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ABSTRACT

The Taylor hypothesis (TH) as applied to rainfall is a proposition about the space–time covariance

structure of the rainfall field. Specifically, it supposes that if a spatiotemporal precipitation field with a

stationary covariance Cov(r, t) in both space r and time t moves with a constant velocity v, then the

temporal covariance at time lag t is equal to the spatial covariance at space lag r 5 vt that is, Cov(0, t)

5 Cov(vt, 0). Qualitatively this means that the field evolves slowly in time relative to the advective time

scale, which is often referred to as the frozen field hypothesis. Of specific interest is whether there is a cutoff

or decorrelation time scale for which the TH holds for a given mean flow velocity v. In this study, the validity

of the TH is tested for precipitation fields using high-resolution gridded Next Generation Weather Radar

(NEXRAD) reflectivity data produced by the WSI Corporation by employing two different statistical

approaches. The first method is based on rigorous hypothesis testing, while the second is based on a simple

correlation analysis, which neglects possible dependencies between the correlation estimates. Radar re-

flectivity values are used from the southeastern United States with an approximate horizontal resolution of 4

km 3 4 km and a temporal resolution of 15 min. During the 4-day period from 2 to 5 May 2002, substantial

precipitation occurs in the region of interest, and the motion of the precipitation systems is approximately

uniform. The results of both statistical methods suggest that the TH might hold for the shortest space and

time scales resolved by the data (4 km and 15 min) but that it does not hold for longer periods or larger

spatial scales. Also, the simple correlation analysis tends to overestimate the statistical significance through

failing to account for correlations between the covariance estimates.

1. Introduction

Rainfall fields have complex spatial and temporal

structures that span a wide range of scales. Many prac-

tical problems, such as precipitation estimation and

data assimilation, require quantitative knowledge not

just of the mean and variance of precipitation but also

of its space–time covariance structure. Additionally,

theoretical and modeling studies of precipitation can

benefit from comparisons with high-quality observational

estimates of precipitation covariance fields. A compre-

hensive understanding of the space–time structure of
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rainfall fields has been a subject of considerable interest

over the last decade or so and constitutes one of the

most challenging problems in precipitation research.

Based on studies of turbulent flow, (Taylor 1938, p.

478) proposed a simple model of the covariance struc-

ture of a turbulent current with a constant mean back-

ground velocity. He hypothesized that small-scale tur-

bulence might be carried along by the mean flow in

such a way that the temporal covariance of a variable at

time lag t would be equal to the spatial covariance at

space lag r 5 vt, where v is the mean velocity of the

flow. Specifically, consider a stationary spatiotemporal

random field Z(x,t) at spatial location x 2 R
d, d $ 1,

and time t 2R. Let C(r,t) 5 Cov[Z(x, t),Z(x 1 r, t 1

t)] denote its stationary covariance function for spatial

lag r and temporal lag t. In this case the Taylor hypoth-

esis (TH) can be written

Cð0; tÞ5 Cðvt; 0Þ: ð1Þ

Note that the mean velocity v may not be known a priori.

Although we consider TH in a stationary random field for

simplicity, it is worth mentioning that TH can also be

defined for a nonstationary random field where the co-

variance function and velocity v have to be location spe-

cific (e.g., Burghelea et al. 2005). Under all circumstances,

TH assumes the existence of a large mean flow compared

to the velocity fluctuation, which allows the latter to be

frozen into the former. TH is also of interest for many

other fields such as the cloud and radiation test bed

measurements (Sun and Thorne 1995) other than rainfall.

Several studies have attempted to test the TH for

atmospheric convection by using radar observations

of precipitation. Based on empirical correlations,

Zawadzki (1973) argued that Taylor’s hypothesis is

plausible for precipitation data for temporal lags less

than 40 min. His results seemed to indicate that spatial

correlations exhibited more memory than temporal

correlation. That study was based on only 11 radar

scans from one radar for a single storm event, so its

generality is not known. Gupta and Waymire (1987)

and Cox and Isham (1988) studied the validity of the

hypothesis for various theoretical space–time covari-

ance models, but they did not test the TH with obser-

vations. Crane (1990) observed that the TH held in

rainfall fields up to a time scale of around 30 min for

spatial scales less than 20 km, after which it broke down.

Poveda and Zuluaga (2005) tested the validity of the

TH for a set of 12 storms observed in southwestern

Amazonia, Brazil, during the January–February 1999

Wet Season Atmospheric Mesoscale Campaign. They

concluded that the TH did not hold in 9 out of the 12

studied storms, but that it did hold for 3 storms up to

time scales of around 10–15 min. That time scale is

related to the life cycles of convective cells in the re-

gion. The generality of these results, however, is open to

interpretation; their conclusions are not based on a

statistical comparison of the spatial and temporal co-

variances. This points to the need for a formal statistical

testing procedure to assess Taylor’s hypothesis and the

application of rigorous statistical methods to sizable

datasets. Aside from rainfall, the study method may

also be useful in investigating the cloud structure and

the thermodynamics of moisture transport related to

precipitation processes (Sun and Thorne 1995).

In this study, we use a rigorous statistical approach to

test the TH based on the asymptotic joint normality of

covariance estimators derived by Li et al. (2008). The

method is applied to high-resolution gridded Next Gen-

eration Weather Radar (NEXRAD) reflectivity data.

These results are compared with a simple estimate of

statistical significance based on the assumption of inde-

pendence of the covariance estimates.

2. Data

As a prototype observational dataset to test Taylor’s

hypothesis, we use high-resolution gridded NEXRAD

reflectivity data produced by the WSI Corporation.

Data from all available operating radars are routinely

merged onto a longitude–latitude grid for the conter-

minous United States with an approximate horizontal

resolution of 4 km 3 4 km. The radar reflectivity data

are maps depicting the highest reflectivity measured

above each grid box, computed from scans at multiple

elevation angles. Reflectivity values Z are transformed

logarithmically using dBZ 5 10 log10(Z) and discretized

with 5 dBZ precision from 0 to 75 dBZ. Multiple levels of

quality control to remove ground clutter and false ech-

oes, along with multiple volume scans, which nominally

require 5 to 6 min, are used to produce gridded analyses

with 15-min temporal resolution (96 time steps per day).

For this study, we use radar reflectivity in dBZ rather

than rain rates. Reflectivity is an observable parameter,

so it is physically reasonable to ask whether it obeys

Taylor’s hypothesis. Calculations using estimated rain

rates R yield similar results (further discussion below).

Although atmospheric convection is a three-

dimensional phenomenon, we treat the precipitation as

two-dimensional by using the radar rainfall composites

described in the preceding paragraph. The national ra-

dar grids are 3661 3 1837 grid cells. For our analysis, we

select a subarea of the grid and a time period during

which there is substantial rainfall. We chose 4 days of

gridded radar reflectivities from the southeastern United

States (308– 408N, 758–1008W) for the period 2 to 5 May

2002 (4 days 3 96 time steps per day 5 384 time steps).
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The selected region has 1308 3 558 grid cells. During this

period there are no time steps with complete missing

grids, although individual radars may not have been

continuously available. A cold front moved into the re-

gion from the northwest early in the study period and

then became stationary. Multiple mesoscale convective

systems propagated eastward along the frontal boundary

during the period. A sample radar image is shown in

Fig. 1. Superimposed on the radar image are 500-hPa

geopotential height contours from the National Centers

for Environmental Prediction (NCEP) reanalysis (Kalnay

et al. 1996). An animation of the time evolution of the

radar reflectivity and geopotential height is available

online (http://csrp.tamu.edu/hiaper/archive/Taylor/radar.

mov) (54 MB). The geopotential height is linearly in-

terpolated in time to the radar analysis times from the

6-hourly NCEP reanalysis.

The time mean of the radar reflectivity, shown in Fig.

2, illustrates the spatial heterogeneity of the data during

the study period. The highest mean reflectivities occur

in the center of the region, while the southern part has

few or no echoes. Minor artifacts (circular radar foot-

prints) are visible from the procedure that merges the

individual radars into the gridded mosaic. During the

period of study, the synoptic-scale flow is predomi-

nantly westerly, with only weak wave disturbances. The

500-hPa height field in Fig. 1 is typical. The time-mean

zonal and meridional wind components for the study

period, averaged over the study area, are plotted in Fig.

3 as a function of pressure. Winds are from the NCEP

reanalysis, which has 2.58 3 2.58 longitude–latitude

resolution. The average directional wind shear is very

small during this period, with the flow at levels above

the surface generally moving slightly north of east. The

FIG. 1. Composite radar reflectivity map at 1200 UTC 3 May 2002. Contours are 500-hPa

geopotential height in dam.

FIG. 2. Time-mean composite radar reflectivity map for 2 May 2002 to 5 May 2005.
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mean wind speed increases from the surface up to a

maximum of ;42 m s21 near the tropopause at 200 hPa

and then decreases at higher levels in the stratosphere.

From this we can anticipate that convection and the

observed radar echoes will propagate approximately

eastward with speeds typical of the midtropospheric

flow speed of approximately 20 to 30 m s21.

3. Methods

a. Hypothesis testing

Our method for testing the Taylor hypothesis is de-

veloped based on the asymptotic joint normality of

sample space–time covariance estimators derived by Li

et al. (2008). Assume Z(x, t) is a strictly stationary

space–time random field with covariance function C(r,

t) 5 Cov[Z(x, t), Z(x 1 r, t 1 t)], where r and t denote

an arbitrary spatial lag and time lag, respectively. Let L

be a set of space–time lags such as L 5 [(r1, t1), . . . ,

(rm, tm)], where m denotes the number of its elements.

Let Ĉðr; tÞ denote an estimator of C(r, t). For simplic-

ity, we choose Ĉðr; tÞ as the moment estimator defined

by Ĉðr;tÞ 5 1=Nð ÞSxSt Zðx; tÞ�Z
�

� Zðx 1 r; t 1 tÞ�½ Z�;

where Z denotes the mean of Z(x, t) and N is the

total number of summands. This choice of estimator

works well in testing properties of the covariance func-

tion (see Li et al. 2007). Let G 5 [C(r, t),(r, t) 2 L],

and let Ĝ 5 Ĉðr; tÞ; ðr; tÞ 2 L
h i

denote the estimator of

G. Li et al. (2008) derived that the appropriately stan-

dardized and centered Ĝ has an asymptotic multivariate

normal distribution in a variety of space–time contexts.

b. Test with a given v

We write Taylor’s hypothesis as

H0:Cð0; tÞ � Cðvt; 0Þ5 0; for any t: ð2Þ

Observe that H0 is a contrast of covariances and thus

can be rewritten in the form of AG 5 0, where A is a

contrast matrix of row rank q, say.

For example, if

L 5 ð0; t1Þ; ð0; t2Þ; ð0; t3Þ; ðvt1; 0Þ; ðvt2; 0Þ; ðvt3; 0Þ½ �;
ð3Þ

then

(TS) based on the contrasts of Ĝ and obtain the dis-

tribution of TS under the null hypothesis (Li et al.

2008) as

TS 5 aNðAĜÞTðASATÞ�1ðAĜÞ ���/xq
2; ð6Þ

in distribution as N / ‘, for a matrix A with row rank

q, and an appropriate sequence of normalizing con-

stants aN. We follow Li et al. (2008) and estimate S

using subsampling techniques. The choice of subblock

size is described in Carlstein (1986). In terms of our

FIG. 3. Time-mean area-mean wind velocity as a function of pressure from the NCEP

reanalysis. Numerical labels indicate pressure levels in hPa.

G 5 Cð0; t1Þ; Cð0; t2Þ; Cð0; t3Þ; Cðvt1; 0Þ; Cðvt2; 0Þ; Cðvt3; 0Þ½ �T: ð4Þ

Define

A 5

1 0 0 �1 0 0
0 1 0 0 �1 0
0 0 1 0 0 �1

2
4

3
5; ð5Þ

then we have AG 5 0 under the null hypothesis. Re-

placing C(�) with the estimator Ĉð�Þ in (2), we obtain a

contrast vector for testing H0 as the estimated left-hand

side of (2), C 5 Ĉð0; tÞ � Ĉðvt; 0Þ: Apparently, C can be

rewritten into the form of AĜ: We form the test statistic
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precipitation data, the rich temporal replicates allow

us to consider the asymptotics in time dimension and

form overlapping subblocks using a moving subblock

window along time. Specifically, let N be the total

number of time steps, aN 5
ffiffiffiffi
N
p

in (6), and the opti-

mal block length for subblocks is ½2g= 1� g2
� �

�2=3 3N=ð
2Þ1=3; where g can be estimated by ĝ 5 Ĉð0; 1Þ=Ĉð0; 0Þ:
Covariance estimates obtained from each subblock

constitute the sample to estimate S. The statistical sig-

nificance of the resulting test statistics can be assessed

based on the large sample x2 distribution of the test

statistic.

4. Models of the autocovariance function for
precipitation

a. Isotropic case

To provide some physical insight into the covariance

function for precipitation, we develop a simple math-

ematical model of an evolving precipitation field fol-

lowing Cahalan et al. (1982), North and Nakamoto

(1989), Bell et al. (1990), and Bell and Kundu (1996).

The model includes propagation (advection), damping,

diffusion, and a white-noise stochastic forcing. The evo-

lution of the dependent variable R(x, t), which repre-

sents rain rate, is given by the equation

›R

›t
1 v � $R�D=2R 5�bR 1 f ðx; tÞ; ð7Þ

where v is a constant advective velocity, D is the diffu-

sion coefficient, b is the damping rate, and f is a sto-

chastic forcing term. The analytical solution to this

model can be used directly to compute the covariance

function.

The equation is solved in the spectral domain (k, v),

where k 5 (kx, ky) is the spatial wavenumber and v is

the temporal frequency. The random forcing f(x, t) is a

stationary Gaussian random variable that is white in

both space and time; that is,

Æ f x; tð Þæ 5 0 and Æ f x; tð Þf x 1 r; t 1 tð Þæ 5 f 2
0dðr; tÞ;

ð8Þ
where angle brackets indicate the ensemble mean.

If we define the Fourier transform of R(x, t) as

~Rðk; vÞ5 1

2p

ð‘

�‘

ð‘

�‘

ð‘

�‘

R ðx; tÞ e�iðk�x1vtÞ d2x dt;

ð9Þ
and take the Fourier transform of (7), we get

1

2p
ðiv 1 ik � v 1 Djkj2 1 bÞ ~R 5 ~f ; ð10Þ

where ~f 5 f0 is a constant that specifies the magnitude of

the white-noise forcing. Solving for ~R yields

~Rðk; vÞ5 2p ~f

ðiv 1 ik � v 1 Djkj2 1 bÞ
: ð11Þ

The variance or power spectrum density S is the mag-

nitude of the complex solution

S ðk; vÞ 5 j ~R � ~R*j 5 4p2j ~f j2

ðv 1 k � vÞ2 1 ðDjkj2 1 bÞ2
;

ð12Þ

where ~R* indicates the complex conjugate. Note that

the variance in (12) is positive for all (k, v) and hence is

consistent with the definition of a valid covariance

function (Gneiting et al. 2007). Finally, the covariance

function in the physical domain is obtained by taking

the inverse Fourier transform of S:

C ðr; tÞ 5
1

2p

ð ‘

�‘

ð ‘

�‘

ð ‘

�‘

Sðk; vÞeiðk�r1vtÞ d2k dv

5 2p

ð ‘

�‘

ð ‘

�‘

ð ‘

�‘

j ~f j2

ðv 1 k � vÞ2 1 ðDjkj2 1 bÞ2
eiðk�r1vtÞ d2k dv;

ð13Þ

where r 5 (rx, ry) and t are appropriate lags in space and time. We solve the v integral by contour integration by

first making a substitution v9 5 v 1 k � v and then dropping the prime to simplify the notation. The final integral

is obtained as

C ðrx; ry; tÞ 5 pj~f j2e�bt

ð ‘

�‘

ð ‘

�‘

ei½kxðrx�ujtjÞ1kyðry�yjtjÞ�

ðDjkj2 1 bÞ
e�Djkj2jtj dkx dky: ð14Þ
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The Taylor ‘‘frozen-field’’ hypothesis requires that the

turbulent structure of the field being advected (rain in

our case) evolves slowly compared to the advective

time scale t. In the model given in (7), the evolution of

the rain field is controlled by the diffusion operator and

These two expressions are identical, except for the fac-

tor of e2b|t| on the left-hand side; that is, the TH is not

satisfied for this model because the damping changes

the magnitude of the correlation field, even if the shape

does not change as the correlation is advected down-

wind. Thus, for a model like this it is not possible to

satisfy TH, and the space and time covariances will

differ in proportion to the exponential of the ratio of

the temporal lag t and the damping time scale 1/b.

b. Extension to anisotropic case

The degree of anisotropy is controlled by the magni-

tude of the diffusion term, which in the general case has

directional dependence and consists of four compo-

nents:

D 5
Dxx

Dyx

Dxy

Dyy

� �
: ð19Þ

For simplicity, we assume that the diffusion or stretch-

ing is only along the two major axes, that is, Dxy 5 Dyx

5 0. Thus in this case (7) can be rewritten as

›R

›t
1 v � =R�Dxx

›2R

›x2
�Dyy

›2R

›y2
5 � bR 1 f ðx; tÞ:

ð20Þ

We simplify the above equation by dividing throughout

by b and scale the resulting equation with the following

nondimensional variables:

We first explore the above integral analytically by expanding the complex exponential in (14). We then test the

validity of TH by examining whether C(0, 0, t) 5 C(u |t|, y|t|, 0) for a specific v 5 (u, y) and t. Evaluating each

term separately yields

Cð0; 0; tÞ5 pj~f j2e�bjtj
ð ‘

�‘

ð ‘

�‘

cos kxujtj1 kyyjtj
� �
ðDjkj2 1 bÞ

e�Djkj2jtj dkx dky ð15Þ

and

Cðrx 5 ujtj; ry 5 yjtj; 0Þ5 pj~f j2
ð ‘

�‘

ð ‘

�‘

cos kxujtj1 kyyjtj
� �
ðDjkj2 1 bÞ

dkx dky: ð16Þ

The TH holds if (15) and (16) are equal, for instance,

pj~f j2e�bjtj
ð‘

�‘

ð‘

�‘

cos kxujtj1 kyyjtj
� �
ðDjkj2 1 bÞ

e�Djkj2jtj dkx dky 5
?

pj ~f j2
ð ‘

�‘

ð ‘

�‘

cos kxujtj1 kyyjtj
� �
ðDjkj2 1 bÞ

dkx dky: ð17Þ

ebjtj
ð ‘

�‘

ð ‘

�‘

cos kxujtj1 kyyjtj
� �

dkx dky 6¼
ð ‘

�‘

ð ‘

�‘

cos kxujtj1 kyyjtj
� �

dkx dky: ð18Þ

the damping. We investigate the covariance function in

the limit of negligible diffusion (D / 0). In this limit,

the evolution of the rainfall field is controlled entirely

by the damping and the stochastic forcing. Taking the

limit and canceling like terms, we see that

t9 5 bt; u9 5 u

ffiffiffiffiffiffiffiffi
b

Dxx

s !
; y9 5 y

ffiffiffiffiffiffiffiffi
b

Dyy

s !
; x9 5

xffiffiffiffiffiffiffiffi
Dxx

b

q
0
B@

1
CA and y05

yffiffiffiffiffiffiffiffi
Dyy

b

q
0
B@

1
CA to obtain
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›R

›t9
1 v9 � =9R� ›2R

›x92
� ›2R

›y92
5 � R 1 f 9ðx; tÞ:

ð21Þ

where r9x 5 rx=
ffiffiffiffiffiffiffiffiffiffiffiffi
Dxx=b
p

; r9y 5 ry=
ffiffiffiffiffiffiffiffiffiffiffiffi
Dyy=b

p
, and t9 5 bt:

The form of the above covariance function closely re-

sembles that of (14); not surprisingly, the TH does not

hold for this case either.

5. Analysis of radar data

a. Covariance calculations

The time series of instantaneous area-averaged re-

flectivity for the study region is plotted in Fig. 4. Several

periods of heavier rain are apparent, and a period of

little rain can be seen on 5 May. The analysis methods

described above are applied to the entire 4-day period

and to the three subintervals of heavier rain indicated

by vertical lines and labeled periods 1 through 3 in Fig.

4. For each of the periods of analysis, the time mean for

that period at each point

dBZðxÞ5 1

N

XN

t51

dBZðx; tÞ ð23Þ

is removed, and all calculations are done with reflectiv-

ity anomalies dBZ9 5 dBZ � dBZ:

The time-lagged covariance between the reflectivity

anomaly dBZ9i ðtÞ at a reference point (designated by

the subscript i) and the anomaly at a test point (desig-

nated j) for a given time lag t is computed using

Cðrij; tÞ5

1

N

XN�t

t51

dBZ9i ðtÞdBZ9j ðt 1 tÞ; t $ 0

1

N

XN

t51�t

dBZ9i ðtÞdBZ9j ðt 1 tÞ; t , 0;

8>>>>><
>>>>>:

ð24Þ

where the space lag rij 5 xj 2 xi is the vector from point

i to point j, and N is the number of observations in the

time series. For a given reference point i, C(rij, tn) is

calculated for all test points j on the data grid within a

28 3 28 rectangular region centered on the reference

point (107 3 113 grid points) and additionally for all

FIG. 4. Time series of area-mean radar reflectivity, 2–5 May 2002. The subperiods selected for

the study are (i) 1400 UTC 2 May–0600 UTC 3 May, (ii) 0600–2200 UTC 3 May, and (iii)

2200 UTC 3 May– 2200 UTC 4 May. Note here that we did not test TH for 5 May because

there was little or no rain throughout the domain.

Cðr9x; r9y; t9Þ5 pj~f 9j2e�t9

ð ‘

�‘

ð ‘

�‘

ei½k9xðr 9x�u9jt9jÞ1 k9yðr9y�y9jt9jÞ�e�jk9j2jt9j

ðjk9j2 1 1Þ
dk9x dk9y; ð22Þ

Following an analysis similar to the one outlined in the

previous section, we obtain the covariance function for

the anisotropic case in terms of nondimensional param-

eters as
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time lags (tn) from 23 to 1 3 h. With a time step size of

15 min, this amounts to discrete time lag indices (n)

between 612.

To estimate the average covariance function for the

entire domain Ĉðr; tÞ; we start off by selecting 2000

random but uniformly distributed reference points

throughout the entire domain. The number 2000 is

somewhat arbitrary, but it accurately represents the

dataset spatially. Then, for each reference point, we

prescribe the 28 3 28 rectangular region around it and

calculate the mean of this region. If this temporally and

spatially averaged value is greater than 4 dBZ, then we

treat the point as a valid reference location; otherwise it

is rejected. This omits from consideration any reference

points where little or no rain fell during the period of

analysis. By repeating this process for all 2000 reference

points, we end up with around 300 valid reference lo-

cations. Then the calculation in (24) is repeated for

these 300 locations and averaged over all locations.

Reference points are chosen to be at least 18 away from

the boundaries of the domain to avoid edge effects.

Correlations ĉ are estimated using

ĉ 5
Ĉ

ŝ2
; ð25Þ

where ŝ2 denotes the estimated variance of the entire

precipitation anomaly field. Error bars for Ĉ and ĉ are

roughly estimated by computing the standard deviation

of the individual estimates of C or c for the 300 refer-

ence points. These correlation estimates based on ĉ are

then tested for the validity of the TH and are subse-

quently compared with those from the method de-

scribed in section 3, which takes into account the cor-

relations between the individual covariance estimates.

b. Structure of the covariance field

The mean space–time covariance function Ĉ(r, t) and

correlation ĉ(r, t) are estimated for the entire 4-day

study as described in section 5a. The spatial structure of

the empirical space–time correlation ĉ estimated over

all pairs that have the same spatial and temporal lag is

shown in Figs. 5, 6 . Figure 5 shows contours of ĉ as a

function of spatial lag at t 5 0, while Fig. 6 shows ĉ for

t 5 0, 15, 30, and 45 min. Figure 5 reveals that the ĉ has

an approximately elliptical shape with the major axis

oriented somewhat north of east. The elliptical shape

(anisotropy) of ĉ indicates the mean orientation of the

precipitation areas during this period on the scale

shown. As in the theoretical model, the peak observed

at t 5 0 (Fig. 6a) decays with time as it moves upwind

(downwind) with decreasing (increasing) lag (Figs. 6b–d).

To qualitatively compare the general shape and

structure of ĉ with that of the anisotropic model (20)

described in section 4b, we also evaluate the model cor-

relation function (22) numerically for different values of

the parameters D, b, u, y, r, and t. The goal is not to

exactly reproduce the observed values, but to understand

the nature of correlation functions with similar shape.

Figure 7 illustrates the shape of (22) for b 5 0.25 min21,

u 5 1.6 3 1024 deg min21, y 5 2.5 3 1025 deg min21,

Dxx 5 0.20 deg2 min21 and Dyy 5 0.075 deg2 min21 for

spatial lags (rx, ry) that range from 21.08 to 1 1.08 and

temporal lags t 5 0, 15, 30, 45 min, respectively. While

solving (14) numerically, the limits of the integration

were truncated to get a finite correlation function. The

shape of the correlation function is similar to the ob-

servations. For fields that have this type of covariance

structure, with a localized peak in the covariance that

decays as it is advected downstream, we generally would

not expect the field to satisfy the Taylor hypothesis.

In Fig. 5 the maximum correlation at t 5 0 occurs at

the origin, as expected. As the magnitude of t increases

from zero in the positive or negative direction, the peak

of the correlation function shifts upstream or down-

stream, respectively, depending on the sign of the lag;

the maximum correlation values decrease with increas-

ing lag, as shown in Fig. 6. The plus symbols in Fig. 5

represent the locations of the peak correlations at time

lags of 615, 30, 45, and 60 min. The plus signs are ap-

proximately colinear and equally spaced, indicating that

FIG. 5. Averaged space–time correlation (ĉ) for t 5 0. The plus

signs indicate the positions of max[ ĉ(r, t)] at t 5 615, 30, 45, and

60 min, respectively.
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FIG. 6. Averaged space–time correlation fields ĉ at (a) t 5 0, (b) t 5 15, (c) t 5 30, and (d) t 5 45 min. Isopleths

of ĉ are approximately elliptical in shape and oriented somewhat north of east (see Fig. 5). The field decays in both

space and time as it translates with the wind velocity.

FIG. 7. Correlation fields (cor) for precipitation model (7) at (a) t 5 0, (b) t 5 15, (c) t 5 30, and (d) t 5 45 min,

respectively. It is assumed here that u 5 0.226418 day21, y 5 0.03578 day21, b 5 0.25 min21, Dxx 5 0.20 deg2 min21,

and Dyy 5 0.075 deg2 min21. The correlation decays as it is advected by the wind in the rx lag direction.
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the advective velocity is approximately independent of

lag. The average velocity vector v can be estimated by

using the vectors from the origin to the plus signs, di-

vided by the corresponding time lag t. The mean ve-

locities are found to have magnitudes between 25 and 30

m s21 (;25.68 day21) oriented ;838 from north. This is

consistent with the mean wind plotted in Fig. 3 and with

the motion of precipitation features visible in an ani-

mation of the radar reflectivity maps. We use this value

of v 5 25.68 day21 (838 east of north) to compute ĉ(vt, 0)

for the entire 4-day period of study. Due to some vari-

ability of v with time, we use individual velocity esti-

mates obtained from the correlation functions for each

subperiod when testing the TH for the three subperiods.

Note that the propagation velocity v and the principal

axis of the correlation function c are not oriented in the

same direction, nor is there any reason to expect them

to be.

c. Testing the Taylor hypothesis

Figure 8 shows the space-lagged correlations [ ĉ(vt, 0),

triangles] and time-lagged correlations [ĉ(0, t), dia-

monds] as a function of time lag for the entire 4-day

period plotted on a logarithmic scale. These curves

show that the TH in general does not hold for the 4-day

time period and hence for large space and time scales.

It is important to mention here that although the curves

do appear close (especially at smaller time lags), the

error bars (not shown) around the mean correlations

corresponding to the shortest time lag of 15 min are

small and do not overlap, thereby indicating that the

curves are indeed statistically different. Figure 9 shows

curves of correlation plotted as a function of time lag

for the precipitation model (20). The correlation curves

in Fig. 9 are similar to those in Fig. 8, with the rate of

decay being controlled by the magnitude of the damp-

ing term b.

In addition, we test the TH for each of the smaller

time periods illustrated in Fig. 4, during which the

heaviest rainfall occurs. Figure 10a demonstrates a sub-

period for which the TH held up to 15 min (35 km),

while Figs. 10b,c show subperiods for which it did not

hold for even short space and time scales.

To assess the TH using both methods, a table con-

taining probability values (p values) pertaining to the

statistical significance of the difference between the

averaged correlations, that is, ĉ(0, t) 2 ĉ(vt, 0), is con-

structed for each testing period at various time lags

using both a standard Student’s t test and the method

from section 3. These tables serve to reinforce the re-

sults illustrated in the Figs. 8, 10a–c in that the TH does

not hold for such systems. Table 1 lists p values gener-

ated using the Student’s t test, while Table 2 lists those

generated using the method of Li et al. (2007). The

convention used here is that a p value p* $ 0.05 implies

that the difference is not significant at the 5% level, and

the TH cannot be rejected, while p* , 0.05 indicates

that the difference is significant at the 5% level and the

TH is rejected. The results from both statistical meth-

ods show that the TH does not hold for the full 4-day

period, but it is admitted for up to 15 min (35 km) for

one subperiod (period 1), as indicated by large p* val-

ues (in boldface). The TH is not rejected in only one of

the 16 period-and-lag combinations tested. Although

the results from the two methods agree in all cases, it is

FIG. 8. Averaged space–time correlation ðĉÞ as a function of

space and time lags for the entire 4-day period of study. The

triangles correspond to ĉ(vt, 0) and the diamonds correspond to

ĉ(0, t) for t 5 0, 15, 30, 45, 60 min, respectively. The results

indicate that the TH does not hold, even for short time intervals.

FIG. 9. Space–time correlation (cor) for the precipitation model

as a function of time lag. The triangles correspond to cor(vt, 0) and

the diamonds correspond to cor(0, t) for t 5 0, 15, 30, 45, 60 min,

respectively. These curves serve to reinforce the analytical results

described in the paper that the TH does not hold for this model.
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important to note that the results from the Student’s t

test (Table 1) tend to overestimate the significance at a

particular t compared to the method of Li et al. (2007;

Table 2). This can be attributed to the inability of the

correlation method to account for the correlation be-

tween the correlation estimates or, equivalently, to

overestimating the number of degrees of freedom. Us-

ing the standard NEXRAD Z–R relationship (Z 5

300R1.4), space–time correlations were also computed

using rain rates to gauge whether the choice of variable

affects the conclusions. The statistical significance of

the results has the same pattern as in Table 1. In only

one case is the TH not rejected (period 1 at 15 min),

from which we conclude that the TH does hold for this

period up to 15 min (35 km). In Table 1, p* values for

time periods 1 and 2 have not been shown for t 5 60

min because the velocity estimates for either case re-

sulted in computing locations (and corresponding

correlation estimates) that were beyond the 28 3

28 moving window in the spatial domain. The hypothesis-

testing approach (Table 2), however, used a slightly

larger moving window and thus reported correlations

(and hence p* values) at t 5 60 min as well.

6. Summary and discussion

Taylor’s hypothesis provides a simple model of the

covariance function for fluid variables in a uniform

flow. It also implies a relationship between the time

scale of small-scale variations in the fluid compared to

the advective time scale of the mean flow. This paper

compares two approaches to testing the validity of the

TH for a geophysical fluid flow by using radar obser-

FIG. 10. Averaged space–time correlation ðĉÞ as a function of

time and space lags for time period (a) 1400 UTC 2 May–0600

UTC 3 May, (b) 0600–2200 UTC 3 May, and (c) 2200 UTC 3

May– 2200 UTC 4 May. (a) Shows that the TH holds for at least 15

min (35 km), while (b) and (c) show that the TH does not hold

even for time scales shorter than 15 min. The triangles denote

ĉ(vt, 0), while the diamonds denote ĉ(0, t).

TABLE 1. Significant p values at various t from Student’s t test.

Bold indicates values that are not significant at the 5% level.

Time period

t

15 min 30 min 45 min 60 min

4-day period 5.6 3 1024 6.4 3 1025 5.1 3 1026 1.1 3 1023

Time period 1 4.2 3 1021 7.7 3 1023 2.5 3 1022 —

Time period 2 7.8 3 1023 3.4 3 1029 0.000 —

Time period 3 3.2 3 1029 6.8 3 1027 3.2 3 1025 1.0 3 1022

TABLE 2. Significant p values at various t from hypothesis

testing in section 3b. Bold indicates values that are not significant

at the 5% level.

Time period

t

15 min 30 min 45 min 60 min

4-day period 5.0 3 1023 1.9 3 1022 4.7 3 1022 2.0 3 1023

Time period 1 5.8 3 1021 1.0 3 1023 0.000 0.000

Time period 2 2.3 3 1022 0.000 0.000 0.000

Time period 3 1.1 3 1024 7.2 3 1025 2.0 3 1024 3.7 3 1024
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vations of rainfall. The first is based on a statistically

rigorous procedure (Li et al. 2007), while the second is

based on the assumption of independence of the co-

variance estimates, which demonstrably does not hold

in this case. The first method does not require any as-

sumptions about the data distribution and tests the null

hypothesis, given by H0: Ĉð0; tÞ � Ĉðvt; 0Þ 5 0 for the

mean advection velocity v and time lag t. The results

indicate that both methods agree well with the analyti-

cal model described in section 4a in that the TH does

not hold for fields characterized by advection, diffusion

and decay. The TH does appear to hold in one case out

of 16 (period 1 for a lag of 15 min), but testing at the 5%

level, we would expect this in one case out of 20. Nev-

ertheless, there is the possibility that the TH might hold

for shorter spatial and temporal scales than what is re-

solved by the data (4 km and 15 min). The simple Stu-

dent’s t test tends to overestimate the significance of the

difference between correlation estimates by not ac-

counting for the correlation between those estimates.

This is reflected by the fact that the p values from the

Student’s t test are considerably smaller than those

obtained by the hypothesis testing procedure in sec-

tion 3a.

The failure of the Taylor hypothesis for the data ana-

lyzed here could be due to several factors. First, the

background flow velocity v may not be constant in

space or time (Poveda and Zuluaga 2005), although in

this case the flow is relatively steady during the study

period. Second, the observed variable may evolve with

a time scale shorter than the advection time scale

(Waymire et al. 1984). In either case, the results in this

paper raise questions about the validity of the TH for

radar rainfall data as reported previously by Zawadzki

(1973) and Poveda and Zuluaga (2005), at least for the

space and time scales resolved by the data used here.
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