4 years
apart (81–85, 82–86, etc.); 5 years apart (81–86, 82–87, etc.); and 6 years apart (81–
87, 82–88, etc.). Naturally, the sheer number of comparisons prohibits displaying each
plot of L̂i j (r) with its simulation envelope. However, the plots of L-index in Fig. 9 for
each pair of years is still informative and much more concise. The solid line connects
the L-index for homogeneous intensity, and the dashed line connects the values using
the parametric intensity. The vertical lines connect two values, the L-indices computed
for the upper and lower bound of the simulation envelope. If the observed L-index is
inside of this bound, no or little interaction was evident in the plot of L̂i j (r), but if the
L-index is above (below) the bound, significant clustering (inhibition) is present.

It is obvious first that L̂i j (r) computed with constant intensity appears to consis-
tently overstate the significance of the clustering between the pairs of years. With
the parametric intensity estimator, the L-index roughly mirrors that of the constant
intensity but is much smaller and stays within its bounds. There does appear to be a
consistent positive trend, but no significant interaction between fires occurring in
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Fig. 9 L-index plotted for both homogeneous Poisson intensity and parametric intensity estimates. The
vertical lines represent the corresponding L-index for the upper and lower simulation envelopes, and each
year listed on the x-axis represents the first year in the pair of years being compared

1 year and those in subsequent years is evident. Thus, this analysis suggests that
locations of fires in a given year would not be a good indicator of locations of fires in
subsequent years.
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Fig. 10 L-index plotted for both homogeneous Poisson intensity and parametric intensity estimates. The
left plot compares prescribed burns in the year on the horizontal axis with all wildfires the same year. The
right plot compares prescribed burns with wildfires occurring the following year

3.3 Prescribed burns

Additional information on the locations of prescribed burns between the years 1993
and 2001 was available. The effects of prescribed burning have been widely studied
in Florida. Prestemon et al. (2002) show that the kind of prescribed burn employed
affects the wildfire risk differently with traditional burns either positively related to the
current year’s wildfire risk or unrelated. Brose and Wade (2002) report that prescribed
burns are a short-term fix for suppressing wildfire since the vegetation reestablishes
itself so quickly, and sometimes prescribed burns are actually fodder for surface fuels
since they kill understory trees (Agee 2003).

Certainly, reduction in the number of wildfires is not the only goal land managers
hope to achieve with prescribed burns (Haines et al. 2001; Outcalt and Wade 2004), but
here, fire locations are given at a fine spatial scale (the section level), and the overall
spatial interaction between all prescribed burns and all wildfires can be evaluated with
the K-cross function. If the prescribed burns were significantly reducing the number
of wildfires on a large scale, then the L-cross function and, thereby, L-index, would
be expected to be negative and below the lower bound. Figure 10 shows that under
the parametric intensity estimator, no significant interaction is occurring between the
locations of prescribed burns and wildfires of the current or subsequent year.

Just because no significant interaction is occurring here does not mean that pre-
scribed burns are useless or ineffective. On a small scale, they can be effective in
preventing wildfires, but this analysis suggests that for a given location, prescribed
burning does not reduce significantly the number of wildfires occurring in this region
of Florida. Figure 11 shows the regions where prescribed burns and wildfires from
1993 to 2001 were most commonly located. Naturally, prescribed burns are imple-
mented in areas where the risk of wildfire is the greatest, and we see that the greatest
densities of prescribed burns are also where the highest densities of wildfires occur.
If the prescribed burns that we have locations for are being used for fire suppression,
then in a given location, we would expect fewer wildfire occurrences nearby where
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Fig. 11 Locations of all reported prescribed burns and all reported wildfires for the years 1993 through
2001

prescribed burns are conducted. In future analyses, the K -cross function could be
implemented in subregions where prescribed burning is a common practice to further
investigate its efficacy.

4 Point patterns modeling

The importance of using inhomogeneous estimates of intensity in the K and K -cross
functions in order to accurately represent the amount of clustering was suggested
by the simulation study in Sect. 2.4. Both parametric and nonparametric intensity
estimates were discussed in Sect. 2.2. These estimates are based on the trend and
interaction components of a model for a spatial point process. The trend is the spatial
trend or systematic component of the model; the interaction describes the interpoint
interaction structure (not to be confused with interaction between different types of
points) or distributional component. For example, a Poisson process (homogeneous
or inhomogeneous) would represent a point process with no interpoint interaction and
independence between its points.

The goal of this section is twofold. First, we will discuss the recent residual
diagnostics proposed by Baddeley et al. (2005) and summarize how these are used to
determine the adequacy of a proposed model’s fit. Then, the procedure for selecting
the exponential of a fifth degree polynomial for the parametric intensity estimate and
the bandwidth for the nonparametric intensity estimate will be described and justified
with the residual diagnostics.

4.1 Model theory

The Pearson residuals defined by Baddeley et al. (2005) are

R

(
A,

1√
λ̂

, θ̂

)
=

∑

xi ∈X∩A

1√
λ̂(xi , X)

−
∫

A

√
λ̂(u, X)du, (11)
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Fig. 12 The 1997 arson fires Pearson residual plots are used to evaluate the trend, and the QQ-plot is used
to evaluate the interaction. The plots shown here are for a model with no trend and no interaction

where θ̂ is the parameter estimate of a fitted parametric model as in (6). A is, again, a
subset of the domain, and X is the set of all locations observed in the point pattern. The
λ(u, X) is the Papangelou conditional intensity at the location u given the outcomes
at all other spatial locations and is defined in Baddeley et al. (2005). The residuals
have the nice property that they sum to zero if the chosen model is correct. They are
not only computed at all locations in the domain but also at “dummy” points since
information may be gained not only from where an event occurs but also from where
events do not occur. As a result, the computing procedures involving these residuals
can be lengthy. While several types of residuals can be computed, we will use the
Pearson residuals throughout our analysis.

4.1.1 Evaluating trend

From spatstat, a matrix of plots based on the Pearson residuals is used to evaluate
the trend. Arson fires in 1997 fitted with constant trend (or homogeneous intensity)
and no interaction is used as the baseline comparison in Fig. 12. The top left panel
is the mark plot that plots a circle proportional to the “size” of the residual at each
event location. Circles with an unusually large radius may indicate outliers of the
model. The bottom right panel is a contour plot of a smoothed residual field that
applies a smoothing kernel to the residual measure. It can be interpreted similarly to
a topographical map with large contours indicating an area with large residuals. An
ideal residual field has most of its contours close to zero.

Finally, the upper right and lower left plots are lurking variable plots that help
indicate whether or not the presence of a particular variable is needed in the model.
The residuals can be plotted against any covariate, but it is common to plot them against
the x and y coordinates. The dotted envelopes are 2σ -limits based on the variance of the
observed point pattern for an inhomogeneous Poisson point process and are computed
using Pearson residuals, so they will be the same for any Poisson interaction model
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tested on the data. A cumulative residual function of the residuals against the variable
of interest is computed, and if this lies outside of the envelope, this is evidence that the
variable should be included in the trend portion of the model. In Fig. 12, it is obvious
that both the x and y components of the location should be included in the trend. Note
that Baddeley et al. (2005) have stated that envelopes for non-Poisson models are still
under construction, so models with an interpoint interaction will be more difficult to
assess.

4.1.2 Evaluating interaction

The second plot in Fig. 12 is a QQ-plot to diagnose the interaction, or distributional,
component of the proposed model. To assess the fit of a distribution, a QQ-plot is
appropriate. The empirical quantiles of the smoothed residual field are compared to
the quantiles expected under the specified interaction computed with Monte Carlo
simulations (we use 50 replicates). The dashed lines represent critical intervals for
pointwise significance used to detect significant deviation from the model. Note that
misspecification of the trend or the interaction can distort the results in either the trend
or QQ-plots. Thus, in Fig. 12 it is difficult to say whether it is the lack of trend or
lack of interaction that is creating such a poor result. The reader should also beware
that the procedure to obtain QQ-plots is computationally intensive and is not yet able
to accommodate more complicated models, such as those including the marks of the
locations.

4.2 Results of models tested

Models were tested for arson, accident, and lightning caused fires in the years 1988
and 1997. In all 6 cases, the model with no trend or interaction was a poor fit, similar
to the outcome in Fig. 12. To conserve space, only the results of the 1997 arson data
will be presented in detail, but the technique used to select the appropriate models in
each case was the same. A description of our model selection methodology will be
given, and the results for the 1997 arson data will be shown for illustration.

4.2.1 Model selection

Two main classes of models were explored—those with parametric and nonparametric
trend. The interaction component was generally assumed to be Poisson since diagnostic
plots for non-Poisson interactions are not yet available. For exploration sake, a Geyer
interaction to describe clustering of points was tested with the 1997 arson data. Thus,
modeling the trend component in order to estimate the intensity accurately in the K
and K -cross functions was our primary interest. We first experimented with parametric
models for trend. Several classes of functions were investigated, and for each potential
trend model, the residual plots were examined. The class of functions with the best
fit was the exponential of a polynomial. The exponential of first through sixth degree
polynomials were fit to each of the six datasets mentioned above and to the fire locations
occurring in each year. The best residual diagnostic plots for every dataset were for the
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Fig. 13 The 1997 arson fire Pearson residual plots for the parametric and nonparametric (σ = 15) trend
models. Both have no interaction

fourth or fifth degree polynomials with the fifth degree appearing to have slightly better
contour plots. The sixth degree polynomial fit deteriorated, possibly due to overfitting.
The top panels of Fig. 13 show the exponential of a fifth degree polynomial trend with
Poisson interaction residual plots for the 1997 arson data. The improvement over the fit
with no trend in Fig. 12 is obvious. This was the trend used in estimating the parametric
intensities for the K and K -cross functions.

We also modeled the trend using a nonparametric density estimator with Gaussian
kernel. The choice of the bandwidth σ determines the success of the fit. We began our
search for an appropriate σ by trying values of σ between 0 and 2 in increments of
0.1. None of these values of σ produced well-behaved residual plots. We extended our
search to values of σ up to 100 in increments of 5. We found that very small values
of σ and very large values of σ produced poor fits, as mentioned at the end of Sect.
2.2. The best fits resulted from using σ ’s between 10 and 20, depending on the dataset
under consideration. For the arson 1997 data, the σ yielding the best residual plots was
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Table 2 Summary of models for each dataset examined in which the residuals for both the lurking variable
plots for x and y and the Q Q-plots remained within the envelopes

Dataset Trend component Interaction

Arson 1988 Nonparametric σ = 15 Poisson
Arson 1997 Nonparametric σ = 15 Poisson
Lightning 1988 Parametric Poisson
Lightning 1997 Nonparametric σ = 20 Poisson
Accidents 1988 Nonparametric σ = 10 Poisson
Accidents 1997 Nonparametric σ = 10 Poisson

Geyer interaction models are not considered when choosing a best model since envelopes in the lurking
variable plots are not available

σ = 15 as shown at the bottom of Fig. 13. There is also noticeable improvement in
the QQ-plot compared to the parametric model, but the parametric model has smaller
residuals.

For models with a Poisson interaction, Table 2 summarizes which model is best
(parametric or nonparametric) for each of the 6 datasets based on the criteria that the
residuals remain inside the envelopes in the diagnostic plots. It is interesting to note
that the same model works the best in most cases for a given cause for both years.
However, more models than just these could be considered. In the future, the residuals
software will be capable of handling models that also include information on the marks
of each point. Including information on covariate data such as temperature and rainfall
and building models based on larger datasets would both be of interest. Finally, a more
rigorous selection procedure for the bandwidth σ in the nonparametric trend should
be explored.

4.2.2 Non-Poisson interaction component

For comparison sake, we wanted to explore further the impact of changing the interac-
tion component to a distribution that would model the clustering interaction. Both the
parametric and nonparametric trends for the 1997 arson data were tested with a Geyer
saturation interaction distribution (Geyer 1999). The values that must be specified for
the Geyer distribution are r , the interaction radius, and s, the saturation threshold. Both
must be positive real numbers. The interaction radius defines the maximum distance
that two points can be located from each other and still be considered close neighbors.
When s is zero, the Geyer distribution reduces to the Poisson distribution, but when s
is a finite positive number, it can lead to a model describing a clustered point process.
We chose s = 2 as the saturation threshold and experimented with various values of
r between 0 and 2. The value of r producing the best diagnostic plots was r = 0.10.
Methods for estimating r and s from the data are given in Baddeley and Turner (2000).
The results are given in Fig. 14.

The trend plots for the parametric and nonparametric trends appear similar, with
the cumulative function of the residuals falling sharply in the x lurking variable plot.
No envelopes are available here to gauge the degree of departure from zero, but the
range on the y axis of both lurking variable plots is smaller than that of the Poisson
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Fig. 14 The 1997 arson fire Pearson residual plots for the parametric and nonparametric (σ = 15) trend
and a Geyer saturation interaction (with parameters r = 0.10 and s = 2)

interaction models. The QQ-plot for the nonparametric Geyer interaction model is
significantly better than its parametric counterpart. So, while it is difficult to compare
these models to those with Poisson interaction, it does appear that perhaps a different
trend may be a better fit with this particular interaction component.

5 Discussion

From comparing the results of the two different analyses of the SJRWMD data and the
simulation study, we can see that the homogeneous K-function and K-cross function
do not realistically represent the natural phenomenon of clustering. When clustering
is present, the K -function analysis with or without the assumption of a homogeneous
point process will identify clustering around small distances from a given event. The
behavior of the estimated inhomogeneous K-function at large distances indicates that
the true K-function for that point process is closer to CSR than that of the homogeneous
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estimator. Similarly, the K -cross function overestimates the attraction between two
types of points when the intensity is estimated homogeneously.

There is a synonymous relationship between the presence of clustering and the
intensity function of a point process. The presence of clustering could be identified
at certain places where the intensity is significantly greater than the average intensity
across the entire domain. If the intensity of a point process is truly constant throughout
the entire domain with no interactions, then there should be no clustering of events.
When clustering is truly assumed to be present then to accurately estimate the degree
of clustering with a measure such as the K -function or K-cross function one must
compute an appropriate intensity function that incorporates these changing densities
of events. By accurately estimating the true intensity of the domain, the results of
testing departure from CSR are more representative of the true phenomenon of the
spatial point process.

An appropriate intensity for a given point process can be chosen via residual analy-
sis. Our analysis has suggested that a trend should be included in a model for wildfire
ignitions. The various models we have fitted to the SJRWMD data are rather simple,
but they have been shown to capture some of the characteristics of wildfire occur-
rences. With future improvements in computing techniques, we expect to be able to
fit more complex and realistic models.
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