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The technology to harvest electricity from wind energy is now advanced enough to make entire cities powered by it a reality. High-quality,
short-term forecasts of wind speed are vital to making this a more reliable energy source. Gneiting et al. (2006) have introduced a model
for the average wind speed two hours ahead based on both spatial and temporal information. The forecasts produced by this model are
accurate, and subject to accuracy, the predictive distribution is sharp, that is, highly concentrated around its center. However, this model is
split into nonunique regimes based on the wind direction at an offsite location. This paper both generalizes and improves upon this model
by treating wind direction as a circular variable and including it in the model. It is robust in many experiments, such as predicting wind at
other locations. We compare this with the more common approach of modeling wind speeds and directions in the Cartesian space and use
a skew-t distribution for the errors. The quality of the predictions from all of these models can be more realistically assessed with a loss
measure that depends upon the power curve relating wind speed to power output. This proposed loss measure yields more insight into the
true value of each model’s predictions.
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1. INTRODUCTION

1.1 Wind Energy Background

The history of harnessing the power in wind for the bene-
fit of man is long and diverse, yet wind energy’s current role
is evolving rapidly. Throughout the world, the number of in-
stalled megawatts increased in 2008 from 2007 by 29%. More
facts and information on the role of statistics in wind power
can be found in Genton and Hering (2007) and the references
therein. Wind farms capable of powering many thousands of
homes are springing up both on land and sea. Since the cost of
a kilowatt (kW) of wind-powered electricity is now nearly the
same as a kW produced by coal or nuclear energy, many users
are switching to this green energy that produces no greenhouse
gases or harmful byproducts. Uneven heating of the earth’s sur-
face by the sun produces wind and guarantees that this natural
resource will never be diminished or depleted.

Despite its many advantages, utilizing wind energy also
presents its share of challenges. The windiest places tend to be
the most remote, requiring transmission lines to carry electric-
ity to populated areas. Some complain that the wind turbines
ruin the scenery of pristine lands and interfere with bird migra-
tion. But by far, the biggest challenges are: (1) the wind is not
a steady, constant supply of energy, and (2) no cost-effective
method for storing its power currently exists. Its intermittent
nature can create a problem for those managing the electri-
cal grid, which is where the supply and demand of electricity
meet and must be balanced. Electrical demand is easily pre-
dictable based on weather patterns, daylight hours, and holidays
or work days. Usually, an equal amount of electricity is ordered
to meet this demand from traditional sources. Wind-powered
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electricity must be used as soon as it enters the electrical grid,
so the amount of additional electricity to order from traditional
sources becomes unpredictable. Ordering too much or too little
electricity can carry severe penalties and fines in utility mar-
kets.

Making accurate predictions of the future wind speed reduces
the variability and risk that the electrical grid faces once it ac-
cepts wind energy as a source (Smith et al. 2007). For a range of
wind speeds, the amount of energy that can be produced from a
wind turbine is proportional to the cube of wind speed, so small
improvements in predicting wind speed lead to larger improve-
ments in predicting wind energy. Predictions of wind energy
could be made directly, but these are highly dependent upon the
types, sizes, and number of wind turbines in operation. A pre-
diction of wind speed, on the other hand, can be used to derive
a prediction of wind energy for a given wind farm. The typical
forecast horizon needed for scheduling transmission and dis-
patch is two to four hours. Longer horizons, such as two to three
days, are useful for scheduling maintenance of the turbines, and
numerical weather prediction models are best for this purpose.

Statistical models, especially those that incorporate expert
knowledge of wind characteristics and geography, are un-
matched in making short-term predictions (Giebel, Brown-
sword, and Kariniotakis 2003). However, this area of applica-
tion has not been exhaustively explored by statisticians (Kestens
and Teugels 2002). Gneiting et al. (2006) have recently pro-
posed several models for predicting the two-hour ahead aver-
age wind speed near a wind farm in northern Oregon. Their
best model, called the Regime-Switching Space-Time Diur-
nal (RSTD) model, accounts for the diurnal, nonnegative, and
volatile nature of wind speed. It takes advantage of the topogra-
phy of the Columbia River Gorge in which winds are generally
channeled in either an easterly or westerly direction to define
two regimes. The regimes switch based on whether the wind
direction at a point west of the wind farm is blowing from the
west or from the east.
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1.2 New Models and Evaluation Tools

In this paper, two new models are introduced that eliminate
the RSTD regimes, a loss measure to assess the quality of the
predictions in terms of power is proposed, and experiments
demonstrate the robustness of the new models. The two new
models highlight differences in how the wind speed and direc-
tion variables may be treated—either in polar coordinates or in
Cartesian coordinates. In the first model, the Trigonometric Di-
rection Diurnal (TDD) model, the wind direction is not simply
used to determine the regimes. It is incorporated directly into
the predictive mean function of the RSTD model by treating it
as a circular variable and using its sine and cosine. Weisberg
(2005, pp. 226–230) found that including the sine and cosine of
wind direction did not improve wind speed prediction, but his
model building approach is not systematic. The TDD model is
more general than the RSTD model and has similar predictive
ability.

The second model is called the Bivariate Skew-T (BST)
model and uses the two-dimensional Cartesian wind vector at
different locations and lags in time to model the wind speed at
the location of interest. The errors in this bivariate regression
model are not distributed according to a normal distribution but
to a skew-t distribution which is normal in a special case; see
the review paper by Azzalini (2005). The skew-t distribution
has additional parameters that are flexible for capturing skew-
ness and heavy tails.

Predictions of wind speed are ultimately for the purpose of
predicting power; thus, assessing the quality of wind speed pre-
dictions should link speed and power (Lange 2005; Lange and
Focken 2005). Typical measures such as Root Mean Squared
Error (RMSE) or Mean Absolute Error (MAE) for gauging the
quality of predictions do not make this link. Power curves de-
scribe the relationship between speed and power, and we de-
velop a new loss measure that depends upon this curve. For var-
ious ranges of wind speeds, the power output is either constant
or proportional to the cube of wind speed. Using a wind power
curve for a standard turbine, penalties are assigned to each pre-
diction in terms of power output. Finally, empirical evidence
has shown that underestimating wind power averages a higher
economic cost than overestimating it does (Pinson, Chevallier,
Kariniotakis 2007). Therefore, the penalties are weighted based
on the ratio between costs for overproducing versus underpro-
ducing, and the effect of the weight on model performance is
investigated.

We investigate the robustness of these new models with var-
ious experiments. We examine the RSTD predictions when
another site besides the most westerly one is chosen to de-
termine the regimes. In fact, choosing a different site with
northerly/southerly regimes produces predictions that are as
good as those produced with the RSTD model, and choosing
a poor set of regimes deteriorates the predictions. This example
illustrates that complex decisions involved in selecting regimes
can impact the predictions. We also rebuild each model to make
predictions at other sites in the dataset and find that the TDD
model can perform significantly better than the RSTD model.
Finally, the models are rebuilt on data observed at the 10-minute
scale instead of data that have been aggregated to the hourly
scale. These data are more variable, but the TDD model per-
forms significantly better than the RSTD model.

This paper is organized as follows. In Section 2, we describe
the RSTD, TDD, and BST models in detail. Section 3 intro-
duces the power curve loss measure. Predictive performance of
each model and robustness in several experiments are reported
in Section 4. We conclude in Section 5.

2. PREDICTIVE WIND MODELS

2.1 Data Description

The data used in this study were collected at three meteo-
rological towers near the Columbia River which runs along the
Oregon–Washington border. The wind speed and direction were
recorded every 10 minutes. Vansycle, Oregon is located near the
Stateline Wind Energy Center and is the location where predic-
tion is desired. Goodnoe Hills, Washington lies 146 km west
of Vansycle, and Kennewick, Washington lies 39 km northwest
of Vansycle. Figure 1 shows the approximate relative locations
of the three stations. The time series of wind speed and direction
are simultaneously recorded at all three locations for 55 days
from September 4, 2002 to October 28, 2002 (used for training)
and also for 279 days from February 25, 2003 to November 30,
2003 (used for testing). Wind speed and direction densities for
the 2002 training data averaged for each hour are in Figure 1.
Each point on the circular histograms represents an observed
wind direction. A point at the 0 angle indicates that the wind is
blowing from the east to the west, a π/2 observation means the
wind is blowing from the north toward the south and so on. For
complete details on the dataset and site information, the reader
is referred to Gneiting et al. (2006).

Many characteristics of the wind vector must be considered
in building a model. Inherent in this dataset is spatial correla-
tion. As weather systems move through the area, the site upwind
of the others will be affected first, and the current wind condi-
tions at that site will soon prevail at the other sites (Alexiadis,
Dokopoulos, and Sahsamanoglou 1999). Of course, which site
is upwind of the others will change depending on the orientation
of the weather system, but this can be addressed in the model-
ing. Strong temporal correlation is also present in the data with
significant correlations in both the speed and direction lasting
for over 24 hours. The wind speed and wind direction are also
strongly linked. Martin, Cremades, and Santabárbara (1999)
note the strong correlation between wind speed and direction
but then ignore it and model the two variables separately. There
is a diurnal pattern in the wind speeds, and seasonal differences
do exist (Klink 1999) but are more difficult to model with this
limited amount of data. Finally, the wind speed variance varies
in time as wind speeds change rapidly and with high frequency,
which will be referred to as conditional heteroscedasticity.

2.2 Regime-Switching Space-Time Diurnal Model

The best model that Gneiting et al. (2006) build incorporates
many of the variable characteristics discussed in Section 2.1.
This particular model will be presented briefly here for clar-
ity, but the reader should see the original paper for the most
complete description. In this model, the 10-minute observations
of wind speed are averaged over each hour to yield a single
hourly observation. The hourly wind speed at Vansycle is mod-
eled with the truncated normal distribution, N+(μ,σ 2), whose
mean and α-quantile are given by

μ+ = μ + σ · φ
(

μ

σ

)/
�

(
μ

σ

)
(1)
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Figure 1. GH, KW, and VS denote Goodnoe Hills, Kennewick, and Vansycle, respectively. The locations of each circle indicate the relative
location of each tower to the others. Each point on the circular histograms at the top represents a wind direction from the 2002 training data. For
example, at Vansycle the majority of the wind directions blow from the northwest towards the southeast. The bottom panels are nonparametric
density estimates of the 2002 wind speed data.

and

z+
α = μ + σ · �−1[α + (1 − α)�(−μ/σ)], (2)

respectively, where φ and � denote the density and distribution
function of a standard normal random variable. The key to the
RSTD model is in choosing a structure for the predictive cen-
ter, μ, and for σ , the predictive spread. The direction that the
wind is blowing during the last 10-minute observation of the
hour is used to switch the regimes. When the wind at Goodnoe
Hills is blowing from the west to the east (i.e., the wind is west-
erly or in the westerly regime), the mean hourly wind speed at
a particular location, Ds, is regressed on two pairs of harmonics

as

Ds = d0 + d1 sin

(
2πs

24

)
+ d2 cos

(
2πs

24

)

+ d3 sin

(
4πs

24

)
+ d4 cos

(
4πs

24

)
for s = 1,2, . . . ,24. Then the least squares fit from the wind
speed series at each location is removed, resulting in residual
series without a diurnal cycle. Let Vr

t , Kr
t , and Gr

t denote the
residual series at time t for Vansycle, Kennewick, and Goodnoe
Hills, respectively. Then, the predictive center is modeled by

μt+2 = Ds+2 + μr
t+2. (3)

The Ds+2 is the fitted diurnal component at Vansycle, and
the μr

t+2 is a linear combination of the present and past values
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of the residual series at the three sites:

μr
t+2 = a0 + a1Vr

t + a2Vr
t−1 + a3Kr

t + a4Kr
t−1 + a5Gr

t . (4)

When the wind is easterly (blowing from the east to the west) at
Goodnoe Hills, removing the diurnal variability from the wind
speed series does not result in improvement, so the predictive
center is modeled as

μt+2 = a0 + a1Vt + a2Kt, (5)

where Vt and Kt are the original time series.
For the westerly regime, the conditional heteroscedasticity is

incorporated by modeling σ as a linear function of the volatility
value with

σt+2 = b0 + b1vt. (6)

The coefficients b0 and b1 are constrained to be nonnegative,
and the volatility value, vt, is

vt =
(

1

6

1∑
i=0

(
(Vr

t−i − Vr
t−i−1)

2 + (Kr
t−i − Kr

t−i−1)
2

+ (Gr
t−i − Gr

t−i−1)
2))1/2

. (7)

This reflects the magnitude of the most recent changes in the
wind speed. In the easterly regime, the residual series in Equa-
tion (7) are replaced by the original wind series. The parameters
in Equations (4), (5), and (6) are estimated numerically by min-
imizing the Continuous Ranked Probability Score (CRPS) for a
truncated normal distribution (Gneiting and Raftery 2007).

The 2002 data is used for building and developing the predic-
tive mean structures in Equations (4) and (5), and the model is
tested during the last 214 days of the 2003 series. A window of
days in 2003 is used to estimate the parameters in the model be-
fore making the first prediction, and this window is rolled ahead
by one observation after each two-hour prediction is made, the
parameters are estimated again, and so on. Based on experi-
ments performed by Gneiting et al. (2006), the window length
that yields the best predictions is 45 days.

2.3 Trigonometric Direction Diurnal Model

Much of the structure of the RSTD model is retained in the
TDD model, but Figure 2 clearly shows that the distribution
of wind directions at Goodnoe Hills changes from the spring
to fall months. It is less clear for months such as October and
November if two regimes are sufficient. If not, it is even more
difficult to determine how many regimes would be necessary
and where the boundaries for these regimes would be. Instead
of making a subjective decision about the number and position
of the regimes, the TDD model eliminates the regimes but in-
cludes the wind direction, possibly at all three locations, as a
covariate in the predictive mean function. Since wind direction
is a circular variable, we include it in the model as the sine or
cosine of the wind direction, following the suggestion by Mar-
dia and Jupp (2000, p. 257). We also use the hourly average of
the 10-minute observations of wind direction instead of the last
observed wind direction of each hour.

We build the predictive mean function from the pool of vari-
ables listed in Table 1 with the Bayesian Information Criterion,
or BIC (Schwarz 1978). Only lags up to three hours are shown
since none greater are selected with this criterion. Using the
2002 data to build the model, the wind speed at Vansycle two
hours ahead is regressed on the first variable, Vansycle’s wind
speed at the current time. If the BIC of this model is less than
the model including only an intercept, then Vt is retained in the
model. Then, Vt−1 is added to the regression. If the BIC is re-
duced, then it is also added to the model. If BIC increases, then
we do not include Vt−1 in the model and skip the remaining
lags of Vansycle wind speed. Next, both the sine and cosine
of the current wind direction at Vansycle are added simultane-
ously to make the model invariant with respect to the axes, and
they are retained if their addition reduces the BIC. This process
is repeated with the remaining variables in Table 1. The wind
speed variables selected by this process are the same as the ones
included in the RSTD westerly regime in Equation (4). In ad-
dition, several wind direction components are also included—
both the sine and cosine of the current Vansycle wind direction,

Figure 2. Circular histograms of wind directions at Goodnoe Hills for each month when predictions are made in the year 2003. Easterly
winds are defined as those on the right-hand side of the circle between 3π/2 and π/2. Westerly winds are on the left-hand side.
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Table 1. This table contains correlations between the variables listed
and the hourly wind speed two hours ahead at Vansycle. They are

based on the 2002 training data and are used to build the TDD model.
V , K, and G indicate the hourly wind speed at one of the three

locations, and θV , θK , and θG represent the corresponding hourly
wind direction for each location. Values in bold correspond to

variables selected in the TDD model

Time lag

Variable t t − 1 t − 2 t − 3

V 0.90 0.85 0.80 0.75
cos(θV ) −0.55 −0.53 −0.51 −0.48
sin(θV ) −0.21 −0.20 −0.18 −0.16
K 0.74 0.72 0.69 0.66
cos(θK) −0.63 −0.63 −0.62 −0.61
sin(θK) −0.02 −0.01 −0.00 0.01
G 0.60 0.60 0.58 0.56
cos(θG) −0.33 −0.33 −0.34 −0.35
sin(θG) −0.45 −0.43 −0.42 −0.41

the sine and cosine of the current Kennewick wind direction,
and the sine and cosine of the current Goodnoe Hills wind di-
rection. We denote the wind direction at these locations and
times as θV,t, θK,t, and θG,t.

Removing the diurnal component of the wind speed was
helpful in the RSTD model, and a strong diurnal component
in wind direction is also detected. In Figure 3, the fitted values
of a linear model regressing the hourly mean for speed and the
hourly circular mean for direction (Fisher 1993, p. 31) on a pair
of harmonics are plotted against the hour of the day for each lo-
cation. If there were no diurnal trend, then the curves would be
flat. All three locations show a clear cyclical pattern in the wind
direction, so the fitted hourly mean direction is subtracted from
each of the wind direction series. Thus, the predictive mean is

modeled as in Equation (3), where Ds+2 is still the fitted diurnal
component of the wind speed at Vansycle, and

μr
t+2 = a0 + a1Vr

t + a2Vr
t−1 + a3Kr

t + a4Kr
t−1 + a5Gr

t

+ a6 sin(θ r
V,t) + a7 cos(θ r

V,t) + a8 sin(θ r
K,t)

+ a9 cos(θ r
K,t) + a10 sin(θ r

G,t) + a11 cos(θ r
G,t). (8)

The scale of the truncated normal distribution is modeled as a
linear function of the volatility value as in Equation (6).

2.4 Bivariate Skew-T Model

The BST model differs substantially from either the RSTD
or TDD models. Instead of using hourly wind speed and hourly
direction directly, these variables are converted into Cartesian
components with x = r cos(θ) and y = r sin(θ) for r a wind
speed and θ a wind direction. Let Vt = (Vt,x,Vt,y)

′ denote the
Cartesian components of the wind vector at Vansycle at time
t. Here, Vt,x is the east-west component, and Vt,y is the north-
south component. Let Kt and Gt denote similar vectors of val-
ues at Kennewick and Goodnoe Hills. The diurnal cycle is again
removed from each component at each location by fitting a pair
of harmonics to each set of hourly means, denoted by Ds,x
and Ds,y. Then, each component is standardized by dividing
by an overall standard deviation computed at each location, de-
noted σx and σy (Brown, Katz, and Murphy 1984). For example,
at Vansycle, the series is transformed by

Vr
t = (Vr

t,x,Vr
t,y)

′ =
(

Vt,x − Ds,x

σx
,

Vt,y − Ds,y

σy

)′
.

These centered and standardized residual series will be denoted
as Vr

t , Kr
t , and Gr

t .
The residual series at time t + 2 at Vansycle is modeled by

Vr
t+2 = A0 + A1Vr

t + A2Vr
t−1

+ A3Kr
t + A4Kr

t−1 + A5Gr
t + εt, (9)

Figure 3. The top panels plot the fitted diurnal model of wind speed at each hour of the day at all 3 sites. It is clearly diurnal in nature for
every month. The bottom panels plot the fitted diurnal model of wind direction at each hour of the day at all 3 sites. The diurnal nature of the
directions is strong for every month except December which had 10 days of missing data.
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Figure 4. Comparison of the BST with normal errors (left plot) and with skew-t errors (right plot) on the 2002 training data.

where A0 is a two-dimensional vector of constants, Ai is a
2 × 2 matrix of coefficients for i = 1, . . . ,5, and εt follows
a bivariate skew-t distribution. Then the random vector Vr

t+2
follows a skew-t distribution whose location parameter is ξ =
A0 + A1Vr

t + A2Vr
t−1 + A3Kr

t + A4Kr
t−1 + A5Gr

t , with scale
matrix �, shape parameters α = (α1, α2)

′ to model skewness,
and degrees of freedom ν to model kurtosis (Azzalini 2005).
In short, Vr

t+2 ∼ ST2(ξ ,�,α, ν). The variables in the model in
Equation (9) are selected using a BIC procedure similar to that
used for the TDD model. The parameters are estimated using
maximum likelihood estimation with the R package sn (Azza-
lini 2006). Figure 4 shows that the skew-t distribution for the
errors is a much better fit to the 2002 training data than the nor-
mal distribution for the errors is.

Then, the predicted vector of Cartesian components at Vansy-
cle two hours ahead is given by

V̂t+2 = �̂V̂r
t+2 + Ds+2,

where t = 1,2,3, . . . and s = ((t − 1)mod 24) + 1. The Âi,
i = 0,1, . . . ,5, in V̂r

t+2 are estimated from a 45-day window of

data before the desired two-hour ahead prediction; �̂ is a ma-
trix with the standard deviations of the x components and the y
components estimated from the 45-day window on the diagonal
and zeroes on the off-diagonal; and Ds+2 = (Ds+2,x,Ds+2,y)

′ is
the fitted diurnal mean of the x and y components at Vansy-
cle. Thus, the linear transformation of Vr

t+2 gives Vt+2 a
ST2(�ξ + Ds+2,���′,�−1α, ν) distribution (Azzalini and
Capitanio 2003). The predictive distribution of the wind speed
requires taking the norm of Vt+2, so the norm of 50,000 obser-
vations drawn from a skew-t distribution with parameters esti-
mated from each 45-day window of data is taken as the sim-
ulated predictive distribution. A large number of observations
can be simulated quickly and easily and ensures that the behav-
ior in the tails of the distribution is accurately characterized.
The 45-day window length is chosen since it yields slightly
better predictions than 30 and 60-day windows. This window
length also makes the BST model easier to compare with the
RSTD and TDD models, which also use 45-day windows.

3. POWER CURVE LOSS MEASURE

Wind speed predictions from different models are commonly
compared with RMSE and MAE, but these are not necessarily
the appropriate loss functions in the wind forecasting paradigm.
A better loss function should relate predicted wind speeds to the
wind power since predicting power is the ultimate goal (Madsen
et al. 2005). The power depends on several factors, such as the
air density ρ, the radius swept by the turbine blades r, and the
wind speed v as follows:

P = 1
2αρπr2v3, (10)

where α is an efficiency constant. As a baseline power curve,
we use the GE 1.5 megawatt (MW) manufacturer’s power curve
(black dots in Figure 5) with fixed air density. The relationship
between speed and power is not perfectly predictable, possibly
even depending on the wind direction (Potter, Gil, and McCaa
2007), but for practical purposes, we assume here that it is.

Four zones of the power curve are defined by the cut-in
speed, the rated speed, and the cut-out speed. The cut-in speed
is the speed at which the turbine blades begin to rotate. The
rated speed is the lowest wind speed at which the maximum
power output of the turbine is achieved. The cut-out speed is
the speed at which the blades stop rotating to protect the turbine
from damage. Zone 2 in Figure 5 is where the relationship in
Equation (10) holds, and the solid curve in this region is a non-
parametric Nadaraya–Watson type of estimate (Nadaraya 1964;
Watson 1964) fitted with bandwidth h = 0.025. Small changes
in the wind speed here can result in large differences in power
output since power depends on the wind speed through a cubic
function.

When both the observed and forecasted wind speeds are in
Zone 1, 3, or 4, either no power output occurs or the maximum
power output occurs. For example, if both the forecasted and the
observed wind speeds are in Zone 3, then the power output is
the same regardless of whether the wind speed forecast is close
to the observed speed or not. No penalty would be assessed in
terms of power for any differences in the observed and forecast
speeds. When both the predicted and observed wind speeds are
in Zone 2, small differences in forecasting wind speed will re-
sult in greater differences in forecasting wind power. As a re-
sult, discrepancies between the observed and forecasted wind
speeds should receive greater penalties in this region.



98 Journal of the American Statistical Association, March 2010

Figure 5. The GE 1.5 MW power curve. The black dots are the manufacturer’s data. The solid curve in Zone 2 is a nonparametric fit to those
data. It has a cut-in speed of 3.5 m/s, a rated speed of 13.5 m/s, and a cut-out speed of 25 m/s. These values change from one type of turbine
to another.

We define g(·) to be the nondecreasing function that maps
speed to power. The power curve is not a nondecreasing func-
tion, but only four of the 5,136 wind speeds in the testing
dataset are greater than the cut-out speed, so we ignore these
cases. Precise power output data is not available since the power
generated at the wind farm near Vansycle is proprietary infor-
mation. Instead, an estimate of the true power is obtained with
g(Vt+2) that will be compared to the predicted power output
based on the forecast wind speed, g(V̂t+2). Thus, the power
curve loss of the Generalized Piecewise Linear form is defined
to be

L(Vt+2, V̂t+2)

=
{

γ (g(Vt+2) − g(V̂t+2)), V̂t+2 ≤ Vt+2

(1 − γ )(g(V̂t+2) − g(Vt+2)), V̂t+2 > Vt+2,
(11)

where γ is a weight between 0 and 1 and allows underestimates
to be penalized differently than overestimates.

Empirical data from the Dutch electricity market in 2002 sug-
gests that γ = 0.73, penalizing underestimates more strongly
than overestimates (Pinson, Chevallier, and Kariniotakis 2007),
which may at first seem counterintuitive. However when viewed
from a holistic system perspective, an underestimate of wind
power will cause the system operator to order too much elec-
tricity from traditional sources to meet the demand. In this
case, the system operator now has a surplus of electricity, and
down-regulation (when generation must be reduced) tends to
be more expensive than up-regulation (when generation must be
increased). The Power Curve Error, PCE, averages the penalties
in Equation (11) over all forecasts and will be directly related
to the energy produced by a wind farm (Madsen et al. 2005).

The optimal forecast that minimizes a particular loss function
is given by

V̂t+2 = arg min
vt+2

EF[L(Vt+2, vt+2)], (12)

where F is the predictive distribution. In the simple cases where
the loss function is squared error or absolute error, the opti-
mal forecast is the mean or the median, respectively. For the
loss in Equation (11), the γ th quantile minimizes PCE (Gneit-
ing 2008). Thus, the mean, median, and γ th quantile of each

model’s predictive distribution will be used to compare the fore-
casts. The mean of the truncated normal distribution in Equa-
tion (1) and the median and γ th quantile from Equation (2) are
extracted from the RSTD and TDD models. The mean, median,
and γ th quantile are computed numerically from the simulated
predictive distribution generated from the BST model.

4. MODEL ROBUSTNESS

4.1 Comparing Model Performance on Testing Data

A simple baseline forecast is the persistence model. The per-
sistence forecast for the average wind speed at Vansycle two
hours ahead is simply the current wind speed at Vansycle. The
mean of the predictive distributions of the RSTD, TDD, and
BST models is used to compute the RMSE, the median is used
for the MAE, and the γ th quantile is used for the PCE. A mea-
sure called the continuous ranked probability score (CRPS),
which essentially measures the spread of the predictive distrib-
ution subject to calibration is also computed. The CRPS can be
computed explicitly for the predictive truncated normal distrib-
ution as given in Gneiting et al. (2006), and the CRPS value for
the BST model is computed using the approximation in equa-
tion (3) from Grimit et al. (2006). Table 2 lists the results on the
training data. The model with the lowest of each value in each
column is bolded.

Overall, the TDD model has the smallest value or one of the
smallest values for RMSE, MAE, PCE, and CRPS. It has the
advantage over the RSTD model of being more general but re-
tains the RSTD’s predictive ability. In terms of PCE, the TDD
model has the lowest values through the majority of the months
and does as well as or better in terms of the other measures
through the fall months. The BST model does not do as well as
TDD and RSTD in any of the overall measures, but it does have
the smallest RMSE, MAE, and CRPS in May and July and the
smallest PCE in May. The BST model, like any robust fitting
technique, fits to the majority of the data in the fitting window
and is insensitive to unusually large or small values (Azzalini
and Genton 2008). Thus, its forecast for unusually high wind
speeds tends to be poor. The wind speeds in May and July have
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Table 2. Root mean squared error (RMSE), mean absolute error (MAE), power curve error (PCE), and continuous ranked probability score
(CRPS) for 2-hour point forecasts of hourly average wind speed at Vansycle in May through November 2003, in m/s. CRPS is not

given for the persistence model. The “Overall” column gives the measure over all forecasts from May through November

Measure Forecast May Jun Jul Aug Sep Oct Nov Overall

RMSE Persistence 2.14 1.97 2.37 2.27 2.17 2.38 2.11 2.21
RSTD 1.73 1.56 1.69 1.78 1.77 2.07 1.87 1.79
TDD 1.74 1.56 1.68 1.78 1.75 2.03 1.86 1.78
BST 1.69 1.59 1.64 1.81 1.85 2.09 2.00 1.82

MAE Persistence 1.60 1.45 1.74 1.68 1.59 1.68 1.51 1.61
RSTD 1.31 1.19 1.32 1.31 1.36 1.48 1.38 1.34
TDD 1.34 1.18 1.31 1.33 1.33 1.48 1.38 1.34
BST 1.26 1.19 1.27 1.37 1.42 1.51 1.50 1.36

PCE Persistence 99.33 72.85 114.59 94.33 75.48 92.19 59.22 87.10
RSTD 69.45 48.19 73.21 63.39 56.31 71.62 48.89 61.73
TDD 70.17 48.42 72.70 63.14 56.13 70.24 47.13 61.28
BST 67.51 50.46 73.42 66.90 61.57 73.83 50.98 63.65

CRPS RSTD 0.95 0.85 0.94 0.95 0.97 1.08 1.00 0.96
TDD 0.97 0.85 0.93 0.96 0.95 1.07 1.00 0.96
BST 0.92 0.86 0.91 0.98 1.01 1.10 1.08 0.98

NOTE: The model with the lowest of each measure in each column is in bold.

the smallest standard deviations of any of the months, so the
BST model does well during these months.

The differences among the models may seem small, but small
differences are still important from a practical perspective. To
test if these differences are significant, the large sample test
introduced by Diebold and Mariano (1995) for comparing the
forecast accuracy of competing models can be applied to check
for significant differences between functions of the errors of
two models. We test the null hypothesis that there is no sig-
nificant difference between the overall MSE, MAE, or PCE of
two models. With 5,136 two-hour-ahead hourly forecasts, the
p-value to test for significant differences between the MSE of
the RSTD and TDD models is 0.3337, and the p-value for the
test of significant differences between their MAE’s is 0.8713.
Thus, we do not have evidence that the TDD model is signifi-
cantly different in terms of squared or absolute errors. Both the
TDD and RSTD models are significantly better than the BST
model in terms of MSE and MAE. The p-value to test for a
significant difference between the PCE of the TDD and RSTD
models is 0.8457 and between the RSTD and BST models is
0.4375, neither of which is strongly significant.

A better sense of the difference between the two models in
terms of wind power over the testing set is given in Figure 6.
For each observation, the difference in accumulated PCE penal-
ties between the RSTD and the TDD models (top), between the
RSTD and the BST models (middle), and between the BST and
the TDD models (bottom) is plotted for all predictions made up
until that observation. It should be noted that what is plotted is
not PCE but the sum of the differences in penalties assigned by
the power curve loss for each prediction and has not been aver-
aged. A similar graphical approach is taken in de Luna and Gen-
ton (2005) and serves to compare the cumulative forecasting
ability of two models over a given time period and the gains or
losses that would result. Based on this, the RSTD model makes
steady improvements over the TDD model from May to the
middle of July, from the middle of August to mid-September,

and then for the first few days in November. However, the TDD
model makes large gains in the beginning of August, middle of
October, and end of November that leave it with a better accu-
mulated power curve loss at the end of the testing period. When
comparing the RSTD and TDD models with the BST model in
the bottom two panels, except for the short periods in May and
July, the RSTD and TDD models dominate the BST model in
terms of accumulated power curve loss.

In all three models, the parameter estimates change with each
new forecast, but to give a sense of their values, the averages
over all forecasts for μt+2 and σt+2 in the RSTD model are
7.02 and 1.70, respectively. The average parameter estimates in
the TDD model are 7.00 and 1.74, which are quite similar to the
RSTD values. In the BST model, the average of the estimated
values of the skewness parameter α is (−0.17,0.01)′, an indica-
tion that there is very little skewness in the distribution of the x
and y components. The most interesting parameter in the BST
model is the degrees of freedom, ν, which averages 5.26 and is
always between 3.69 and 7.66, indicating that the distribution
has very heavy tails.

The predictive distributions of the three models can look
quite different, depending upon the forecast, as shown in Fig-
ure 7. The top panel shows the predictive distribution of all three
models when the TDD model produces the best forecast. The
RSTD distribution is very similar, but the BST model is cen-
tered incorrectly and is more concentrated. However, when the
TDD model produces a poor forecast in the bottom panel of
Figure 7, it also can be centered incorrectly. The RSTD model,
in this case, produces a good forecast, but the predictive dis-
tribution is very widely spread. The BST model is not only
centered closer to the forecast, but it is also very tightly dis-
tributed. Over all forecasts, the 90% predictive intervals based
on the upper 95% and lower 5% quantiles of these distributions
have mean width 5.44, 5.52, and 5.96 for the RSTD, TDD, and
BST models, respectively, with empirical coverages of 89.43%,
89.99%, and 91.59%. The TDD model has slightly wider in-
tervals than the RSTD model and also slightly better empirical
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Figure 6. These graphs plot the difference in accumulated power
curve loss (in kW) between the RSTD and TDD models (top), the
RSTD and BST models (middle), and the BST and TDD models (bot-
tom). An upward (downward) trend means that the second model is
performing better (worse).

coverage. The BST has the widest intervals, and the coverage is
a bit higher than the stated level.

4.2 Alternate Regime Selection

Some justification for using Goodnoe Hills as the site where
the regimes are determined for the RSTD model is given in
Gneiting et al. (2006), but Kennewick does not seem to have
been considered as a potential site for the regimes to switch.
We refit the RSTD model using Kennewick to determine the
regimes. First, an easterly/westerly set of regimes is tested
and then also a northerly/southerly set of regimes since Ken-
newick’s main mode is nearer π/2 than it is to π ; see Figure 1.
The TDD and BST models do not need to be refit. Table 3 shows
the results for the RSTD model for both the east/west regimes
and the north/south regimes. The TDD and BST model results
and the original RSTD model outcomes are also displayed for
comparison.

First of note is that using an east/west set of regimes switch-
ing at Kennewick deteriorates the RSTD predictions as com-
pared to using Goodnoe Hills as the regime indicator. However,
what is remarkable is that the north/south regimes at Kennewick
can produce very good results with some values of RMSE,
MAE, and PCE being smaller than those for the original RSTD
model. The north/south regime still does not have smaller over-
all PCE than the TDD, but in three months it does produce the
best PCE values. This illustrates the fact that unless all possible
regimes and stations are tested, it may be impossible to empiri-
cally choose the site and regimes that yield the best predictions.
If more stations with wind speed and direction data become
available, this would only complicate the selection of a site at
which to determine the regimes. In fact, the regimes may not
depend on a single site only but on a possibly nonlinear com-
bination of several sites. It seems reasonable to avoid such a
selection when possible.

4.3 Predictions at Kennewick and Goodnoe Hills

To test the ease of adaptation and the performance of these
models in new locations, the variables are reselected to make
predictions at the other two locations in the dataset, Kennewick
and Goodnoe Hills. When predicting at Kennewick and Good-
noe Hills, the best choice of regimes for the RSTD model may
change, but the model is applied “blindly” in the sense that we
want to see how applicable it is to a new location. Variables
are reselected for the RSTD predictive mean functions, but the
easterly/westerly regimes that switch at Goodnoe Hills are held
fixed.

The results in Tables 4 and 5 show that the TDD and BST
models have smaller summary measures than the RSTD model
at Kennewick, but RSTD is difficult to beat at Goodnoe Hills.
The TDD model has a significantly lower MSE at Kennewick
than the RSTD model does (p-value = 0.0052), and both TDD
and BST have the smallest RMSE, MAE, or PCE in various
months. Predicting at Kennewick is more difficult due to the
more highly variable wind speeds observed there, which is also
reflected in Kennewick’s larger PCE values. Goodnoe Hills is
the one location situated directly in the Columbia River Gorge,
so the regime-switching model best captures the wind flow pat-
tern. Goodnoe Hills also has the fewest unusually large wind
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Figure 7. Comparing the predictive distributions for the models when the TDD model produces the best forecast (top panel) and when the
BST model produces the best forecast (bottom panel). The small vertical line on the x-axis of each plot represents the observed wind speed.

speeds, which is evidenced by the lower RMSE and MAE val-
ues. In this situation, RSTD has the lowest overall PCE, but
it is not significantly different from that of TDD (p-value =
0.7550).

4.4 Finer Scale Data

One final experiment on the models returns us to the full
dataset with wind speed and direction measured every 10
minutes. This finer scale of data exhibits more variability and
is not as predictable as the hourly averaged wind speed. Two
approaches are tested in which models are rebuilt to forecast
at Vansycle using either the full dataset or the 10-minute ob-
servations that occur on the hour. For models built on all 10-
minute observations, a 12-step forecast horizon is needed to
arrive at the two-hour prediction. Predictions are made for
5,136 × 6 = 30,816 time steps. The predictions made on the
hour are reserved to compare with the model built from the 10-
minute observations that occur on the hour. In that model, a
two-step forecast is the two-hour forecast, and only 5,136 pre-
dictions are made.

Questions of interest in these models include whether using
the full set of 10-minute observations will improve the two-
hour forecast and whether the models will have similar results
to those in Table 2. In Table 6, it is shown that models built
with all of the 10-minute observations have very little predic-
tive improvement compared to the models using only the 10-
minute observations on the hour. However, the TDD model ap-
pears stronger relative to the RSTD model than it does in Ta-
ble 2. In fact, it is significantly better than the RSTD model in
terms of MSE for both the full set of observations and the 10-
minute observations on the hour (p-values 0.0031 and 0.0000,
respectively) and also in terms of MAE (p-values 0.0059 and
0.0088).

4.5 Underestimation Penalty

The weight that is given in Section 3 for the Power Curve
Error, γ = 0.73, deserves some attention. The purpose of this
weight is to penalize underestimation more strongly than over-
estimation of wind power. However, it is not a fixed value. In
the Dutch market over the course of the year, the value of γ

ranges from 0.51 to 0.98 through the 4 quarters of the year, and
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Table 3. RSTD model outcomes when easterly/westerly and northerly/southerly regimes are defined by the wind direction at Kennewick. The
original RSTD (with the regimes determined by the direction at Goodnoe Hills), the TDD, and the BST model results are also given

Measure Forecast May Jun Jul Aug Sep Oct Nov Overall

RMSE RSTD-KW-EW 1.77 1.56 1.75 1.83 1.79 2.07 1.89 1.82
RSTD-KW-NS 1.75 1.56 1.69 1.77 1.74 2.04 1.88 1.78
RSTD-GH-EW 1.73 1.56 1.69 1.78 1.77 2.07 1.87 1.79

TDD 1.74 1.56 1.68 1.78 1.75 2.03 1.86 1.78
BST 1.69 1.59 1.64 1.81 1.85 2.09 2.00 1.82

MAE RSTD-KW-EW 1.36 1.19 1.36 1.37 1.37 1.52 1.42 1.37
RSTD-KW-NS 1.34 1.18 1.32 1.33 1.34 1.50 1.38 1.34
RSTD-GH-EW 1.31 1.19 1.32 1.31 1.36 1.48 1.38 1.34

TDD 1.34 1.18 1.31 1.33 1.33 1.48 1.38 1.34
BST 1.26 1.19 1.27 1.37 1.42 1.51 1.50 1.36

PCE RSTD-KW-EW 70.91 49.27 76.82 65.05 57.21 71.90 48.59 62.98
RSTD-KW-NS 70.73 47.30 73.46 64.04 54.76 68.90 49.19 61.35
RSTD-GH-EW 69.45 48.19 73.21 63.39 56.31 71.62 48.89 61.73

TDD 70.17 48.42 72.70 63.14 56.13 70.24 47.13 61.28
BST 67.51 50.46 73.42 66.90 61.57 73.83 50.98 63.65

NOTE: The model with the lowest of each measure in each column is in bold.

it varies from 0.14 to 0.96 over the 12 months of the year (Pin-
son et al. 2007). Markets with different sets of rules can also
affect the value. In addition, a single wind farm usually does
not produce enough energy to affect electricity prices, but the
larger the penetration of wind energy, the more significantly γ

would be affected.
We have used γ = 0.73 as an example up to this point,

but in Table 7, we show the value of PCE for the three mod-
els based on hourly data when γ = 0.73 is replaced with a
range of values. We want to determine if the results from PCE
are influenced by the value of γ , and in each case, the opti-
mal γ th forecast is used in the computation of PCE. With the
smallest and largest values of γ , no one model has a consis-
tently smallest PCE over the months. When γ = 0.10, BST has
more small monthly values of PCE than the other models, and
when γ = 0.90, the TDD model appears to be favored. When
γ = 0.50, both BST and TDD have the smallest PCE for each of
3 months. This experiment demonstrates that no single model
is routinely favored over the others for every possible value of
γ , so PCE should be used only after a relatively stable estimate
of γ for a given market has been determined.

5. CONCLUSION

The importance of conserving natural resources and exploit-
ing the clean electricity provided by wind energy will only con-
tinue to grow in the future. One goal of this paper has been
to present model-building strategies for short-term wind speed
predictions when both the wind speed and direction informa-
tion are available over space and time. Wind farms with dif-
ferent terrain and different numbers of nearby meteorological
stations can use the TDD or BST modeling approaches to fit
similar predictive mean functions, whereas the RSTD model
is limited to few locations and known physics. Additionally,
speed and direction are often converted to the Cartesian coor-
dinate system, but models like TDD demonstrate the benefit of
treating wind direction as a circular variable instead. To con-
clude, the TDD model produces forecasts that are as good as
the RSTD model for this dataset while maintaining more gen-
erality. The BST model does not perform as well in terms of
PCE on this data, but it does have the added feature of pro-
ducing a wind direction forecast, which the other two models
cannot do.

In comparing models, the power curve loss assigns a greater
penalty to wind speeds predicted to be in the region where
power is roughly proportional to the cube of speed and also

Table 4. RSTD, TDD, and BST model outcomes for predictions made at Kennewick

Kennewick Forecast May Jun Jul Aug Sep Oct Nov Overall

RMSE RSTD 2.34 1.96 2.09 2.17 2.13 2.36 2.34 2.21
TDD 2.32 1.94 2.08 2.15 2.11 2.36 2.30 2.19
BST 2.37 2.03 2.18 2.23 2.05 2.28 2.23 2.20

MAE RSTD 1.82 1.44 1.60 1.58 1.60 1.77 1.66 1.64
TDD 1.79 1.43 1.59 1.60 1.59 1.76 1.63 1.63
BST 1.80 1.45 1.64 1.61 1.51 1.72 1.54 1.61

PCE RSTD 87.45 65.18 82.96 83.78 67.53 74.52 78.60 77.24
TDD 85.63 64.93 83.81 83.19 66.91 71.31 80.51 76.69
BST 92.35 70.32 84.49 86.58 66.47 72.34 73.91 78.18

NOTE: The model with the lowest of each measure in each column is in bold.
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Table 5. RSTD, TDD, and BST model outcomes for predictions made at Goodnoe Hills

Goodnoe Hills Forecast May Jun Jul Aug Sep Oct Nov Overall

RMSE RSTD 1.69 1.51 1.38 1.55 1.68 1.87 1.75 1.64
TDD 1.69 1.55 1.40 1.55 1.68 1.87 1.73 1.65
BST 1.76 1.64 1.43 1.56 1.70 1.98 1.78 1.70

MAE RSTD 1.31 1.16 1.06 1.18 1.25 1.37 1.31 1.23
TDD 1.31 1.19 1.08 1.20 1.26 1.37 1.28 1.24
BST 1.38 1.29 1.09 1.19 1.27 1.45 1.34 1.28

PCE RSTD 81.69 61.18 67.36 68.96 63.66 70.83 56.78 67.30
TDD 82.54 64.33 68.52 69.17 64.67 69.31 56.90 68.01
BST 86.46 67.47 68.99 68.30 63.24 76.11 61.13 70.33

NOTE: The model with the lowest of each measure in each column is in bold.

penalizes underestimates more strongly than overestimates. At-
tributing loss in this way directly exploits the nonlinear rela-
tionship between power and speed and puts wind power into
the larger context of the entire utility system. PCE can easily be
adapted for different turbines and different markets and can be
averaged over several wind farms to get a more stable estimate.
Finally, it may not be reasonable to assume that an error made
at a low power has the same economic cost as the same error
made at a higher power. An investigation into the effect that the
magnitude of wind power for a given error has on the associated
loss would need to be conducted.

The work done here could be extended in several ways. Fu-
ture tests of these models should incorporate year-round ob-
servations so that model performance can be assessed in every
season. Including additional covariate information, such as nu-
merical weather prediction model output or pressure differences
east and west of Vansycle, should also improve predictions.
The optimality of the forecasts can continue to be evaluated

with tests such as those introduced in Patton and Timmermann
(2007).

While the focus in this work has been on point forecasts,
having uncertainty estimates of the forecasts that include un-
certainty about the parameter estimates and variable selec-
tion would also be of interest. Either model-free bootstrap-
ping techniques (Alonso, Peña, and Romo 2006) or using a
fully Bayesian analysis (Wikle et al. 2001) could be interesting
approaches to obtain such intervals. Finally, wind farms with
dominant weather patterns that differ from those of the Pacific
Northwest and with varying numbers and locations of off-site
observations would be interesting applications for the TDD and
BST models. The TDD and BST models’ predictions for this
data give promise that these flexible models could work well
with new datasets.

Note. All circular plots were plotted using the circular
package in R by Lund and Agostinelli (2006).

Table 6. RSTD, TDD, and BST model outcomes for the two types of models built on the 10-minute data

Forecast May Jun Jul Aug Sep Oct Nov Overall

All ten-min
RMSE RSTD 1.95 1.77 1.90 1.99 1.96 2.23 2.13 2.00

TDD 1.90 1.72 1.84 1.98 1.93 2.22 2.13 1.97
BST 1.85 1.73 1.76 2.00 2.02 2.32 2.35 2.02

MAE RSTD 1.48 1.37 1.50 1.52 1.50 1.62 1.57 1.51
TDD 1.45 1.32 1.44 1.49 1.47 1.63 1.60 1.49
BST 1.39 1.31 1.36 1.51 1.55 1.68 1.77 1.51

PCE RSTD 79.42 56.21 83.57 69.30 60.85 75.39 52.38 68.32
TDD 78.10 54.86 79.34 69.64 59.53 75.26 51.60 67.07
BST 74.16 55.61 75.74 74.47 65.86 79.73 63.07 69.92

Hourly ten-min
RMSE RSTD 1.92 1.77 1.90 1.99 1.96 2.22 2.14 1.99

TDD 1.90 1.73 1.84 1.98 1.93 2.21 2.13 1.97
BST 1.86 1.74 1.76 1.97 2.01 2.27 2.30 2.00

MAE RSTD 1.46 1.37 1.49 1.51 1.50 1.61 1.59 1.51
TDD 1.44 1.33 1.44 1.48 1.47 1.62 1.61 1.48
BST 1.39 1.32 1.36 1.48 1.53 1.64 1.74 1.49

PCE RSTD 78.80 56.24 81.84 70.37 61.11 75.45 52.39 68.19
TDD 77.65 54.83 78.50 70.31 60.07 74.05 53.11 67.08
BST 75.89 55.23 74.50 72.56 65.07 78.49 59.50 68.87

NOTE: The model with the lowest of each measure in each column is in bold.
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Table 7. RSTD, TDD, and BST model PCE results for varying penalties on underestimation versus overestimation. A value of γ less (more)
than 0.50 penalizes overestimates more (less) heavily than underestimation

γ Forecast May Jun Jul Aug Sep Oct Nov Overall

0.01 RSTD 4.44 5.05 4.20 3.92 3.69 11.06 6.02 5.49
TDD 4.40 5.13 4.15 4.04 3.86 10.59 6.14 5.48
BST 4.76 5.72 4.47 4.15 3.47 13.02 6.72 6.05

0.10 RSTD 32.80 25.16 33.55 27.55 25.03 42.10 26.10 30.40
TDD 33.07 25.49 32.94 27.67 25.17 41.24 25.85 30.27
BST 33.28 26.88 32.48 26.45 23.99 40.31 26.90 30.10

0.50 RSTD 77.28 57.24 84.96 69.28 63.21 81.65 55.23 70.00
TDD 78.60 57.48 83.77 68.54 62.69 80.99 53.00 69.46
BST 75.24 59.56 82.60 70.58 65.29 80.64 57.64 70.35

0.90 RSTD 41.36 26.61 40.55 36.38 33.90 48.24 35.37 37.56
TDD 42.12 27.14 40.29 36.16 33.26 45.87 31.26 36.67
BST 43.83 30.84 41.16 40.80 38.52 50.10 35.19 40.14

0.99 RSTD 7.76 4.65 5.95 7.79 7.01 29.28 42.14 14.90
TDD 7.65 4.61 6.44 6.97 7.48 26.63 41.56 14.43
BST 8.89 6.82 5.97 10.85 8.17 23.01 43.39 15.24

NOTE: The model with the lowest PCE for each value of γ in each column is in bold.

[Received February 2008. Revised December 2008.]
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