
Biometrika (2010), 97, 1, pp. 15–30 doi: 10.1093/biomet/asp078
C© 2010 Biometrika Trust
Printed in Great Britain

Cross-covariance functions for multivariate random fields
based on latent dimensions

BY TATIYANA V. APANASOVICH

Division of Biostatistics, Thomas Jefferson University, Philadelphia,
Pennsylvania 19107, U.S.A.

Tatiyana.Apanasovich@jefferson.edu

AND MARC G. GENTON

Department of Statistics, Texas A&M University, College Station, Texas 77843, U.S.A.

genton@stat.tamu.edu

SUMMARY

The problem of constructing valid parametric cross-covariance functions is challenging. We
propose a simple methodology, based on latent dimensions and existing covariance models for
univariate random fields, to develop flexible, interpretable and computationally feasible classes
of cross-covariance functions in closed form. We focus on spatio-temporal cross-covariance
functions that can be nonseparable, asymmetric and can have different covariance structures, for
instance different smoothness parameters, in each component. We discuss estimation of these
models and perform a small simulation study to demonstrate our approach. We illustrate our
methodology on a trivariate spatio-temporal pollution dataset from California and demonstrate
that our cross-covariance performs better than other competing models.

Some key words: Asymmetry; Linear model of coregionalization; Nonseparability; Positive definiteness; Space and
time; Stationarity.

1. INTRODUCTION

Consider a p-dimensional multivariate random field Z (x) = {Z1(x), . . . , Z p(x)}T defined on
a region D ⊂ R

q . For example, x = s ∈ R
d , d � 1, yields a multivariate spatial random field and

x = (s, t) ∈ R
d+1 a multivariate spatio-temporal random field, where s denotes a spatial location

and t denotes time. If we assume that Z is Gaussian, we only need to describe its mean and
cross-covariance functions. We focus on the characterization of the latter, that is,

cov{Zi (x1), Z j (x2)} = Ci j (x1, x2), (1)

for i, j = 1, . . . , p and for all x1 and x2 in D. In order for (1) to be a valid cross-covariance
function, the covariance matrix � of the random vector {Z (x1)T, . . . , Z (xn)T}T ∈ R

np must
be positive definite for any positive integer n and any points x1, . . . , xn in R

q . To ensure positive
definiteness, one often specifies the covariance function to belong to a parametric family whose
members are known to be positive definite. In recent years, there has been a growing interest in
the construction of valid cross-covariance functions.

Separable cross-covariance functions (Mardia & Goodall, 1993) are defined by Ci j (x1, x2) =
ρ(x1, x2)ai j , where A = {ai j } is a p × p positive definite matrix and ρ(·, ·) is a valid correlation
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function. This model is not flexible enough to handle complex relationships between processes.
For example, for two locations x1 and x2, the cross-covariance function between components
measured at each location always has the same shape regardless of the relative displacement of
the locations.

The linear model of coregionalization for stationary processes (Goulard & Voltz, 1992;
Wackernagel, 2003; Gelfand et al., 2004) implies that the cross-covariance function is

Ci j (x1 − x2) =
r∑

k=1

ρk(x1 − x2)aika jk,

for an integer 1 � r � p, where A = {ai j } is a p × r full rank matrix and ρk(·) are valid stationary
correlation functions. One can view the matrix A as a principal component transformation,
although it is too restrictive to assume that A does not change with x1 − x2. A spatially varying
linear model of coregionalization, however, has too many parameters. When r = 1, the separable
model is obtained.

The kernel convolution method (Ver Hoef & Barry, 1998) defines

Ci j (x1, x2) =
∫

Rq

∫
Rq

ki (x1 − τ1)k j (x2 − τ2)ρ(τ1 − τ2)dτ1dτ2,

where the ki are square integrable kernel functions and ρ(·) is a valid stationary correlation func-
tion. This approach assumes that all the spatial processes Zi (x), for i = 1, . . . , p, are generated
by the same underlying process, which is very restrictive because it imposes strong dependence
between all the processes Zi (x). Overall, this model and its parameters lack interpretability and,
except for some special cases, it requires Monte Carlo integration.

The covariance convolution for stationary spatial processes (Gaspari & Cohn, 1999;
Majumdar & Gelfand, 2007) yields

Ci j (s) =
∫

Rd
Ci (s − s̃)C j (s̃)ds̃,

where Ci are valid stationary covariance functions. The motivation and interpretation of the
resulting cross-dependency structure is rather unclear. Although some closed-form expressions
exist, this method usually requires Monte Carlo integration.

The problem of constructing valid parametric cross-covariance functions is challenging, as
mentioned recently by Zhang (2007, p. 127). Our goal in this article is to introduce a general
class of models that is interpretable, flexible and computationally feasible.

We propose an approach based on existing covariance models for univariate (p = 1) random
fields; see, for instance, Cressie & Huang (1999), Gneiting (2002) and Gneiting et al. (2007). The
key idea is to represent a vector’s components as points in a k-dimensional space, for an integer
1 � k � p, say, the i th component can be represented as ξi = (ξi1, . . . , ξik)T. Then, based on these
latent dimensions, (1) becomes a covariance with arguments from R

q+k , C{(x1, ξi ), (x2, ξ j )}.
Consequently, the matrix � above is guaranteed to be positive definite because its entries
are defined through a valid covariance. In fact for any x1, x2 there exists Cx1,x2(·) such that
Ci j (x1, x2) = Cx1,x2 (ξi − ξ j ), for some ξi , ξ j ∈ R

k (Perrin & Schlather, 2007). Generally, instead
of specifying the ξi s, we can treat them as parameters. Alternatively, one can use only distances
between a vector’s components, δi j = ‖ξi − ξ j‖, the so-called component isotropic models. Over-
all, the modelling idea is similar to multi-dimensional scaling (Cox & Cox, 2000) with latent
distances δi j s, where for fixed locations x1 and x2, larger δi j s are translated to smaller cross-
correlations between the i th and j th components of a vector. In the rest of this article, we assume
that the covariance function is stationary in space and time, namely, Ci j (x1, x2) = Ci j (x1 − x2).
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We develop flexible cross-covariance functions capable of modelling complex nonseparable and
asymmetric structures for multivariate random fields.

2. CROSS-COVARIANCE FUNCTIONS

2·1. Background and main results

Separability means that the cross-covariance structure factors into purely space-time and
purely vector component terms, and so allows computationally efficient estimation. Consequently,
separable covariance models have been popular even in situations in which they are not physically
justifiable. Families of nonseparable space-time covariance functions, that is, when the covariance
function is not a product of a purely temporal function and a purely spatial function, were studied
by several authors; for instance, Cressie & Huang (1999), Gneiting (2002) and Gneiting et al.
(2007). Here we propose an explicit expression for the variable and space-time nonseparable
cross-covariance function; see Proposition 1 below. More complex cross-covariance functions
can be built by using results of Proposition 2.

Recall that a real and positive function ϕ is completely monotone if and only if its nth derivative
ϕ(n) satisfies (−1)nϕ(n)(t) � 0, for all n ∈ N. Based on Gneiting (2002), the following covariance
function is positive definite in space-time lags (h, u) ∈ R

d+1:

C(h, u) = σ 2

{ψ1(|u|2)}d/2
ϕ1

{
‖h‖2

ψ1(|u|2)

}
,

where ϕ1(t), t � 0, is a completely monotone function, ψ1(t), t � 0, is a positive function with
completely monotone derivative and σ 2 is a variance parameter. We extend the results of Gneiting
(2002) to include a third argument reserved for the representation of the vector’s components
with the following family of cross-covariance functions.

PROPOSITION 1. Suppose that ϕ1(t), t � 0, is a completely monotone function, and let ψi (t),
i = 1, 2, t � 0, be positive functions with a completely monotone derivative. Then

C(h, u, v) = σ 2[
ψ1

{ |u|2
ψ2(‖v‖2)

}]d/2 {ψ2(‖v‖2)}1/2
ϕ1

⎡
⎣ ‖h‖2

ψ1

{ |u|2
ψ2(‖v‖2)

}
⎤
⎦ , (h, u, v) ∈ R

d+1+k,

(2)
is a stationary covariance function.

The proof is in the Appendix. It is known that for positive definite functions, the following
properties are true. Any finite linear combination of positive definite functions with nonnegative
coefficients is positive definite. The finite product of positive definite functions is also positive
definite. A continuous function that is the limit of a sequence of positive definite functions is
itself positive definite; for example, exp{ψ(x)} is positive definite if ψ(x) is positive definite. In
addition, we have the following result, the proof of which is in the Appendix.

PROPOSITION 2. Let Ci (h, u, v) (i = 1, . . . , L) be valid stationary covariance functions on
R

d+1+k . Then

C(h, u, v) =
L∏

i=1

Ci (h ∨ 0, u ∨ 0, v ∨ 0), (h, u, v) ∈ R
d+1+k, (3)

where a ∨ 0 means that the argument can be replaced by 0, is a stationary covariance function.
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Table 1. Special cases of the cross-covariance model (4)
Type of separability Form Functions to be equal to a constant

Full C1(h)C2(u)C3(v) ψ1, ψ2, ψ3

Space-time partial C1(h, v)C2(u, v) ψ1

Space-variable partial C1(h, u)C2(u, v) ψ3, ψ4

Time-variable partial C1(h, u)C2(h, v) ψ2, ψ4

Space C1(h)C2(u, v) ψ1, ψ3

Time C1(u)C2(h, v) ψ1, ψ2

Variable C1(v)C2(h, u) ψ2, ψ3, ψ4

There are alternative ways to define a model for the covariance function of a random field.
Under certain conditions, there exists a spectral density function associated with the spectral
distribution function. By definition, the spectral density for the i th and j th components is

fi j (ω1, ω2) = 1

(2π)d+1

∫
R1

∫
Rd

exp(−ιhTω1) exp(−ιuω2)Ci j (h, u)dhdu,

where ι = (−1)1/2. It is known (Yaglom, 1987) that cross-spectral densities fi j (ω1, ω2) have
to form a Hermitian and positive definite matrix for almost all (ω1, ω2) ∈ R

d+1. If Ci j (h, u) =
C(h, u, vi j ) as proposed, then fi j (ω1, ω2) = Cω1,ω2 (vi j ), where Cω1,ω2 (·) is a valid covariance
function for almost all (ω1, ω2) ∈ R

d+1 by the Lemma A1 in the Appendix and Theorem 1
from Gneiting (2002). Since Cω1,ω2 (vi j ) (i, j = 1, . . . , p) form a positive definite matrix, so do
fi j (ω1, ω2) for almost all (ω1, ω2) ∈ R

d+1.

2·2. Cross-covariances with identical autocovariances

A stationary covariance function is isotropic if it is rotation and translation invariant. A
fully isotropic space-time multivariate random field, Zi (s, t), (i = 1, . . . , p), s ∈ R

d , t ∈ R
1,

is isotropic for every argument, that is, cov{Zi (s1, t1), Z j (s2, t2)} = Ci j (‖s1 − s2‖, |t1 − t2|) =
C(‖s1 − s2‖, |t1 − t2|, ‖ξi − ξ j‖). In other words, the processes for each component i have the
same isotropic covariance function with respect to space and time, that is, they have identical au-
tocovariances. We utilize a fully isotropic model as a building block for more complex structures;
see below and § 2·3.

Combining the results in Propositions 1 and 2, we propose the following flexible model of
stationary cross-covariance functions on R

d+1+k :

C(h, u, v) = σ 2[
ψ1

{ |u|2
ψ4(‖v‖2)

}]d/2 {ψ2(‖v‖2)}1/2{ψ3(‖h‖2)}k/2{ψ4(‖v‖2)}1/2

×ϕ1

⎡
⎣ ‖h‖2

ψ1

{ |u|2
ψ4(‖v‖2)

}
⎤
⎦ϕ2

{
|u|2

ψ2(‖v‖2)

}
ϕ3

{
‖v‖2

ψ3(‖h‖2)

}
. (4)

The arguments in (4) can be interchanged while preserving the validity of the resulting covariance
function. Many valid covariance models can be constructed based on (4) and the functions ϕ(t)
and ψ(t) listed in tables 1 and 2 of Gneiting (2002, p. 591). The proposed model (4) is fully
nonseparable and next we demonstrate how to make it flexible enough to handle all special cases
of separability. We assume that each ψi has a tuning parameter that at some special value yields
a constant function. Table 1 summarizes special cases of the cross-covariance model (4).

Marginally (v = 0), nonseparable space-time covariance models have been used extensively
and the choice of particular functional forms of ϕi (i = 1, 2) and ψ j ( j = 1, 3) can be guided by
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empirical variograms or covariograms, or by statistical tests (Li et al., 2007). The choice of other
functions is more arbitrary mainly because of the nature of latent observations and the fact that
the number of components is far less than the number of locations in most practical applications.
Therefore, one should settle with the most computationally convenient functional forms. We
advise trying several candidate functions to compare the fit when p is large. Knowledge about
forms of separability can suggest simplifications of (4); see Table 1. More specifically, consider the
functions ϕi (t) = exp(−ci tγi ) (i = 1, . . . , 3) and ψ j (t) = (a j tα j + 1)β j ( j = 1, . . . , 4) proposed
by Gneiting (2002, p. 593). For a multivariate spatio-temporal random field, we obtain the
following cross-covariance model:

C(h, u, v) = σ 2([a1
{|u|2/(a4‖v‖2α4 + 1

)β4
}α1 + 1

]β1d/2)−1

× {(a2‖v‖2α2 + 1)β2/2(a3‖h‖2α3 + 1)β3k/2(a4‖v‖2α4 + 1)β4/2}−1

× exp

(
− c1‖h‖2γ1

[a1
{|u|2/(a4‖v‖2α4 + 1)β4

}α1 + 1]β1γ1
− c2|u|2γ2

(a2‖v‖2α2 + 1)β2γ2
− c3‖v‖2γ3

(a3‖h‖2α3 + 1)β3γ3

)
,

(5)

where ci > 0, 0 < γi � 1 for i = 1, . . . , 3, and a j > 0, 0 < α j , β j � 1 for j = 1, . . . , 4. We set
d = 2, k = 1, σ 2 = 1, ci = 0·01, γi = 1, a j = 0·07, α j = 1, and vary β j . Figure 1 depicts
contours of C(h, u, v) as a function of ‖h‖, |u| and |v|, for ‖h‖, |u| ∈ [0, 12] and |v| = 0,

3·02, 4·27. The contour lines are such that the next line is the current one times 1·2 starting
from 0·1. The choices of β j ∈ {0, 1} correspond to four cases from Table 1: full separability,
that is all β j = 0; space separability, that is only β2 = 1; space-time partial separability, that
is β2 and β3 are 1; and nonseparability, that is all β j = 1. The choice of vi s is such that
C(0, 0, v1)/C(0, 0, v2) = C(0, 0, v2)/C(0, 0, v3) = √ 1·2, which makes the contour lines in the
case of full separability move in a proportional fashion. Therefore, visually, all the cases can
be assessed as deviations from proportionality as in full separability. We shall now describe
separability with respect to space. Separability with respect to time and to variable can be
deduced similarly. Fix h1, h2. For space separability, C(h, u, 0) and C(h, 0, v) are each separable,
hence C(h1, u, v)/C(h2, u, v) = �12 for any u, v. For space-time partial separability, C(h, u, 0)
is separable but C(h, 0, v) is nonseparable, thus C(h1, u, v)/C(h2, u, v) = �12(v) is a function
of v but not u. For nonseparability, C(h, u, 0) and C(h, 0, v) are each nonseparable, hence
C(h1, u, v)/C(h2, u, v) = �12(u, v) is a function of v and u.

2·3. Cross-covariances with different autocovariances

For the case where for each component i the processes have different isotropic covariance func-
tions with respect to space and time, we propose using the following cross-covariance functions.
Consider independent univariate random fields Wl(s, t, ξ ) (l = 1, . . . , L), with covariance func-
tion cov{Wl(s1, t1, ξ1), Wl(s2, t2, ξ2)} = Cl(‖s1 − s2‖, |t1 − t2|, ‖ξ1 − ξ2‖). We model the multi-
variate random field Z with a linear model of coregionalization based on latent dimensions, that
is

Zi (s, t) =
L∑

l=1

ail Wl(s, t, ξi ) (i = 1, . . . , p), (6)

with constant coefficients ail . Thus, the cross-covariance function of (6) is

cov{Zi (s1, t1), Z j (s2, t2)} =
L∑

l=1

aila jlCl(‖s1 − s2‖, |t1 − t2|, ‖ξi − ξ j‖) (i, j = 1, . . . , p).
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Fig. 1. Graphs showing the contour lines of the cross-covariance function (5) for the following special cases: full,
space, space-time partial and nonseparability (columns) for ‖h‖, |u| ∈ [0, 12] and |v| = 0, 3·02, 4·27 (rows).

A special case of (6) is to model Z by

Zi (s, t) = ai1W (s, t, ξi ) + ai2Wi (s, t),

where Wi (s, t) (i = 1, . . . , p) are independent univariate random fields. Therefore

cov{Zi (s1, t1), Z j (s2, t2)} =
{

a2
i1C(‖s1 − s2‖, |t1 − t2|, 0) + a2

i2Ci (s1 − s2, t1 − t2) (i = j),

ai1a j1C(‖s1 − s2‖, |t1 − t2|, ‖ξi − ξ j‖) (i � j),

(7)

where the Ci s are covariance functions for the Wi s.
The covariance between Zi and Z j can be negative when the coefficients ai1 and a j1 have

different signs. Furthermore, the space-time covariance structure of each component of the
multivariate random field is allowed to be different. For instance, different smoothnesses can be
obtained by using different Matérn covariances Ci (Matérn, 1986) as long as W is the smoothest
random field.

2·4. Asymmetric cross-covariances

Full symmetry happens when Ci j (h, u) = Ci j (−h, u) = Ci j (h,−u) = Ci j (−h,−u). However,
environmental, atmospheric and geophysical processes are often influenced by prevailing winds
or ocean currents, which are incompatible with the assumption of full symmetry. Asymmetric
behaviour is observed when the response of one variable affects another variable delayed in time.
Here we can distinguish between the following types of asymmetry:
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Type 1. Occurs when there is a time lag in a correlation between variables, so that Ci j (h, u) =
C̃i j (h, u − �i j ), where C̃i j (h, u) is fully symmetric. We propose the following model:

C (1)
i j (h, u) = C

(
h, u − λT

ξ (ξi − ξ j ), ξi − ξ j
)
,

where λξ is a k-vector and the shift �i j = λT
ξ (ξi − ξ j ) is such that argmaxuC (1)

i j (h, u) =
−argmaxuC (1)

j i (h, u) = �i j , where �i j = 0 if and only if λξ = 0 or i = j .

Type 2. Multivariate version of the model considered by several authors (Stein, 2005;
Cox & Isham, 1988). We propose the following model:

C (2)
i j (h, u) = C(h − γhu, u, ξi − ξ j − γξ u),

where the d-vector γh and the k-vector γξ are velocities responsible for the lack of symmetry.

For each i and j , argmaxhC (2)
i j (h, u) depends on u and is equal to 0 if and only if either u = 0

or γh = 0; similarly, for each h, argmaxi, j C
(2)
i j (h, u) depends on u and is achieved when i = j if

and only if either u = 0 or γξ = 0. This model is spatially anisotropic when u � 0.

The combination of Type 1 and Type 2 is possible. We illustrate Type 1 and Type 2 using
(5). We fix h2 = 0, such that h is univariate and h = h1, and we let p = 2, k = 1, ξ1 = 0 and
ξ2 = 3. For Type 1, λξ = −0·5 and for Type 2, γh = 0·3 and γξ = −0·5. We vary βs and let

u, h ∈ [−10, 10]. Figure 2 depicts C (k)
11 (h, u), C (k)

12 (h, u) and C (k)
21 (h, u) (k = 1, 2) for various βs

and vs. The lack of symmetry is apparent.

3. ESTIMATION

Our key idea for constructing valid parametric cross-covariance functions is to represent a
vector’s components as points in a k-dimensional space, for an integer 1 � k � p, say the i th
component is represented as ξi = (ξi1, . . . , ξik)T. Here we assume that the covariance functions
depend only on the distances between a vector’s components, δi j = ‖ξi − ξ j‖. There are two
approaches to estimating parameters associated with the vector’s components: the first is to treat
the ξi s as parameters and the second is to treat the δi j s as parameters.

Euclidean distance is invariant under translation, rotation and reflection about the origin,
therefore we can constrain the configuration built by the ξi s to be centered and to be in principal
axis orientation, for an integer 1 � k � p:

ξ1 j � 0,

p∑
i=1

ξi j = 0,

p∑
i=1

ξi jξil = 0 ( j, l = 1, . . . , k; l � j). (8)

The number of free parameters is kp − k(k + 1)/2 and for k < p − 1 it is less than the total
number of all pairwise differences, p(p − 1)/2. For example, if p = 3 and k = 2, then three free
parameters can be chosen as ξ11, ξ12 > 0, ξ21 and the other parameters can be derived from ξ31 =
−(ξ11 + ξ21), ξ22 = −(2ξ11ξ12 + ξ12ξ21)/(2ξ21 + ξ11), ξ32 = (ξ11ξ12 − ξ21ξ12)/(2ξ21 + ξ11). The
positivity constraints are easy to handle by the reparameterization ξ1 j = exp(χ1 j ). Then an
unconstrained optimization can be applied to a criterion function L(ξ1, . . . , ξp); for example,
least squares, maximum likelihood or composite likelihood; see Apanasovich et al. (2008) and
a technical report by Bevilacqua, Gaetan, Mateu and Porcu from the University of Jaume I and
references therein. The solution may not be unique even up to the order of axes. The order of
axes can be constrained by, say, ξ1 j > ξ1 j−1 ( j = 2, . . . , k). Constraints on the parameters can be
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Fig. 2. Graphs showing contour lines of asymmetric cross-covariance functions
of Type 1 (a) and Type 2 (b) for various values of β and v = 0, 3, −3.

defined by specifying a function of these parameters to be maximized. For example, in the event
that these constraints are a set of functions set equal to zero, the negative of the sum of squares
of these functions serves as the appropriate function. The constraint function in the context of (8)
without the inequality constraint on the reflection about the origin is

C(ξ1, . . . , ξp) = −1

2

k∑
j=1

( p∑
i=1

ξi j

)2

− 1

2

k−1∑
j=1

k∑
l= j+1

( p∑
i=1

ξi jξil

)2

.

The parameters are estimated by

argmaxξ1,...,ξp
{L(ξ1, . . . , ξp) + C(ξ1, . . . , ξp)}.

In addition, one can use any variable selection criterion to choose the best value of k.
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Alternatively, one can treat the elements δi j of the distance matrix as parameters. In this case
the estimators of δi j are obtained by a constrained optimization method, where constraints come
from the fact that δi j must form a valid distance matrix. Another option is to introduce measures
of dissimilarities di j , such that di j � 0 and di j = d ji (i = 1, . . . , p; j = 1, . . . , k). The criterion
function is evaluated at δi j s, which form a valid distance matrix, closest to D = {di j }, obtained as
a solution of a classical multi-dimensional scaling problem, that is, minimizing

∑
i j (di j − δi j )2.

Here as well, one can use any variable selection criterion to choose the best value of k. In practice
one would rarely pick k > k∗, where k∗ is the smallest integer such that the number of parameters
reserved for ξi s is greater or equal to the number of parameters reserved for the pairwise distances,
specifically, k∗ = p/2 or (p − 1)/2 for p even or odd, respectively.

The choice of the parameterization scheme is driven by the computational convenience and
the modelling framework. Parameterization with respect to the coordinates produces a simpler
criterion function to be maximized due to the fact that constraints on the coordinates are better
defined analytically than constraints on the distances for k > 2. Moreover, the reduction of the
number of free parameters when lowering k corresponds to the actual reduction of the number of
parameters to be estimated only when using coordinates as parameters. However, parameterization
with respect to the distances is more attractive for a Bayesian framework, where dissimilarities
di j are assumed to follow truncated normal distributions, di j ∼ N (δi j , σ

2)I (di j > 0), for i � j ,
where “I (·) is an indicator function.

4. MONTE CARLO SIMULATIONS

In our numerical work, we use the following routine for the sake of computational stability.
Let θ be the collection of unknown parameters other than ξi s or δi j s. Iterate two steps until
convergence: first, maximize the likelihood function with respect to θ , given the values of ξi s or
δi j s from the previous iteration; second, estimate ξi s or δi j s using any method described previously
given the values of θ obtained at the first step. We use zeros as the initial guess for ξi s and δi j s.

In the first simulation study, we address the issue of computational feasibility of the proposed
method. We generate samples from a zero-mean p-dimensional spatial Gaussian random field.
We use the following cross-correlation function corr{Zi (s1), Z j (s2)} based on (7):

Ci j (‖h‖) = C(‖h‖, ‖ξi − ξ j‖)

= σiσ j

‖ξi − ξ j‖ + 1
exp

{
−α‖h‖

(‖ξi − ξ j‖ + 1)β/2

}
+ τ 2 I (i = j)I (‖h‖ = 0), (9)

for i = 1, . . . , p, where h = s1 − s2 and τ is a nugget effect. The parameters to be esti-
mated are μi , means of the process, α > 0, β ∈ [0, 1], σi > 0, τ � 0, ξi ∈ R

k or δi j ∈ R
+,

k < p, subject to the constraints discussed in § 3, for i = 1, . . . , p. We set p = 3 and simulate
ξi s from a [0, 1] × [0, 1] square. We choose μi = 0, α = 1, β = 1, σi = 1, τ = 0·3. Define
θ = ({μi }i=1,...,p, {σi }i=1,...,p, α, β, τ ). We generate n = 150 points whose spatial locations were
selected at random from the [0, 10] × [0, 10] square.

First, we compare the different ways to estimate the parameters responsible for the cross-
correlation. We fix k = 2 and apply the three methods outlined in § 3: unconstrained optimization
using free parameters, ξ11, ξ12 and ξ21; constrained optimization where nonlinear constraints are
introduced through the penalty term; and constrained optimization treating δi j s as parameters with
multi-dimensional scaling as the intermediate step. In 98% of the simulated samples, the same
estimates of θ and ‖ξi − ξ j‖s from the three methods listed above were produced. The number
of iterations in the two-step procedure was the same for all methods and the unconstrained
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Table 2. Estimation results from the first simulation
Parameter Separable k = 1 k = 2

AB SD AB SD AB SD

τ 0·19 0·09 0·01 0·05 0·01 0·05
α 0·07 0·07 0·10 0·12 0·10 0·11
β – – 0·13 0·28 0·08 0·24

Wave AB Wave SD Wave AB Wave SD Wave AB Wave SD

μi 0·01 0·24 0·01 0·24 0·00 0·24
σi 0·28 0·13 0·04 0·09 0·03 0·09
‖ξi − ξ j‖ – – 0·10 0·32 0·06 0·31
Range for corri 0·18 0·27 0·19 0·29 0·16 0·27
Range for cross-corri j 0·58 0·47 0·25 0·40 0·22 0·37

AB, absolute bias; wave AB, weighted average of absolute bias; SD, standard deviation; wave SD, weighted average of
standard deviation.

optimization method performed much faster due to the simpler optimization in the second
step.

Next, we discuss the differences due to the choice of k. Here we compare the estimates under
three models: separable with nugget and nonseparable using the cross-correlation structure (9)
with latent dimension k = 1 and k = 2. Since the notion of range is not tied to a specific choice
of correlation function, we can compare its estimation under different models. Here we define
the effective range as a distance at which the correlation, or cross-correlations, is equal to 0·05.
In Table 2 we report results of the simulation study over 400 replicates. For the parameters τ , α,
and β we report the absolute bias and standard deviation of estimates. For the parameters μi , σi ,
effective range for correlation of variable i for i = 1, . . . , p, we report the weighted average of
absolute biases and of standard deviations over the index i , where the weights sum to one and are
proportional to the true value of the parameter. We do the same for ‖ξi − ξ j‖ and the effective range
for cross-correlations between variables i and j for i, j = 1, . . . , p. Nonseparable models gave
much better estimates for all parameters, especially, for variances, nugget and effective ranges
for cross-correlations. The nonseparable model with k = 2 produces slightly better estimates
than the one with k = 1 at the expense of three extra parameters. According to the likelihood
ratio test, the model with k = 2 is preferred to the model with k = 1 in 22% of the generated
samples.

In the second simulation study, we compare our model with the linear model of coregion-
alization. To demonstrate the extra flexibility that our model provides, we fit our model and a
coregionalization model, when in fact, our model is true. In this regard, we generate samples from
a zero-mean two-dimensional spatial Gaussian random field {Z1(s), Z2(s)} having an underlying
covariance specification cov{Zi (s1), Z j (s2)} based on (7):

Ci j (‖h‖) = C(‖h‖, δi j ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a2
11 exp (−α1‖h‖) (i = j = 1),

a2
21 exp (−α1‖h‖) + a2

22 exp (−α2‖h‖) (i = j = 2),

a11a21

δ12 + 1
exp
{

− α1‖h‖
(δ12 + 1)β/2

}
(i � j),

where h = s1 − s2. A coregionalization model is a special case of the above specification when
δ12 = β = 0. We set a11 = 1·25, a21 = 0·75, a22 = 0·5, α1 = 1, α2 = 3, δ12 = 2 and β = 1. We
generated n = 200 points whose spatial locations were selected at random from the [0, 20] ×
[0, 20] square. In Table 3 we report estimation results of 400 simulations. Maximum likelihood
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Table 3. Estimation results from the second simulation
Proposed model Linear model of coregionalization

Parameter True 2·5% 50·0% 97·5% 2·5% 50·0% 97·5%

μ1 0 −0·30 0·00 0·31 −0·30 0·00 0·31
μ2 0 −0·19 0·00 0·20 −0·20 0·00 0·20
a11 1·25 1·08 1·23 1·38 1·08 1·23 1·38
a21 0·75 0·24 0·69 0·90 0·07 0·21 0·35
a22 0·50 0·21 0·54 0·83 0·76 0·86 0·95
α1 1·00 0·73 1·05 1·46 0·71 1·04 1·48
α2 3·00 0·82 2·82 7·06 1·10 1·59 2·53
β 1·00 0·10 1·00 1·00 – – –
δ12 2·00 0·25 2·00 4·60 – – –
Cross-corr for h = 0 0·28 0·11 0·27 0·40 0·09 0·24 0·37
Range for Z1 3·22 2·09 3·11 4·50 2·09 3·07 4·66
Range for Z2 2·42 1·41 2·23 3·21 1·25 1·92 2·72
Range for cross-corr 2·97 0·85 2·53 3·71 0·45 1·48 2·48

generates quite reasonable estimates for the proposed model. There is a slight bias in estimating
a2i , α2 and consequently in the range for cross-correlation. The model of coregionalization
underestimates the cross-correlation and results in a biased estimate of the range for cross-
correlation where the true value lies outside the 95% confidence interval. The table suggests that
the model of coregionalization is not flexible enough to provide unbiased estimates for the range
and cross-correlation even for the simple setting of just two correlated processes.

5. APPLICATION TO POLLUTION DATA FROM CALIFORNIA

We illustrate our modelling approach with a pollution dataset obtained from a collection of
monitoring stations in California. The data, which were used by Schmidt & Gelfand (2003) and
Majumdar & Gelfand (2007), were obtained from the California Air Resources Board. These
authors considered the daily average of carbon monoxide, CO, nitrous oxide, NO, and nitrogen
dioxide, NO2, based on hourly measurements on July 6, 1999.

The locations of 68 monitoring stations were recorded on a degree latitude by degree longitude
scale, and five locations were taken out for verification purposes. We took advantage of the fact
that in the sampling area, 1o of latitude ≈ 65 km while 1o of longitude ≈ 110 km to calculate
the distances between the sites; see Banerjee (2005) for discussion on the effect of distance com-
putations in spatial modelling. Following Schmidt & Gelfand (2003) and Majumdar & Gelfand
(2007), in order to achieve approximate normality, we used the logarithm of the daily average
of each of these variables. Similarly to these authors, we fit the model with a constant mean
structure. Li et al. (2008) tested the structure of the cross-covariance functions of this dataset
and concluded that it was highly variable nonseparable and asymmetric, hence that a linear model
of coregionalization was not appropriate. Therefore, the cross-covariance cov{Zi (s1), Z j (s2)}
was chosen to be the most parsimonious asymmetric of Type 2 and spatially anisotropic
model:

Ci j (h) = C(h, vi j − �ξ h) = σiσ j

‖vi j − �ξ h‖ + 1
exp

{
− α‖h‖

(‖vi j − �ξ h‖ + 1)β/2

}
,

for i, j = 1, . . . , 3, where h = s1 − s2, vi j = ξi − ξ j and �ξ is a k × 2 matrix. We assumed that
the dimensions are points in a k = 1 dimensional space and we reparameterized �ξ = γωT, where
γ � 0, ω is a two-dimensional vector such that ωTω = 1. Here arctan(ω2/ω1) defines the direction
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Table 4. Maximum likelihood estimates for the pollution data
Parameter 2·5% Estimate 97·5% Parameter 2·5% Estimate 97·5%

μ1 −1·19 −0·94 −0·67 β 0·10 1.00 1.00
μ2 −5·58 −5·26 −4·92 α 0·01 0·02 0·04
μ3 −4·61 −4·38 −4·15 v13 0·44 0·70 1·38
σ1 0·50 0·65 0·74 v23 −0·73 −0·36 −0·23
σ2 0·59 0·75 0·87 γ 0·04 0·06 0·12
σ3 0·44 0·57 0·66 arctan(ω2/ω1) 71·45 76·64 80·90

of anisotropy/asymmetry and γ defines its extent. We used maximum likelihood as a criterion
function because of a relatively small sample size.

Table 4 has the parameter estimates and confidence bands obtained by using 500 parametric
bootstrapped samples. Figure 3 depicts the estimated spatial correlations and cross-correlations.
The estimated correlation matrix with the associated 95% bootstrapped confidence interval in
parentheses for the components of the vector evaluated at the same locations is

R =
⎛
⎝1 0·49 (0·29, 0·58) 0·59 (0·35, 0·69)

1 0·74 (0·56, 0·82)
1

⎞
⎠ .

The observed correlations between these pollutants were 0·46 for CO and NO, 0·56 for CO
and NO2 and 0·77 for NO and NO2. Schmidt & Gelfand’s (2003) estimates with the use of
the linear model of coregionalization were 0·23 for CO and NO, 0·32 for CO and NO2, and
0·51 for NO and NO2. As we observed in simulations, the linear model of coregionalization
produces biased estimates of the cross-correlation due to its lack of flexibility. Because k = 1,
we have v12 = v13 − v23 = 1·06. The order of distances in the latent space, |v12| > |v13| >

|v23|, corresponds to the order of correlations between the components of the trivariate vector
of pollutants evaluated at the same location, that is, h = 0: R12 < R13 < R23. However, our
model is nonseparable, so the order of cross-correlations may differ for some nonzero spatial
lags.

Our goal here is to assess the ability of our simplest model to capture spatial patterns. To perform
some validation of the model, we use the five held-out stations, at which we predict the levels
of all three pollutants with the conditional means and we compare the predictions with the ones
obtained by using the linear model of coregionalization of Schmidt & Gelfand (2003) available
only for NO2, and covariance convolution (Majumdar & Gelfand, 2007). These predictions are
displayed in Table 5. In most of the cases, the predictions were improved: 8 out of 15 compared
to those of Majumdar & Gelfand (2007) and 4 out of 5 compared to those of Schmidt & Gelfand
(2003). Specifically, the average differences between the absolute prediction errors for our model
and those of Majumdar & Gelfand (2007) were −0·02 for CO, a 4% improvement; −0·63 for NO,
a 47% improvement; and −0·04 for NO2, a 17% improvement. Compared to Schmidt & Gelfand
(2003), the improvement was −0·06, that is, 23%. The percentage of improvement is measured
as the average, over the five sites, of the difference between the absolute prediction errors for
the alternative model and our model, divided by the average, over the five sites, of the absolute
prediction error for the alternative model. Predictions based on our model were closer to the
held-out values for the difficult-to-predict cases. For instance, for NO, sites 1 and 2, the absolute
error was reduced by 45% and 63%, respectively.
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Fig. 3. Estimated spatial correlations and cross-correlations at contour lev-
els 0·1, . . . , 0·5 for the pollution data.

Table 5. Prediction at five held-out stations for the pollution data
Site True AG Pred MG Pred SG Pred AG vs MG AG vs SG

Prediction of CO

1 −0·89 −0·59 −0·90 – 0·29 –
2 −0·80 −1·05 −0·95 – 0·10 –
3 −0·98 −1·10 −0·93 – 0·06 –
4 −1·67 −1·42 −0·91 – −0·51 –
5 −2·30 −0·96 −0·93 – −0·03 –

Prediction of NO

1 −6·50 −4·94 −3·65 – −1·29 –
2 −6·50 −5·46 −3·65 – −1·81 –
3 −5·45 −5·28 −5·34 – 0·06 –
4 −4·75 −5·22 −5·34 – −0·12 –
5 −5·52 −5·28 −5·32 – 0·04 –

Prediction of NO2

1 −4·91 −4·33 −4·42 −4·17 0·09 −0·16
2 −4·34 −4·54 −4·45 −4·58 0·09 −0·04
3 −4·59 −4·48 −4·44 −4·59 −0·04 0·11
4 −4·10 −4·20 −4·45 −3·96 −0·24 −0·03
5 −4·34 −4·34 −4·43 −4·51 −0·08 −0·16

AG Pred, the predictions based on our model; MG Pred, the predictions from Majumdar & Gelfand (2007); SG Pred,
the predictions from Schmidt & Gelfand (2003); AG vs MG, difference between absolute prediction error of our
model and of Majumdar & Gelfand (2007); AG vs SG, difference between absolute prediction error of our model and
of Schmidt & Gelfand (2003).
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6. DISCUSSION

We have proposed a new flexible class of cross-covariance functions for multivariate random
field modelling and we have described extensions of our models to accommodate the lack of
symmetry and lack of variable isotropy. Standard approaches can be used to relax the assumption
of spatial isotropy; see, for example, Mateu et al. (2008) and references therein. The choice
of cross-covariance models with specific properties can be guided by the outcome of testing
procedures proposed by Li et al. (2007, 2008).

An appealing feature of our construction is that existing univariate models of covariance
functions can be used due to our approach being based on latent dimensions. Thus, the statistician’s
toolkit for modelling multivariate random fields is extended in a rather straightforward manner.

One possible weakness of our approach is that if the number p of variables is large, then
the integer number 1 � k � p of latent dimensions could become large too. However, similarly
to multi-dimensional scaling, we can reduce the number of parameters in our cross-covariance
models by reducing the dimension of the latent space. In our experience, small values of k are
usually sufficient. For example, on the pollution data, we obtained better performances than other
competing methods already with k = 1.
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APPENDIX

Proof of Proposition 1

To prove that (2) is a covariance function, we use a result similar to Gneiting (2002, p. 599).

LEMMA A1. A continuous, bounded and integrable function C(h, u, v), defined on R
d+l+k , is a covari-

ance function if and only if

Cω(u, v) =
∫

exp(−ιhTω)C(h, u, v)dh, u ∈ R
l , v ∈ R

k

is a covariance function for almost all ω ∈ R
d .

Recall that from Bernstein’s theorem (Feller, 1966, p. 439), a completely monotone function ϕ(t)
(t > 0), can be represented by

ϕ(t) =
∫

(0,∞)
exp(−r t)d F(r ),

where F is nondecreasing. Hence, for (2), we have

Cω(u, v) =
∫

exp(−ιhTω)
σ 2[

ψ1

{
‖u‖2

ψ2(‖v‖2)

}]d/2
{ψ2(‖v‖2)}l/2

ϕ1

⎡
⎣ ‖h‖2

ψ1

{
‖u‖2

ψ2(‖v‖2)

}
⎤
⎦ dh

= σ 2πd/2 1

{ψ2(‖v‖2)}l/2

∫
(0,∞)

exp

[
−‖ω‖

4r
ψ1

{ ‖u‖2

ψ2(‖v‖2)

}]
1

rd/2
d F(r ).
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Let t = ‖u‖2/ψ2(‖v‖2). Then, similarly to Gneiting (2002), one can show that

ϕω(t) =
∫

(0,∞)
exp

{
−‖ω‖

4r
ψ1(t)

}
1

rd/2
d F(r )

is a completely monotone function for any ω ∈ R
d . Therefore,

Cω(u, v) = σ 2πd/2 1

{ψ2(‖v‖2)}l/2
ϕω

{ ‖u‖2

ψ2(‖v‖2)

}
, u ∈ R

l , v ∈ R
k,

which is a valid covariance function for any ω ∈ R
d according to Theorem 2 from Gneiting (2002). �

Proof of Proposition 2

First, the product Ci1 (h, u, 0)Ci2 (h, 0, v) is a valid covariance function on R
d+l+k because

Ci1i2,ω(h, v) =
∫

exp(−ιuTω)Ci1 (h, u, 0)Ci2 (h, 0, v)du = Ci1,ω(h, 0)Ci2 (h, 0, v)

is a valid covariance function for almost all ω ∈ R
l since

C̃ωi1 ,ωi2
(h) =

∫
exp(−ιvTωi2 )Ci1,ωi1

(h, 0)Ci2 (h, 0, v)dv = Ci1,ωi1
(h, 0)Ci2,ωi2

(h, 0)

is a valid covariance function for almost all ωi1 , ωi2 ∈ R
l . Hence

Ci1i2,ω(u, v) =
∫

exp(−ιhTω)Ci1 (h, u, 0)Ci2 (h, 0, v)dh

is a valid covariance function as well. Therefore, Ci1 (h, u, 0)Ci2 (h, 0, v)Ci3 (0, u, v) is positive definite
because

Ci1i2i3,ω(u, v) =
∫

exp(−ιhTω)Ci1 (h, u, 0)Ci2 (h, 0, v)Ci3 (0, u, v)dh = Ci1i2,ω(u, v)Ci3 (0, u, v)

is positive definite. It follows that the product defined by (3) is also positive definite. �
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