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1. Introduction
This work is concerned with database privacy, which,
according to Domingo-Ferrer (2007), can be classified
into three independent categories: respondent, owner,
and user privacy. We are mainly concerned with
respondent privacy, that is, preventing reidentification
of the respondents to which the records of a database
correspond, when the database is made available to
third parties. In recent years, new definitions of pri-
vacy such as k-anonymity and l-diversity have gained
popularity (see, for instance, Machanavajjhala et al.
2007), although their limitations have also been rec-
ognized (see Barak et al. 2007).
The protection of confidential variables in gov-

ernmental, commercial, and medical databases has
become a very important problem. Database managers
should provide as much relevant information con-
tained in databases as possible to legitimate database
users without revealing confidential contents. One
approach to maintain confidentiality is to use data per-
turbation methods, that is, to construct a perturbed
version of the database and to answer queries on the
perturbed data. Specifically, it consists in perturbing,
or masking, the original variables by replacing the

confidential variables with new perturbed variables.
Instead of releasing confidential variables, only per-
turbed variables are released to the public or to legiti-
mate database users. To provide accurate information,
also called utility, distributional properties of the per-
turbed variables should remain as close as possible to
those of the original confidential variables. Moreover,
to maintain confidentiality, data perturbation meth-
ods must minimize disclosure risk, that is, providing
users with microdata access should not result in any
additional information. Obviously, there is a trade-off
between data utility and disclosure risk. Literature on
database security and data perturbation methods is
abundant; see Muralidhar and Sarathy (2003) for a
recent theoretical basis and comprehensive overview.
It is important to note that those data perturbation
methods differ from multiple imputation procedures
(see Rubin 1993) in that for the former the original data
are assumed to be the population, whereas for the lat-
ter the original data are assumed to be a sample from
an unknown population.
A variety of data perturbation methods have been

developed for database security problems. Muralidhar
et al. (1999, 2001) introduced the general additive
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data perturbation (GADP) method. For databases that
can be described by the multivariate normal distribu-
tion, they showed that the GADP method is superior
to all previously proposed data perturbation meth-
ods. Thus, in that setting, GADP should be the pre-
ferred method of perturbation in terms of bias (the fact
that the response to a query based on the perturbed
data may be different from the response based on the
original data) and of security (prevention of disclo-
sure). In particular, GADP maintains the mean vector
and covariance matrix asymptotically. However, it is
obvious that GADP cannot be successfully applied to
databases that cannot be described by the multivariate
normal distribution. This is a serious problem because
databases following the normal law are more often the
exception rather than the rule. Indeed, it is common
to have highly skewed or heavy-tailed variables, or
both. Muralidhar et al. (1999) explained that the diffi-
culty in constructing new data perturbation methods
for nonnormal distributions lies in the lack of avail-
able multivariate distributions with simple character-
ization (other than the multivariate normal) and the
lack of associated procedures for nonnormal random
variates generation. As shown in the following, recent
advances in the construction of parametric families
of multivariate nonnormal distributions allow us to
bypass this difficulty.
One attempt for addressing the issue of nonnormal-

ity was proposed by Muralidhar et al. (1995) using the
log-normal distribution. Unfortunately, that method
was limited to the univariate case (only one vari-
able) and to a distribution that is too restrictive for
many practical applications. Another more promising
attempt is the copula-based GADP (C-GADP) pro-
posed by Sarathy et al. (2002). It is based on the mul-
tivariate normal copula (see Clemen and Reilly 1999
for its use in decision and risk analysis) and on rank-
based correlation to explain dependency between
variables. C-GADP maintains the marginal distribu-
tions asymptotically and the rank order correlations.
It satisfies the disclosure risk requirement but not the
utility requirements in all situations. The implemen-
tation of C-GADP requires to identify the marginal
distribution of confidential and nonconfidential vari-
ables. Unfortunately, the identification of marginal
distributions is not an easy task, and misspecifying
marginal distributions results in incorrect inferences
because marginal distributions of the perturbed vari-
ables are the same as the assumed marginal distri-
butions. In spite of such danger, C-GADP does not
provide any guideline for choosing the marginal dis-
tributions, which could be practically unattractive to
potential database managers. Another drawback of
the C-GADP method is that it is based on the multi-
variate normal copula, that is, the dependency struc-
ture between variables is still of normal type. Hence

the normal copula may not preserve tail dependence,
a restriction noted by Sarathy et al. (2002). In princi-
ple, nonnormal copulas could be implemented in the
C-GADP method, but their choice remains an open
problem, possibly quite difficult.
Besides data perturbation methods, data swapping

approaches can be applied to database security prob-
lems. Instead of modifying variables, data swapping
methods swap confidential variables in a systematic
fashion. From the literature on data swapping, how-
ever, it is well known that data swapping methods
do not address data utility and disclosure risk simul-
taneously because they are not based on conditional
distributions as in perturbation methods (for instance,
GADP). Muralidhar and Sarathy (2006) developed a
data shuffling method (DSP) based on conditional dis-
tributions, although it involves C-GADP (with its lim-
itations described above) in one step of the procedure.
It can be implemented by using only rank order
data and therefore provides a nonparametric method
for masking variables (Muralidhar and Sarathy 2006).
DSP maintains the marginal distributions exactly, the
rank order correlations, and monotonic relationships
among the variables. Finally, because DSP is based on
a conditional distribution approach, it provides a high
level of security and does not suffer from the security
issues of other data swapping procedures.
Recently, there has been a burgeoning of interest

in multivariate skew-elliptical distributions, a flexi-
ble parametric family that can model skewness and
heavy tails in the data; see Genton (2004) and Azzalini
(2005) for an overview. A particular member of
this family, the multivariate skew-t distribution, has
been advocated by Azzalini and Genton (2008) as a
general-purpose compromise between flexibility and
simplicity. They have shown that the skew-t family
can be used to model the distribution of many dif-
ferent types of data. Moreover, it includes the multi-
variate normal distribution as a special case. Because
databases having a multivariate normal distribution
are seldom encountered in practice, we expect that
the skew-t family is an excellent candidate for solv-
ing database security problems. Our objective in this
paper is to develop a new data perturbation method
of numerical confidential variables for nonnormal
databases that will reduce to the GADP method in
case of a normal database.
The structure of this paper is as follows. In §2,

we describe the skew-t distribution, its conditional
distribution, and how to simulate from the latter.
In §3, we recall the general requirements of the condi-
tional distribution approach and consider the skew-t
case in detail. We propose a skew-t data perturbation
(STDP) method and describe its algorithm. We also
discuss how to preserve the sample mean vector
and sample covariance matrix exactly for any data
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perturbation method. In §4, performances of our new
STDP method are investigated and compared with the
GADP, C-GADP, and DSP approaches via a Monte
Carlo simulation study. In §5, the STDP and other
existing methods are applied to a medical database.
In §6, we describe some limitations of the proposed
STDP method. In §7, we end with conclusions. Some
technical results are provided in the appendix.

2. Skew-t Distribution
In this section, we present the definition and some
properties of the skew-t distribution, in particular
its conditional distribution with associated simulation
procedure. The latter will be the key ingredient to
introduce the STDP method.

2.1. Skew-t Distribution and
Its Conditional Distribution

The multivariate skew-t distribution has been pro-
posed as a simple yet flexible parametric nonnormal
family for modeling skewness and heavy tails in data.
The specific form that we shall consider is the one
introduced by Branco and Dey (2001, 2002) and in
an equivalent form by Azzalini and Capitanio (2003)
and Arellano-Valle and Azzalini (2006). Specifically,
a k-dimensional random vector U has a multivariate
skew-t distribution with location vector �, positive
definite scale matrix �, shape (skewness) vector �,
and degrees of freedom �, if its density is

fU�u� ������ �	

= 2tk�u− ���� �	

×T
{
�T�−1�u− �	

(
�+ k

�+Q�u	

)1/2
� �+ k

}
� (1)

where

tk�u��� �	=

���+ k	/2	

���1/2���	k/2
��/2	
(
1+ Q�u	

�

)−��+k	/2

denotes a k-dimensional Student’s t density with loca-
tion 0, scale matrix �, and degrees of freedom �;
T �·� � + k� denotes a univariate standard Student’s t
cumulative distribution function with �+k degrees of
freedom; Q�u	= �u−�	T�−1�u−�	, and � is the diag-
onal matrix formed by the square root of the diag-
onal elements of �. There is a single parameter �
to regulate the tail thickness of all components of tk,
hence also of fU. In that case, we use the notation
U∼ STk������� �	. The vector � regulates skewness
in the distribution with �= 0 resulting in symmetry,
whereas � controls the heaviness of the tails of the
distribution. Three very interesting particular cases of
the multivariate skew-t distribution are (i) the multi-
variate normal distribution Nk����	 obtained when
�= 0 and �→	; (ii) the multivariate Student’s t dis-
tribution obtained when �= 0; and (iii) the so-called

multivariate skew-normal distribution obtained when
�→	 and denoted by SNk������	; see, for instance,
Azzalini (2005) for an overview.
The conditional distribution of the skew-t random

vector is our prime interest for data perturbation prob-
lems. However, from the general theory of skew-
elliptical distributions, the skew-t distribution is not
closed under conditioning. This means that the condi-
tional distribution of the skew-t distribution is not in
the skew-t distribution family anymore, see (2) and (3)
below. Fortunately, the conditional distribution of the
skew-t distribution has a stochastic representation that
can be exploited for random number generation. To
illustrate this, suppose the k-dimensional skew-t ran-
dom vector U is split into two subvectors, U1 and U2,
with dimensions k1 and k2, respectively, (k1 + k2 = k),
that is, U= �UT

1 �U
T
2 	
T. After some algebra described in

the appendix, we obtain that the marginal distribution
of U2 is U2 ∼ STk2��2��22��2�1	� �	 and the conditional
density of U1 given U2 = u2 is

fU1 �U2=u2�u1	

= tk1�u1− �1·2�u2	��11·2�u2	� �1·2	

×T
(√

��1·2+ k1	/��1·2+Q1·2�u1�u2		

·��T1·2��1�2�u2	�
−1�u1− �1·2�u2		+ �1·2�u2		� �1·2+ k1

)
/T
(
�1·2�u2	

/√
1+�T1·2 
�11·2�1·2��1·2

)
� (2)

where

�1·2 = �+ k2� �2�1	 =
�2+ 
�−1

22

�21�1√

1+�T1·2 
�11·2�1·2
�

�1·2 = �1·2�
−1
1 �1�

�1·2�u2	 = �1+�12�
−1
22 �u2− �2	�

�11·2�u2	 =
(
�+Q�u2	
�+ k2

)
�11·2�

with

�11·2 = �11−�12�
−1
22�21�

�1·2�u2	 =
√
�+Q�u2	
�+ k2

�1·2�

Q1·2�u1�u2	 = �u1−�1·2�u2		T��11·2�u2	�−1�u1−�1·2�u2		�

Q�u2	 = �u2− �2	
T�−1

22 �u2− �2	� and

�1·2�u2	 =
√

�+ k2
�+Q�u2	

�̄T2�
−1
2 �u2− �2	�

�̄2 = �2+ 
�−1
22
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Here, �i = diag��ii	
1/2, �1·2 = diag��11·2	1/2, 
�ij =

�−1
i �ij�

−1
j , and 
�11·2 = �−1

1·2�11·2�−1
1·2 = �−1

1·2�1� 
�11 −
�12

�−1
22


�21	�1�
−1
1·2.

Although the exact distributional form (2) of the
conditional skew-t density is difficult to use directly,
we detail a procedure to simulate random numbers
from that distribution in the next subsection. To this
end, we note first that the conditional density (2) has
the form of the so-called extended skew-t (EST) den-
sity (see Arellano-Valle and Genton 2010), which is
given by

fEST�u	 = tk�u− ���� �	

×
T
(√

��+k	/��+Q�u		��T�−1�u−�	+�	��+k
)

T
(
�/
√
1+�T 
����

) �

(3)

A model with this EST density shall be denoted by
ESTk������� ���	. When � = 0, the EST density (3)
reduces to the ST density (1), whereas when �= 0 it
reduces to the symmetric density

fET�u	= tk�u−���� �	
T �
√
��+ k	/��+Q�u		�� �+ k	

T ��� �	
�

which is called an extended Student’s t distribution and
denoted by ETk����� ���	. It corresponds to the dis-
tribution of a random vector U such that U

d= �T � T0+
� > 0	, where �T0�TT	T ∼ t1+k�0� I1+d� �	.

2.2. Simulation From the Conditional of
the Skew-t Distribution

We derive the stochastic representation of the con-
ditional of the skew-t distribution, that is, of the
EST distribution, which will be exploited in random
number generation for data perturbation purpose.
Let U ∼ STk������� �	� and consider the partition
U = �UT

1 �U
T
2 	
T� where U1 and U2 are of dimensions

k1 and k2, respectively, and the induced partition on
����	. Denote by U1·2 the conditional random vector
U1 given U2. As we show in the appendix, the condi-
tional random vector U1·2 has a convenient stochastic
representation given by (7)–(9). Therefore, we can eas-
ily generate a random sample from the conditional
distribution of U1 given U2 = u2 by means of the fol-
lowing steps:
(a) For a given u2, compute

�1·2�u2	 = �1+�12�
−1
22 �u2− �2	�

Q�u2	 = �u2− �2	
T�−1

22 �u2− �2	�

�̃1·2�u2	 =
√

�+ k2
�+Q�u2	

�T2�1	�
−1
2 �u2− �2	�

where

�2�1	 =
�2+ 
�−1

22

�21�1√

1+�T1·2 
�11·2�1·2
� �1·2 =�1·2�

−1
1 �1�

(b) Generate t0 from the first Student’s t distribu-
tion in (9), for instance by means of the corresponding
equations in (11) and (12). If t0 + �̃1·2�u2	 > 0, let t̃0 =
t0 and go to the next step. Otherwise, discard t0 and
repeat (b) until t0+ �̃1·2�u2	 > 0.
(c) Generate t1 from the second Student’s t distribu-

tion in (9), for instance, by means of the correspond-
ing equations in (11) and (12). Take t1·2 as

√
�1·2+ t̃20
�1·2+ 1

t1+�1·2t̃0�

where

�1·2 = �+ k2 and �1·2 =

�11·2�1·2√

1+�T1·2 
�11·2�1·2
�

and then compute

u1·2 = �1·2�u2	+
√
�+Q�u2	
�+ k2

�1·2t1·2�

The vector u1·2 is a realization from the conditional
distribution of U1 given U2 = u2.

3. Skew-t Data Perturbation Method
3.1. Conditional Distribution Approach
The conditional distribution approach is a general
additive data perturbation method developed by
Muralidhar et al. (1999) and further discussed by
Muralidhar and Sarathy (2003), who formulated a the-
oretical basis for this technique. They suggested data
utility and disclosure risk requirements for successful
data perturbation methods.
Specifically, let �XT�ST	T be a �kX + kS	-dimensional

numerical vector, where X represents a kX-dimensional
confidential data vector and S denotes a kS-
dimensional nonconfidential data vector. Let Y denote
the perturbed version of the confidential vector X.
Muralidhar and Sarathy (2003) precisely specified the
theoretical basis for statistical perturbation methods as
the following:
1. Data utility or accuracy requirements: The statistical

characteristics of Y are the same as those of X (i.e., the
same marginal densities fX ≡ fY), and the relationship
between Y and S is the same as that between X and S
(i.e., the same joint densities fX�S ≡ fY�S).
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2. Disclosure risk requirement: The confidentiality of
X is maintained and the released microdata (Y�S)
does not increase disclosure risk (i.e., the same condi-
tional densities fX �Y�S ≡ fX �S).
The disclosure risk requirement implies that the

database users already know the conditional distri-
bution of X given S, otherwise releasing Y provides
information about X. Muralidhar and Sarathy (2003)
suggested a general procedure for creating perturbed
data values that satisfy the aforementioned data util-
ity and disclosure risk requirements: generate obser-
vations from the conditional distribution of X given S,
such that given S, Y is independent of X.
It is important to realize that, unlike the Gaussian

case, assuming a joint skew-t distribution for the
whole vector �XT�YT�ST	T is unnecessarily restrictive
for data perturbation purpose. Effectively, in that case
the disclosure risk requirement cannot be satisfied
and only weaker conditions of the form E�X � Y�S	=
E�X � S	 or �X �Y�S�Y�S	= �X �S�S	 can be achieved.

3.2. STDP Algorithm
In this section, we propose a new data perturba-
tion method, coined skew-t data perturbation (STDP).
We expect that a better perturbation method can be
obtained when we impose a flexible distribution to
reflect the distributional properties of the observed
variables X and S very well. We also need that the
assumed distribution gives a conditional distribution
of X given S, which can be easily exploited in random
number generation. Muralidhar et al. (1999) applied
the multivariate normal distribution to perturbation
methods that led to the GADP method. However, the
normal distribution cannot characterize the proper-
ties of data very well because many real data sets can
be skewed and heavy tailed. We propose to use the
skew-t distribution for the joint distribution of X and
S and exploit its flexibility and simplicity.
In the STDP approach, we assume a joint skew-t

distribution for the confidential and nonconfidential
variables V = �XT�ST	T and estimate its parameters
�V, �VV, �V, and �. Then we use them to specify
the conditional distribution of X given S. By means
of the procedure described in §2.2, we generate real-
izations of random vectors Y with this conditional
distribution. Based on the previous arguments, the
algorithm of data generation for the STDP method is
the following:

Step 1. Estimate the skew-t parameters (�V, �VV,
�V, �) from the observed data vTi = �xTi � s

T
i 	, i =

1� � � � �n, of VT = �XT�ST	.
Step 2. For each vi, i= 1� � � � �n:
(a) Calculate:
(i) �X·S�si	= �X+�XS�

−1
SS�si− �S	;

(ii) Q�si	= �si− �S	
T�−1

SS�si− �S	;

(iii) �XX·S = �XX−�XS�
−1
SS�SX�

�X·S = diag��XX·S	1/2�


�XX·S = �−1
X·S�XX·S�−1

X·S�

(iv) �X·S = �X·S�−1
X �X�

�S�X	 =
�S+ 
�−1

SS

�SX�X√

1+�TX·S 
�XX·S�X·S
�

�X·S = 
�XX·S�X·S√
1+�TX·S 
�XX·S�X·S

�

(v) �̃X·S�si	=
√

�+ kS
�+Q�si	

�TS�X	�
−1
S �si− �S	�

(b) Draw v0 from �2�+kS� z0 from N�0�1	, and cal-
culate t0 =

√
��+ kS	/v0z0. If t0+ �̃X·S�si	 > 0, set t̃0 = t0;

otherwise repeat (b) until t0+ �̃X·S�si	 > 0 is satisfied.
(c) Draw v1 from �2�+kS+1, z1 from NkS

�0� 
�XX·S −
�X·S�TX·S	, and calculate t1 =

√
��+ kS+ 1	/v1z1.

(d) Calculate

tX·S =
√
�+ kS+ t̃20
�+ kS+ 1

t1+�X·St̃0

and set

yi = �X·S�si	+
√
�+Q�si	
�+ kS

�X·StX·S�

Step 3. Report �y1� � � � �yn	 as the perturbed vari-
ables of �x1� � � � �xn	.
To estimate the skew-t parameters from the data

in Step 1, we can use the R (R Development Core
Team 2008) statistical package, named sn.1 Note that
GADP is a particular case of the STDP method as the
multivariate skew-t distribution includes the normal
distribution.
Because the conditional distribution approach

assumes that the database user already knows the
conditional distribution of X given S, we release this
information along with the fitted parameters to the
user. In addition, we suggest to provide two measures
of goodness-of-fit of the skew-t distribution to the
original data. The first one is simply a p-value for the
likelihood ratio test (LRT) that the underlying distri-
bution is actually normal, a special case of the skew-t
distribution. Typically, if that p-value is smaller than
5%, the hypothesis of normality is rejected. Then the
smaller the p-value, the stronger the evidence against
normality, which suggests moving away from GADP.
The second measure is a graphical representation due

1 This package, which is developed and maintained by Adelchi
Azzalini, can be freely downloaded from the main webpage of the
R project or at http://azzalini.stat.unipd.it/SN/.
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to Healy (1968) (see also Azzalini and Capitanio 2003).
It compares the fits of multivariate normal and skew-t
distributions. The probabilities of a quadratic form in
the data vector based on the assumed distribution and
on the sample distribution are plotted. Thus, when
the data are similar to the assumed distribution, the
points in the plots should be located on a straight
diagonal line. Those two measures are secure in the
sense that they cannot be used to disclose confidential
information.

3.3. Preserving Sample Information
Confidential data perturbation methods, for instance,
such as GADP, are generally able to preserve the mean
vector and the covariance matrix asymptotically, i.e.,
in large samples. Burridge (2003) proposed a method
similar to GADP, coined information preserving sta-
tistical obfuscation, that can preserve the mean vector
and the covariance matrix exactly in the sample. This
implies that the sample mean vector and the sample
covariance matrix of the perturbed data are exactly
the same as those of the original confidential data.
Recently, Muralidhar and Sarathy (2008) have pro-
posed an extension of the aforementioned method that
generates nonsynthetic perturbed data while preserv-
ing mean and covariance exactly. A proximity param-
eter between the original and the perturbed data must
be selected, and this makes that approach somewhat
ad hoc.
We believe that preserving the sample mean vec-

tor and the sample covariance matrix exactly can be
achieved for any data perturbation method, for exam-
ple, such as C-GADP or STDP, and it is not restricted
to GADP based on the multivariate normal distribu-
tion. The method is very simple and we describe it
next. Note also that an important consequence is that
any method of multivariate data analysis based on the
sample mean vector and the sample covariance matrix
will yield the same results on the perturbed data as on
the original confidential data. Such methods include
principal component analysis and canonical correla-
tion analysis, among many other techniques.
Let x1� � � � �xn be a sample of confidential vari-

ables with sample mean vector �̂x and sample covari-
ance matrix ��x. Suppose that some data perturbation
method has produce a sample z1� � � � �zn with sam-
ple mean vector �̂z and sample covariance matrix ��z.
Define yi = �̂x + ��1/2

x
��−1/2
z �zi − �̂z	 for i = 1� � � � �n.

Then, straightforward algebra shows that �̂y = �̂x

and ��y = ��x. Because y is obtained through a lin-
ear transformation of z, many equivariant estimators
such as sample skewness and kurtosis will be unaf-
fected. This means that they will remain the same
on the y data and the z data, but of course not on
the x data in general. Also, the distribution of the y
data will remain the same as the distribution of the z

data as long as that distribution is closed under linear
transformations. For example, this is the case for the
multivariate normal, elliptical (Fang et al. 1990), and
skew-elliptical distributions, among others. Sample
quantiles will be unaffected asymptotically because
in that case, the linear transformation is the identity
operation.

4. Performance of STDP
In this section, we present Monte Carlo simulation
results to compare the performance of the STDP
method with existing methods when they are applied
to nonnormal databases. We consider three different
situations: the first two scenarios (simulations 1 and 2)
consider the multivariate g-and-h distribution (Field
and Genton 2006). This is a different kind of mul-
tivariate distribution than the skew-t. We can con-
trol the skewness and heaviness of its tails, but it is
not in the skew-elliptical distribution class. The detail
of the simulation setup is given in the next subsec-
tion. The reason for considering the g-and-h distri-
bution in this simulation is that we can show how
well STDP performs compared to other perturbation
methods in the case where the actual data distribution
is not the skew-t distribution under which the STDP
method was constructed. The third scenario (simula-
tion 3) uses the multivariate skew-t distribution and
is expected to show better performance of STDP over
other perturbation methods.
We consider the STDP method and its algorithm

described in §3. For the C-GADP method, we use
the empirical distribution as the marginal distribu-
tion because there is no general guide for selecting
a parametric marginal distribution. Besides GADP,
C-GADP, and DSP, we also include in the compar-
ison an interesting variant of the C-GADP method,
denoted by C-GADPST. It uses the univariate skew-t
distribution as the marginal distribution in its con-
struction. Throughout the simulation study, we apply
the sample mean and covariance preserving (MCP)
technique described in §3.3 on all perturbation meth-
ods, except DSP. The reason we did not apply MCP
to DSP is that MCP would destroy the data shuf-
fling mechanism, which is a key factor in DSP. We
use the postfix “MCP” (mean-covariance preserv-
ing) to distinguish these perturbation techniques from
their original versions. In the following sections, we
present the results for the MCP versions only, because
we observed that the original versions performed
similarly to the MCP versions (except for preserving
mean and covariance). In addition, we also report the
results of C-GADP without MCP because of its ability
to preserve the marginal distributions.
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Figure 1 Contour Plots of the First Two (Confidential) Variables of Four-Dimensional g-and-h (Simulations 1 and 2) and Skew-t (Simulation 3)
Distributions Used in the Simulation Study
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4.1. Simulation Setting
In the simulation, we consider four-dimensional ran-
dom vectors V = �XT�ST	T, with two-dimensional
vectors X and S, from the aforementioned two
distributions. The g-and-h distributed random vec-
tor is defined by V = �1/2�g�h�Z	 + �, where �
and � are arbitrary location vector and covariance
matrix, respectively, and Z ∼ N4�0� I4	, a standard
multivariate normal distribution. The vector-valued
function �g�h is defined by �g�h�Z	 = ��g1�h1�Z1	�
�g2�h2�Z2	� �g3�h3�Z3	� �g4�h4�Z4		

T� with

�g�h�Z	=
(
exp�gZ	− 1

g

)
exp

(
h

2
Z2
)
� h > 0�

where g = �g1�g2�g3�g4	
T controls the skewness and

h = �h1�h2�h3�h4	
T controls the kurtosis of each

variable separately. In this simulation we set � =
�0�0�0�0	T and the covariance matrix

�=




1�0 0�3 0�5 0�2

0�3 1�0 0�7 0�5

0�5 0�7 1�0 0�1

0�2 0�5 0�1 1�0


 � (4)

We use g= �0�0�0�0	T and h= �0�05�0�05�0�05�0�05	T

for simulation 1, that is, there is no skewness at all
and the same amount of kurtosis in all directions
before introducing scale. The resulting distribution is
somewhat similar to an elliptical shape. Next, g =
�0�2�0�3�0�2�0�1	T and h = �0�05�0�03�0�02�0�01	T are
used for simulation 2, which leads to a shape far from
elliptical and with different tail behavior in each direc-
tion. For simulation 3, we use the skew-t distribution
with location � = �0�0�0�0	T, shape � = �1�2�3�1	T,
degrees of freedom � = 9, and scale matrix �=� as
defined in (4). Because of space limitation, we only

present contour plots of the first two (confidential)
variables of the distributions used in the simulation
study in Figure 1.
We generate artificial databases of multiple sample

sizes (n = 100, 500, and 1,000 observations) from the
above g-and-h and skew-t distributions. We regard the
first two variables (X) as confidential variables that
will be perturbed by the perturbation methods and the
remaining two variables (S) as nonconfidential vari-
ables that will remain the same after perturbation.
To investigate the performance of the perturbation
methods, we calculate the first four sample moments
(mean, covariance, skewness, and kurtosis), rank
order correlation, and some quantiles, of the perturbed
variables. The error of those estimators is assessed
by computing the average and standard deviation of
biases over 1,000 simulated data sets. In this simula-
tion study, we assume that each simulated microdata
itself is a finite population. Therefore, the perturbation
methods are compared through assessing how well
they replicate the characteristics of a known popula-
tion represented by the simulated data set.

4.2. Moments
As we described in §3.3, all perturbation methods with
sample information preserving technique (MCP) lead
to zero biases in the first two moments (mean and
covariance). DSP also preserves exactly the mean and
variance, but the covariance will only be maintained
asymptotically. After perturbation over 1,000 simu-
lated data sets, we calculate the average biases (AB)
and standard deviations (SD) of sample rank order
correlations. In Table 1, we report the results for sim-
ulation 2, the most nonnormal setting, only (those
for simulations 1 and 3 were qualitatively similar) for
sample sizes n= 100, 500, and 1,000. All average biases
are small as expected, because the sample covariance
matrix is maintained by the MCP technique. The DSP
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Table 1 Rank Order Correlations for the Perturbed Data Sets in Simulation 2

Simulation 2 n V1� V2 V1� V3 V1� V4 V2� V3 V2� V4 V3� V4

STDP 100 −0�0120 (0.0932) −0�0178 (0.0834) −0�0006 (0.0910) −0�0095 (0.0478) −0�0054 (0.0550) 0�0000 (0.0000)
500 −0�0134 (0.0405) −0�0168 (0.0364) −0�0034 (0.0393) −0�0115 (0.0213) −0�0031 (0.0252) 0�0000 (0.0000)

1�000 −0�0138 (0.0287) −0�0174 (0.0260) −0�0022 (0.0286) −0�0111 (0.0152) −0�0023 (0.0174) 0�0000 (0.0000)
STDP-MCP 100 −0�0229 (0.0582) −0�0202 (0.0537) −0�0045 (0.0501) −0�0165 (0.0355) −0�0022 (0.0375) 0�0002 (0.0078)

500 −0�0218 (0.0268) −0�0190 (0.0242) −0�0040 (0.0226) −0�0180 (0.0161) −0�0006 (0.0181) 0�0000 (0.0013)
1�000 −0�0208 (0.0180) −0�0187 (0.0176) −0�0042 (0.0156) −0�0180 (0.0115) 0�0008 (0.0128) 0�0000 (0.0007)

GADP-MCP 100 −0�0262 (0.0527) −0�0209 (0.0527) −0�0062 (0.0472) −0�0197 (0.0355) −0�0050 (0.0357) −0�0001 (0.0068)
500 −0�0279 (0.0227) −0�0213 (0.0220) −0�0067 (0.0216) −0�0207 (0.0148) −0�0076 (0.0163) −0�0001 (0.0011)

1�000 −0�0283 (0.0163) −0�0220 (0.0168) −0�0055 (0.0148) −0�0210 (0.0107) −0�0067 (0.0114) 0�0000 (0.0005)
C-GADP 100 0�0215 (0.0786) 0�0006 (0.0715) 0�0161 (0.0810) −0�0047 (0.0427) 0�0018 (0.0505) 0�0000 (0.0000)

500 0�0035 (0.0352) −0�0009 (0.0325) 0�0023 (0.0365) −0�0006 (0.0185) −0�0008 (0.0229) 0�0000 (0.0000)
1�000 0�0019 (0.0260) −0�0006 (0.0228) 0�0012 (0.0265) −0�0002 (0.0130) −0�0003 (0.0163) 0�0000 (0.0000)

C-GADP-MCP 100 −0�0858 (0.0695) −0�0230 (0.0562) −0�0297 (0.0565) 0�0039 (0.0389) −0�0071 (0.0388) 0�0002 (0.0089)
500 −0�0561 (0.0306) −0�0136 (0.0252) −0�0184 (0.0245) −0�0012 (0.0174) −0�0049 (0.0181) 0�0003 (0.0019)

1�000 −0�0437 (0.0211) −0�0130 (0.0185) −0�0137 (0.0169) −0�0023 (0.0131) −0�0028 (0.0132) 0�0003 (0.0009)
C-GADPST-MCP 100 −0�0140 (0.0584) −0�0077 (0.0561) 0�0001 (0.0531) −0�0029 (0.0360) 0�0016 (0.0388) 0�0007 (0.0084)

500 −0�0160 (0.0271) −0�0091 (0.0256) −0�0031 (0.0229) −0�0076 (0.0167) −0�0024 (0.0172) 0�0001 (0.0014)
1�000 −0�0164 (0.0189) −0�0096 (0.0181) −0�0032 (0.0158) −0�0069 (0.0122) −0�0022 (0.0124) 0�0001 (0.0007)

DSP 100 −0�0017 (0.0812) −0�0041 (0.0735) 0�0017 (0.0853) −0�0021 (0.0422) −0�0034 (0.0534) 0�0000 (0.0000)
500 −0�0023 (0.0352) −0�0017 (0.0310) −0�0001 (0.0362) −0�0005 (0.0184) −0�0004 (0.0222) 0�0000 (0.0000)

1�000 −0�0018 (0.0260) −0�0002 (0.0229) −0�0007 (0.0259) −0�0002 (0.0131) −0�0017 (0.0160) 0�0000 (0.0000)

Note. AB with SD in parentheses.

approach also yields small average biases of the rank
order correlations. In addition, we included the results
of STDP without MCP to see the effect of mean and
covariance preserving on the rank order correlations.
As can be seen, this effect is fairly small.
Next, we consider higher-order moments (skewness

and kurtosis) from 1,000 pairs of the simulated and
perturbed data sets under the three scenarios. We use
the measures of multivariate skewness b1� k and kur-
tosis b2� k defined by Mardia et al. (1979, p. 21) as

b1� k =
1
n2

n∑
r=1

n∑
s=1

{
�ur − �̂u	

T ��−1
u �us − �̂u	

}3
�

b2� k =
1
n

n∑
r=1

{
�ur − �̂u	

T ��−1
u �ur − �̂u	

}2
�

where k denotes the dimension of the vectors
u1� � � � �un under consideration, and �̂u and ��u are the
sample mean vector and sample covariance matrix,
respectively. These quantities are frequently used to
measure the skewness and kurtosis for multivariate
situations. For example, the theoretical values of b1� k
and b2� k for the multivariate normal distribution are 0
and k�k+2	, respectively. These measures of multivari-
ate skewness and kurtosis are invariant under linear
transformation so that the MCP technique does not
affect their value. Therefore, we do not report the C-
GADP results in this experiment, only C-GADP-MCP.
The results are summarized in Table 2 with three dif-

ferent sample sizes (n= 100, 500, and 1,000). In simula-
tion 3, with the skew-t distribution, STDP-MCP shows

excellent performance in both skewness and kurtosis
experiments, as we expected. The more interesting sit-
uations are simulations 1 and 2 using the multivariate
g-and-h distribution where we are able to compare all
methods on a fair ground. Table 2 shows that STDP-
MCP is best in simulation 3,which uses data setswhose
distribution is close to an elliptical or skew-elliptical
shape, whereas DSP performs best in simulation 2. In
simulation 1, DSP is best with respect to skewness,
whereas STDP-MCP is best with respect to kurtosis.
Overall, although the skewness and kurtosis perfor-
mance of STDP-MCP, DSP, and C-GADPST-MCP are
comparable, performance is determined by the under-
lying distribution of the data set.
A different point of view consists in computing the

empirical coverage (in %) of skewness and kurtosis
for the perturbed data sets, corresponding to the
results presented in Table 2. Specifically, this means
that for each of the 1,000 simulated biases, we add
±1�96 times the overall SD and check whether it con-
tains the value 0, that is, zero bias. Table 3 reports
the proportion of such intervals containing zero over
the 1,000 replicates. By construction, the nominal cov-
erage should be approximately 95%. The results are
given for samples of size n = 100, 500, and 1,000.
Focusing on the sample size n= 1�000, we can make
the following interesting comments. GADP-MCP has
very poor coverage in terms of skewness in simula-
tions 2 and 3, and generally poor coverage in terms
of kurtosis for all three simulation settings. This is
not surprising when comparing normal elliptical con-
tours with the nonnormal contours in Figure 1. The
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Table 2 Skewness and Kurtosis Experiment for the Perturbed
Data Sets

n Simulation 1 Simulation 2 Simulation 3

Skewness
STDP-MCP 100 0�2850 (0.9654) −1�1251 (2.0971) −0�1208 (2.3969)

500 0�0755 (0.2549) −1�2796 (1.0526) 0�1245 (1.8246)
1�000 0�0430 (0.1144) −1�2465 (0.6717) −0�0224 (0.8998)

GADP-MCP 100 −0�3258 (0.7037) −2�1061 (2.1139) −2�0503 (2.0973)
500 −0�0937 (0.2143) −2�0904 (1.0832) −1�6060 (1.3371)

1�000 −0�0471 (0.0938) −2�0561 (0.6725) −1�5210 (0.7376)
C-GADP-MCP 100 1�3587 (1.7172) 2�2500 (2.8172) 0�2454 (1.9304)

500 0�5783 (0.9148) 2�5431 (3.5223) 0�2848 (1.8073)
1�000 0�2916 (0.4112) 1�9486 (2.7534) 0�0684 (1.1084)

C-GADPST-MCP 100 0�4552 (1.9150) 0�0760 (3.2779) −0�2534 (3.8928)
500 0�0714 (0.2809) −0�5973 (1.1750) −0�5191 (1.4436)

1�000 0�0260 (0.1178) −0�6474 (0.6546) −0�5611 (0.7724)
DSP 100 0�2026 (0.7928) 0�1720 (1.4506) −0�5992 (1.6445)

500 0�0604 (0.2134) −0�0919 (1.0400) −0�5325 (1.0200)
1�000 0�0235 (0.0911) −0�1834 (0.4764) −0�5412 (0.4230)

Kurtosis
STDP-MCP 100 −0�2691 (2.1620) −1�5534 (3.3489) −0�4729 (4.2070)

500 −0�0482 (1.4168) −1�6502 (2.9638) 0�2255 (5.1733)
1�000 0�0603 (1.0533) −1�6819 (2.2915) −0�0614 (3.7739)

GADP-MCP 100 −1�5673 (2.0294) −3�4686 (3.6081) −4�8823 (3.8604)
500 −1�9556 (1.3160) −4�7348 (3.0974) −6�8787 (3.8129)

1�000 −1�9410 (0.9678) −4�9478 (2.3381) −7�4150 (3.0480)
C-GADP-MCP 100 2�6433 (3.5576) 4�7261 (4.9461) 0�3147 (3.6915)

500 2�7379 (3.3597) 9�2453 (7.8680) 1�1338 (4.0723)
1�000 2�1649 (2.6135) 9�4031 (7.8953) 0�6704 (3.9870)

C-GADPST-MCP 100 0�1946 (3.3575) 0�0920 (4.7732) −1�6465 (5.3702)
500 −0�5541 (1.4422) −0�9990 (3.2672) −3�0238 (3.9674)

1�000 −0�6303 (1.0018) −1�1548 (2.3933) −3�5774 (3.0276)
DSP 100 0�2701 (1.9209) 0�7891 (2.5809) −1�5962 (3.1554)

500 −0�0155 (1.2495) 0�8682 (2.8676) −2�5942 (2.6901)
1�000 −0�1792 (0.8331) 0�7951 (1.8612) −3�0098 (2.0517)

Note. AB with SD in parentheses.

C-GADP-based methods have sometimes a somewhat
poor coverage, probably because of their fixed normal
copula dependence structure. Except for simulation 2,
the STDP-MCP method has a fairly good coverage in
terms of skewness. This was to be expected because
the distribution in simulation 2 is quite nonnormal
and its shape is rather different from the skew-t dis-
tributional shape. In addition, its has different tail
behaviors in each of its components, a challenging
issue for the skew-t distribution that has only one
parameter, �, to control the tails (see also §§6 and 7 for
further discussions of this issue). DSP has also a fairly
good coverage although not so much in simulation 3.

4.3. Quantiles
Because the skew-t distribution is flexible to capture
the skewness and heavy tail of the original data set,
we also expect that the STDP perturbed variables
will have better tail properties, and this should be
reflected in quantile experiments. This is important if
the database user needs to answer questions such as
the following: What is the value of the variable X such
that 90% of the observations fall below that value?
In other words, what is the 90% quantile of X? This

Table 3 Empirical Coverage of Skewness and Kurtosis for the
Perturbed Data Sets

Coverage (%)

Skewness Kurtosis

Methods n Sim. 1 Sim. 2 Sim. 3 Sim. 1 Sim. 2 Sim. 3

STDP-MCP 100 94�5 93�6 95�1 95�3 94�0 93�4
500 96�5 86�7 97�0 95�4 93�8 93�4

1�000 95�8 60�6 96�1 96�0 92�0 96�0
GADP-MCP 100 93�2 90�0 89�2 89�0 88�0 82�1

500 97�0 63�3 91�2 72�9 78�3 67�7
1�000 95�6 6�2 57�4 52�4 52�3 32�9

C-GADP-MCP 100 89�1 87�7 94�8 89�5 84�2 93�9
500 94�7 91�9 97�5 90�1 84�3 94�6

1�000 93�1 91�7 96�0 90�1 84�3 95�3
C-GADPST-MCP 100 97�7 96�1 97�1 97�2 93�1 94�8

500 96�7 95�9 97�0 94�4 96�1 94�2
1�000 95�9 88�8 92�8 93�7 94�2 86�0

DSP 100 93�9 94�4 94�7 94�9 94�7 93�2
500 96�1 99�3 97�7 95�5 97�5 91�0

1�000 95�8 97�3 83�5 95�4 95�4 76�5

aspect can be explored by comparing quantiles of the
perturbed variables.
Tables 4–6 present the AB and SD of 90%, 95%,

99%, and 99.5% quantiles of the perturbed variables
Y by several perturbation methods under the three
different simulation setups for sample sizes n = 100,
500, and 1,000. Unlike for the higher-order moments,
it is difficult to judge which method performs best. In
simulation 1, we observe that the skew-t distribution-
based methods (STDP-MCP and C-GADPST-MCP)
perform better than GADP-MCP, C-GADP, and C-
GADP-MCP, especially in upper quantiles (see 99%
and 99.5%). All methods, except GADP-MCP, show
comparable average bias in simulation 2. This is inter-
esting in the sense that in simulation 2, where the
original data sets are generated from a highly nonnor-
mal distribution, we expect the copula-based meth-
ods (C-GADP, C-GADP-MCP, and C-GADPST-MCP)
to be much better than the STDP method. Indeed,
the marginal distributions of the perturbed variables
will reflect well the marginal properties of the original
confidential variables, and the multivariate skew-t
distribution may suffer from not fitting the original
data set as well. In simulation 3 from the skew-t dis-
tribution, the skew-t-based methods STDP-MCP and
C-GADPST-MCP give the best performance, as we
expected. Here also, we included the results of STDP
without MCP to see the effect of mean and covari-
ance preserving on the quantiles. As can be seen, this
effect is again fairly small. Of course, DSP preserves
the quantiles exactly, giving zero biases, because it is
based on the reordering of the original values. We
also considered databases simulated under a multi-
variate normal distribution. In that case, all perturba-
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Table 4 Quantile Experiment in Simulation 1

Quantiles (%) n STDP STDP-MCP GADP-MCP C-GADP C-GADP-MCP C-GADPST-MCP

Y1
90 100 0�0202 (0.2137) 0�0250 (0.1649) 0�0404 (0.1593) 0�2694 (0.2406) 0�0234 (0.1732) 0�0030 (0.1612)

500 0�0160 (0.0896) 0�0218 (0.0727) 0�0441 (0.0751) 0�0491 (0.0915) −0�0145 (0.0621) 0�0033 (0.0734)
1�000 0�0164 (0.0655) 0�0164 (0.0526) 0�0441 (0.0526) 0�0257 (0.0614) −0�0106 (0.0433) 0�0031 (0.0498)

95 100 −0�0014 (0.2797) 0�0038 (0.2175) 0�0029 (0.2187) 0�3758 (0.3761) 0�0926 (0.2648) −0�0107 (0.2111)
500 0�0009 (0.1228) 0�0053 (0.1039) 0�0178 (0.1049) 0�0652 (0.1280) −0�0055 (0.0928) −0�0003 (0.1009)

1�000 0�0092 (0.0872) 0�0086 (0.0735) 0�0218 (0.0739) 0�0339 (0.0827) −0�0063 (0.0612) 0�0016 (0.0720)
99 100 −0�0666 (0.4823) −0�0658 (0.4087) −0�1085 (0.4285) 0�5051 (0.5244) 0�1410 (0.4384) −0�0108 (0.4396)

500 −0�0724 (0.2657) −0�0670 (0.2408) −0�1161 (0.2404) 0�2562 (0.3585) 0�1635 (0.3043) −0�0133 (0.2227)
1�000 −0�0556 (0.1910) −0�0571 (0.1779) −0�1176 (0.1730) 0�1148 (0.1983) 0�0638 (0.1698) −0�0115 (0.1655)

99.5 100 −0�1094 (0.5740) −0�1067 (0.4872) −0�1779 (0.4982) 0�2525 (0.2622) −0�0599 (0.2457) −0�0214 (0.4762)
500 −0�1138 (0.3542) −0�1083 (0.3277) −0�1910 (0.3257) 0�4707 (0.5162) 0�3350 (0.4363) −0�0200 (0.3125)

1�000 −0�0891 (0.2622) −0�0912 (0.2461) −0�2085 (0.2456) 0�2434 (0.3518) 0�1832 (0.3146) −0�0168 (0.2413)
Y2

90 100 0�0035 (0.1775) 0�0047 (0.1587) 0�0177 (0.1587) 0�0453 (0.1825) −0�0095 (0.1396) 0�0001 (0.1521)
500 0�0086 (0.0787) 0�0093 (0.0687) 0�0242 (0.0710) 0�0059 (0.0717) −0�0140 (0.0565) 0�0025 (0.0694)

1�000 0�0108 (0.0585) 0�0116 (0.0501) 0�0243 (0.0492) 0�0023 (0.0505) −0�0098 (0.0400) 0�0060 (0.0497)
95 100 0�0023 (0.2293) 0�0022 (0.2032) 0�0154 (0.2033) 0�1356 (0.2762) 0�0602 (0.2124) 0�0014 (0.2059)

500 0�0079 (0.1043) 0�0077 (0.0946) 0�0105 (0.0984) 0�0185 (0.1030) −0�0066 (0.0852) −0�0010 (0.0940)
1�000 0�0065 (0.0783) 0�0075 (0.0678) 0�0106 (0.0675) 0�0098 (0.0691) −0�0057 (0.0559) 0�0058 (0.0695)

99 100 −0�0274 (0.4163) −0�0249 (0.3777) −0�0430 (0.3831) 0�5136 (0.5025) 0�2862 (0.4112) −0�0080 (0.3685)
500 −0�0260 (0.2258) −0�0268 (0.2066) −0�0558 (0.2125) 0�1673 (0.2922) 0�1254 (0.2544) −0�0003 (0.2184)

1�000 −0�0194 (0.1759) −0�0189 (0.1652) −0�0711 (0.1619) 0�0714 (0.1734) 0�0499 (0.1537) −0�0039 (0.1593)
99.5 100 −0�0650 (0.4680) −0�0643 (0.4210) −0�0997 (0.4366) 0�2568 (0.2513) 0�0886 (0.2189) −0�0284 (0.4042)

500 −0�0483 (0.3013) −0�0484 (0.2822) −0�1000 (0.2774) 0�3826 (0.4220) 0�3028 (0.3634) −0�0088 (0.2796)
1�000 −0�0459 (0.2443) −0�0460 (0.2331) −0�1152 (0.2262) 0�1690 (0.3291) 0�1429 (0.2979) −0�0126 (0.2275)

Note. AB with SD in parentheses.

Table 5 Quantile Experiment in Simulation 2

Quantiles (%) n STDP STDP-MCP GADP-MCP C-GADP C-GADP-MCP C-GADPST-MCP

Y1
90 100 0�0040 (0.2538) 0�0259 (0.2093) 0�0225 (0.1937) 0�3364 (0.3095) 0�0169 (0.2129) 0�0204 (0.2081)

500 −0�0174 (0.1125) 0�0063 (0.0944) 0�0224 (0.0924) 0�0612 (0.1147) −0�0331 (0.0799) 0�0183 (0.0969)
1�000 −0�0259 (0.0855) 0�0031 (0.0684) 0�0241 (0.0624) 0�0326 (0.0759) −0�0243 (0.0544) 0�0194 (0.0648)

95 100 −0�0819 (0.3300) −0�0581 (0.2707) −0�1094 (0.2573) 0�5262 (0.5560) 0�1125 (0.3400) −0�0062 (0.2810)
500 −0�1025 (0.1715) −0�0745 (0.1413) −0�1020 (0.1264) 0�0920 (0.1806) −0�0227 (0.1245) 0�0151 (0.1369)

1�000 −0�1218 (0.1238) −0�0886 (0.1003) −0�0991 (0.0874) 0�0482 (0.1121) −0�0232 (0.0801) 0�0166 (0.0962)
99 100 −0�3380 (0.6510) −0�3087 (0.5491) −0�4855 (0.5425) 0�7716 (0.8574) 0�1449 (0.6180) −0�0681 (0.5843)

500 −0�3950 (0.3890) −0�3642 (0.3335) −0�5370 (0.3136) 0�3968 (0.5979) 0�2065 (0.4487) −0�0494 (0.3151)
1�000 −0�4522 (0.2893) −0�4116 (0.2505) −0�5514 (0.2269) 0�1763 (0.2896) 0�0698 (0.2331) −0�0510 (0.2284)

99.5 100 −0�4660 (0.7964) −0�4380 (0.6592) −0�6802 (0.6630) 0�3858 (0.4287) −0�1725 (0.3136) −0�1192 (0.6247)
500 −0�5641 (0.5281) −0�5295 (0.4670) −0�7637 (0.4460) 0�7753 (0.8834) 0�4716 (0.6514) −0�0972 (0.4512)

1�000 −0�6083 (0.3880) −0�5637 (0.3443) −0�7932 (0.3320) 0�3848 (0.5676) 0�2541 (0.4754) −0�0859 (0.3354)
Y2
90 100 0�0147 (0.2133) 0�0220 (0.1926) 0�0064 (0.1908) 0�0557 (0.2321) −0�0346 (0.1700) 0�0193 (0.1928)

500 0�0378 (0.1187) 0�0328 (0.1014) 0�0095 (0.0894) 0�0087 (0.0926) −0�0335 (0.0751) 0�0244 (0.0905)
1�000 0�0511 (0.0829) 0�0384 (0.0691) 0�0101 (0.0619) 0�0046 (0.0682) −0�0263 (0.0558) 0�0278 (0.0637)

95 100 −0�0219 (0.3051) −0�0175 (0.2702) −0�0827 (0.2575) 0�1853 (0.3942) 0�0522 (0.2705) 0�0132 (0.2752)
500 0�0239 (0.1733) 0�0185 (0.1447) −0�0982 (0.1237) 0�0309 (0.1482) −0�0295 (0.1119) 0�0194 (0.1313)

1�000 0�0467 (0.1205) 0�0320 (0.0998) −0�0943 (0.0833) 0�0170 (0.0977) −0�0241 (0.0771) 0�0312 (0.0935)
99 100 −0�1955 (0.6044) −0�1943 (0.5269) −0�3707 (0.5101) 0�8174 (0.8684) 0�3561 (0.6146) −0�0632 (0.5219)

500 −0�1181 (0.3809) −0�1271 (0.3411) −0�4475 (0.2940) 0�2732 (0.4696) 0�1568 (0.3726) −0�0428 (0.3170)
1�000 −0�0621 (0.2903) −0�0812 (0.2535) −0�4690 (0.2168) 0�1367 (0.2840) 0�0619 (0.2310) −0�0393 (0.2332)

99.5 100 −0�3184 (0.6761) −0�3200 (0.5648) −0�5489 (0.5885) 0�4087 (0.4342) 0�0318 (0.2915) −0�1218 (0.5302)
500 −0�2053 (0.4894) −0�2149 (0.4356) −0�6327 (0.3880) 0�6904 (0.8013) 0�4578 (0.5901) −0�0920 (0.4001)

1�000 −0�1477 (0.4094) −0�1689 (0.3689) −0�6577 (0.3170) 0�3320 (0.5656) 0�2337 (0.4705) −0�0911 (0.3328)
Note. AB with SD in parentheses.
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Table 6 Quantile Experiment in Simulation 3

Quantiles (%) n STDP STDP-MCP GADP-MCP C-GADP C-GADP-MCP C-GADPST-MCP

Y1
90 100 0�0091 (0.1926) 0�0140 (0.1575) 0�0087 (0.1422) 0�2680 (0.2656) 0�0113 (0.1679) 0�0110 (0.1607)

500 −0�0022 (0.0886) −0�0006 (0.0790) 0�0132 (0.0718) 0�0552 (0.0877) −0�0289 (0.0633) 0�0042 (0.0739)
1�000 0�0013 (0.0621) 0�0028 (0.0535) 0�0164 (0.0503) 0�0283 (0.0596) −0�0213 (0.0439) 0�0088 (0.0541)

95 100 0�0043 (0.2752) 0�0058 (0.2168) −0�0701 (0.1980) 0�4401 (0.5056) 0�1013 (0.2886) −0�0023 (0.2179)
500 −0�0027 (0.1268) −0�0029 (0.1080) −0�0813 (0.0948) 0�0883 (0.1337) −0�0210 (0.0960) 0�0063 (0.1102)

1�000 0�0015 (0.0938) 0�0030 (0.0776) −0�0769 (0.0676) 0�0483 (0.0867) −0�0161 (0.0627) 0�0112 (0.0754)
99 100 −0�0291 (0.5736) −0�0408 (0.4756) −0�3260 (0.4277) 0�6436 (0.7142) 0�1774 (0.5275) −0�0278 (0.4359)

500 −0�0044 (0.3198) −0�0087 (0.2653) −0�3839 (0.2302) 0�3665 (0.4764) 0�1891 (0.3575) −0�0004 (0.2643)
1�000 −0�0049 (0.2348) −0�0054 (0.1961) −0�4007 (0.1730) 0�1874 (0.2618) 0�0824 (0.2073) −0�0009 (0.1995)

99.5 100 −0�0581 (0.6917) −0�0809 (0.5204) −0�4699 (0.4847) 0�3218 (0.3571) −0�0684 (0.2853) −0�0616 (0.4866)
500 −0�0009 (0.4261) −0�0093 (0.3627) −0�5336 (0.3153) 0�7085 (0.8243) 0�4532 (0.5784) 0�0026 (0.3715)

1�000 −0�0064 (0.3506) −0�0081 (0.3059) −0�5647 (0.2536) 0�3568 (0.4506) 0�2240 (0.3715) 0�0008 (0.2991)

Y2
90 100 0�0047 (0.2182) 0�0150 (0.1785) 0�0349 (0.1577) 0�4348 (0.3027) 0�0135 (0.1963) 0�0150 (0.1646)

500 −0�0012 (0.0998) 0�0005 (0.0786) 0�0302 (0.0733) 0�0830 (0.0917) −0�0177 (0.0626) 0�0058 (0.0737)
1�000 −0�0017 (0.0673) 0�0009 (0.0585) 0�0327 (0.0533) 0�0448 (0.0638) −0�0102 (0.0448) 0�0051 (0.0546)

95 100 −0�0007 (0.2976) 0�0067 (0.2317) −0�0397 (0.2149) 0�5753 (0.5569) 0�0878 (0.3289) 0�0045 (0.2300)
500 −0�0020 (0.1413) −0�0019 (0.1118) −0�0609 (0.1036) 0�1029 (0.1420) −0�0125 (0.1007) −0�0043 (0.1084)

1�000 −0�0034 (0.0986) −0�0008 (0.0793) −0�0571 (0.0725) 0�0526 (0.0878) −0�0131 (0.0610) −0�0010 (0.0756)
99 100 −0�0237 (0.6195) −0�0307 (0.4944) −0�3086 (0.4410) 0�5795 (0.7079) 0�0342 (0.5099) −0�0153 (0.4612)

500 −0�0096 (0.3375) −0�0135 (0.2901) −0�3721 (0.2514) 0�2286 (0.3707) 0�0744 (0.2919) −0�0264 (0.2736)
1�000 0�0005 (0.2555) 0�0019 (0.2133) −0�3761 (0.1815) 0�1210 (0.2530) 0�0317 (0.2051) −0�0178 (0.2018)

99.5 100 −0�0584 (0.7776) −0�0739 (0.5944) −0�4540 (0.5357) 0�2895 (0.3542) −0�1950 (0.2671) −0�0814 (0.5231)
500 −0�0018 (0.4480) −0�0089 (0.3865) −0�5430 (0.3290) 0�3824 (0.5723) 0�2050 (0.4707) −0�0293 (0.3750)

1�000 −0�0016 (0.3656) −0�0036 (0.3158) −0�5614 (0.2618) 0�1768 (0.3761) 0�0777 (0.3184) −0�0325 (0.2950)
Note. AB with SD in parentheses.

tion methods we considered gave similar results for
quantiles of the perturbed variables Y.

5. Application to a Medical Database
We apply our new methodology to a medi-
cal database of measurements on intakes of pro-
tein (PROT), saturated fat (FAT), and carbohydrate
(CARB) on n= 3,145 women during an epidemiologic
cohort study related to breast cancer (see Jones et al.
1987). This medical information is usually confiden-
tial and the database cannot be released to the pub-
lic in its original form. We consider the perturbation
of the variable PROT while maintaining the variables
FAT and CARB, i.e., U= �X�ST	T with X = PROT and
S= �FAT�CARB	T. We also investigated the perturba-
tion of all three variables and obtained similar results
to those reported below.
We start by studying the distributional properties

of this database empirically. The measures of multi-
variate skewness and kurtosis are b1�3 = 9�2 and b2�3 =
43�2, respectively. They seem to indicate that the dis-
tribution is not multivariate normal because they are
far from the theoretical values of 0 and 15. A formal
hypothesis test of normality (see, e.g., Mardia et al.
1979, p. 148) can be based on the asymptotic distri-

bution of the measures of multivariate skewness and
kurtosis given by

1
6nb1� k ∼ �2f � where f = 1

6k�k+ 1	�k+ 2	�
�b2� k− k�k+ 2	�/�8k�k+ 2	/n�1/2 ∼ N�0�1	�

where k= 3 and n= 3,145 for our database. Both tests
give p-values <0�0000 so we reject the hypothesis of
a multivariate normal distribution.
Graphical evidence of the nonnormality is also

apparent in Figure 2, depicting scatter plots for every
pair of the three variables PROT, FAT, and CARB. All
scatter plots are skewed and heavy tailed, and so we
fit a skew-t distribution to this database. Contours of
the fitted density are also plotted in Figure 2. The
estimated shape parameter and degrees of freedom of
the skew-t are �� = �3�43�0�04�−0�83	T and �̂ = 5�26,
respectively, indicating skewness and heavy tails. The
p-value of the LRT of the hypothesis of normality is
essentially zero, hence we strongly reject a normal
distribution for this data set. As a further diagnostic,
we draw Healy plots in Figure 3 by fitting multivari-
ate normal and skew-t distributions. Figure 3 demon-
strates that the skew-t distribution is a much better fit
than the normal distribution. Consequently, we expect
that the STDP method will yield better results than
the GADP method on this database.
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Figure 2 Scatter Plots of the Medical Database of PROT, FAT, and CARB with Contours of the Fitted Skew-t Density

Table 7 shows that the original, DSP, and C-GADP
perturbed means and covariances (correlations) on
the medical database are quite close. For the
GADP-MCP, C-GADP-MCP, C-GADPST-MCP, and
STDP-MCP methods, the means and covariances (cor-
relations) are exactly the same on the perturbed data

Figure 3 Healy Plots When Either a Normal Distribution (Left Panel) or a Skew-t Distribution (Right Panel) Is Fitted to the Medical Database

as on the original data. The rank order correlations
with PROT for all perturbation methods are also pro-
vided. In this example, the rank order correlations
are somewhat smaller for STDP-MCP than for STDP,
hence illustrating the cost for trying to preserve the
mean and covariance exactly.
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Table 7 Panel A: Original, DSP, and C-GADP Perturbed Means
(Standard Deviations) and Covariances (Correlations) with
PROT on the Medical Database; Panel B: Rank Order
Correlations with PROT on the Medical Database

PROT FAT CARB

Panel A
Original
Mean (SD) 64�1 (32.1) 65�5 (35.0) 175�5 (81.7)
Cov (corr) 1�030�1 (1.00) 803�3 (0.72) 1�059�5 (0.40)

DSP
Mean (SD) 64�1 (32.1) 65�5 (35.0) 175�5 (81.7)
Cov (corr) 1�030�1 (1.00) 802�7 (0.71) 1�041�3 (0.40)

C-GADP
Mean (SD) 64�5 (33.0) 65�5 (35.0) 175�5 (81.7)
Cov (corr) 1�090�4 (1.00) 826�3 (0.72) 1�137�9 (0.42)

Panel B
Original
Rank corr 1.00 0.72 0.44

DSP
Rank corr 1.00 0.72 0.44

C-GADP
Rank corr 1.00 0.71 0.43

STDP
Rank corr 1.00 0.71 0.46

STDP-MCP
Rank corr 1.00 0.65 0.41

GADP-MCP
Rank corr 1.00 0.67 0.40

C-GADP-MCP
Rank corr 1.00 0.71 0.42

C-GADPST-MCP
Rank corr 1.00 0.71 0.40

The measures of multivariate skewness and kurto-
sis of the original and perturbed data by all previ-
ously mentioned methods are provided in Table 8.
Except for GADP-MCP, all perturbation methods
yield measures fairly close to those on the original
data. In particular, STDP-MCP yields the kurtosis
closest to the one of the original data.
The improvement in skewness and kurtosis

obtained by the STDP and other nonnormal methods
suggests that quantiles of the perturbed variables
will be similar to those of the original variables. This
property is of crucial importance because database
managers are usually interested in clients, customers,
or patients with high-valued attributes. For instance,
in our medical database, measurements in the tail of

Table 8 Skewness and Kurtosis of the Original and
Perturbed Medical Database

Skewness Kurtosis

Original 9�2 43�2
STDP-MCP 8�1 43�3
GADP-MCP 5�6 31�8
C-GADP-MCP 9�0 45�1
C-GADPST-MCP 9�3 44�1
DSP 8�8 42�2

Table 9 Quantiles of the Original and Perturbed Medical Database

Quantiles (%)

50 60 70 80 90 95 AD

Original 58�5 65�7 74�1 85�8 104�5 123�2 —
STDP-MCP 56�9 64�4 73�4 85�3 104�1 124�1 5�4
GADP-MCP 62�2 70�6 79�3 89�6 104�9 117�8 23�4
C-GADP 58�4 66�0 74�2 86�5 104�6 123�1 1�4
C-GADP-MCP 58�2 65�5 73�5 85�4 103�1 120�9 5�2
C-GADPST-MCP 58�6 65�0 72�7 84�8 104�1 124�8 5�2
DSP 58�5 65�7 74�1 85�8 104�5 123�2 0

the distribution are of great interest for the study of
breast cancer. Indeed, it is a common fact that diseases
are highly associated with people who are exposed to
a higher level of a certain factor than a given level.
Hence, data perturbation methods that can provide
accurate modeling of the behavior of the tails are
needed.
Table 9 provides quantiles of the original confiden-

tial variable and the perturbed variable by the pre-
viously mentioned methods on the medical database.
The last column lists the sums (over the quantiles)
of absolute deviations (AD) between the results from
each perturbation methods and the original data.
Although GADP-MCP is usually not providing reli-
able quantiles, it is difficult to give an overall winner
among the other MCP-based perturbation methods.
Of course, DSP maintains the marginal quantiles
exactly and C-GADP performs quite well on this
example at the cost of not preserving the mean and
covariance exactly.
Table 10 responds to an interesting query related

to the joint distribution of the variables: What is
the average of the PROT values when FAT > a and
CARB > b? This average is reported for the original
database, as well as for the perturbed data, for various
values of a and b. Here again, it is difficult to name
an overall winner, but the STDP-MCP method pro-
vides overall fairly competitive answers, especially
for b = 350. It can be seen that DSP now performs
quite poorly. This was to be expected, because DSP
preserves the marginal distributions exactly, but not
the joint distribution.

Table 10 Average of PROT When FAT> a and CARB> b of the Original
and Perturbed Medical Database

b= 300 b= 350

a 50 100 150 AD 50 100 150 AD

Original 87�6 109�7 152�4 — 107�2 121�1 155�9 —
STDP-MCP 93�6 109�5 169�7 23�5 100�9 105�2 157�4 23�7
GADP-MCP 92�5 113�3 135�1 25�8 103�7 116�9 140�5 23�1
C-GADP-MCP 86�4 109�5 149�9 3�9 92�4 102�3 143�4 46�1
C-GADPST-MCP 86�4 110�4 131�1 23�2 94�5 110�3 130�2 49�2
DSP 82�8 102�8 123�0 41�1 89�6 108�2 123�0 63�4
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6. Limitations
Although STDP is much more flexible than GADP,
it has limitations as well. For example, both the
multivariate skew-t and normal distributions are
unimodal. If the distribution of the database is mul-
timodal, then these two methods will not be able to
capture this feature. One possibility is to make use of
even more flexible multivariate distributions, such as
the flexible skew-symmetric distributions introduced
by Ma and Genton (2004). Unfortunately, a procedure
for simulation from the conditional distribution in
that class is currently unknown and likely unavailable
in closed form. Whether such extensions are possible
is an open problem.
As mentioned previously, a potential disadvantage

of the skew-t distribution is that there is only one
parameter, �, that regulates the tail behavior of all
variables. If one variable has normal tails whereas
another has lognormal tails, then the single degrees
of freedom parameter has to provide a compromise
between those two tail behaviors. An alternative
approach would be to consider some skewed ver-
sions of other multivariate t distributions with mul-
tiple degrees of freedom parameters. Unfortunately,
such distributions have neither appealing parametric
forms, as discussed by Azzalini and Genton (2008),
nor known conditional distributions, hence their use
in data perturbation problems is not realistic. The
multivariate skew-t distribution remains a reason-
able compromise between flexibility and mathemat-
ical tractability, making it a particularly attractive
general-purpose tool.
The number of variables in the Monte Carlo

simulations and in the medical database example was
intentionally small for the sake of illustration and
description of the results. Nevertheless, the STDP
method can be applied to databases with a large num-
ber of variables as long as the skew-t distribution can
be fitted to the data. In our experience, databases with
up to 200 variables and several thousands observa-
tions can be handled without problem on a desktop
computer. The fit to databases with even larger num-
bers of variables will require the development of new
procedures.
Another issue arises when some variables have a

positive support, i.e., they cannot be negative. Indeed,
the skew-t distribution, similarly to the normal, has
the whole real space as support. Although the fit of a
skew-t distribution to variables with a positive sup-
port will tend to concentrate its mass on the pos-
itive values, this can be a source of problems. An
alternative is to consider multivariate log-skew-t dis-
tributions, as recently introduced by Marchenko and
Genton (2010). Those are flexible extensions of the
multivariate log-normal distribution.

The STDP method has been developed to deal with
continuous numerical data. At this point, it is not able
to handle categorical data. One option is to fit skew-t
distributions to continuous numerical variables for
each level of the categorical variable. Another possi-
bility is to consider multimodal distributions as men-
tioned above. Both of those solutions would require
further investigations.

7. Conclusions
In this study, we developed a new data perturba-
tion procedure for database security problems based
on skew-t distributions. The class of skew-t distri-
butions is a flexible parametric multivariate family
that can model skewness and heavy tails in the data.
It contains the multivariate normal distribution as a
special case. Therefore, the new procedure, coined
skew-t data perturbation (STDP) method, includes the
classical general additive data perturbation (GADP)
method based on the normal distribution. The pro-
posed method consists of two simple basic proce-
dures: the estimation of skew-t parameters from the
database and the generation of random samples from
the conditional distribution of the confidential vari-
ables given the nonconfidential variables.
We investigated theperformanceof theSTDPmethod

by means of a Monte Carlo simulation study and
demonstrated its competitive behavior with respect to
other existing methods, including C-GADP, and DSP,
when the distribution of the database is nonnormal.
This is especially true if the underlying distribution can
be well approximated by a skew-t distribution. In fact,
skew-t and related distributions occur naturally in set-
tings where the data have been selected (see Arellano-
Valleet al. 2006). Inparticular,wehaveshowntheability
of STDP to reproduce characteristics of the joint tails
of the distribution. This is very important for database
users who want to answer higher-level questions. We
illustrated the STDP method on a medical database
related to breast cancer.
It is also important to recognize that perturbation

methods that involve random sampling from the con-
ditional distribution will have to deal with its impact
on statistical inference. This additional uncertainty
can be assessed, for example, by releasing multiple
perturbed data sets in the spirit of multiple imputa-
tion (see Raghunathan et al. 2003, Reiter 2003). Fur-
ther research on this issue is highly desirable.
In genuine applications, the data may contain

nonlinear relationships and include constraints on
variables, for instance, some variables sum to other
variables. We expect that the nonlinear relationship
among variables can be dealt with more effectively
using STDP than GADP because the multivariate nor-
mal density has an elliptical shape where only linear
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relationships of variables can appear. On the contrary,
the skew-t distribution with flexible skewness and
kurtosis parameters can reflect the possible nonlin-
ear relations among variables. Indeed, the conditional
expectation of the skew-t distribution is nonlinear (see
Appendix A.3 as well as Arellano-Valle and Genton
2010). The copula-based methods using rank order
correlations can also handle such nonlinearities. In the
case where some variables are constrained to be the
sum of other variables, a simple remedy is to remove
the constrained variables before applying a perturba-
tion method. Then those variables are replaced by new
ones, using the constraints on the perturbed variables,
if the constrained variables are confidential.
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Appendix

A.1. Conditional Distribution of the Skew-t
The k-dimensional random vector U ∼ STk������� �	 has
the stochastic representation

U= �+V −1/2�Z� (5)

where Z∼ SNk�0� 
���	 with 
�=�−1��−1, and V ∼ �2� /�,
independent of Z. Moreover, in terms of the well-known
reparametrization � = �1 + �T 
��	−1/2 
��� the stochastic
representation (5) can be rewritten as U = � + �W� with
W

d= ��T0� +T and[
T0

T

]
∼ t1+k

([
0

0

]
�

[
1 0

0 
�−��T

]
� �

)
� (6)

where t1+k�·	 stands for the �1+k	-dimensional multivariate
Student’s t distribution. Let U = �UT

1 �U
T
2 	
T, where U1 and

U2 are of dimensions k1 and k2, respectively. By (5), we
have Ui = �i + V −1/2�iZi, i = 1�2. In particular, U2 = �2 +
V −1/2�2Z2, where Z2 ∼ SNk�0� 
�22��2�1		, with �2�1	 = ��2+
�−1
22


�21�1	/�1 + �T1·2 
�11�2�1·2	1/2 and �1·2 = �1·2�−1
1 �1 (see,

e.g., Azzalini and Capitanio 1999), and is independent of
V . Thus, we have U2 ∼ STk2 ��2��22��2�1	� �	� Next, con-
sidering this marginal distribution and (1), it follows that
the conditional density of �U1 � U2 = u2	 is given by (2).
Here we used that �� + k	/�� + Q�u		 = ��� + k2	/�� +
Q�u2			���1·2 + k1	/��1·2 + Q1�2�u1�u2			� �T�−1�u − �	 =
�T
1·2�

−1
1·2�u1− �1·2�u2		+ �̄T2�

−1
2 �u2− �2	� and

tk �u− ���� �	

= tk1 �u1− �1·2�u2	��11·2�u2	� �1·2	 tk2 �u2− �2��22� �	 �

see, e.g., Arellano-Valle and Bolfarine (1995) for this last
result. The vectors �i and �i, i= 1�2� and the matrices 
�ij =

�−1
i �ij�

−1
j , i� j = 1�2� are induced by the partition Ui� i =

1�2 of U� The conditional distribution of U1·2 ≡ �U1 �U2	 will
be denoted by ESTk1 ��1·2�U2	��11·2�U2	��1·2� �1·2�U2	� �1·2	,
the extended skew-t family of distributions with density (2)
(see Arellano-Valle and Genton 2010).

A.2. Simulation from the Conditional Distribution of
the Skew-t

Let U1·2 ∼ ESTk1 ��1·2�U2	��11·2�U2	��1·2� �1·2�U2	� �1·2	 with
density (2). For each value u2 of U2, we will show that
U1·2

d= �U1·2, where

�U1·2 = �1·2�u2	+
√
�+Q�u2	
�+ k2

�1·2T1·2� (7)

T1·2 =
√
�1·2+ ��T0�2
�1·2+ 1

T1+�1·2 �T0 and

�T0 d= �T0 � T0+ �̃1·2�u2	 > 0	� (8)

with

T0 ∼ t1�0�1� �1·2	 and

T1 ∼ tk1 �0�

�11·2−�1·2�

T
1·2� �1·2+ 1	 (9)

being independent random quantities. Here �1·2 = � +
k2, 
�11·2 = �−1

1·2�11·2�−1
1·2, �1·2 = 
�11·2�1·2/

√
1+�T1·2 
�11·2�1·2

and �̃1·2�u2	 = �1·2�u2	/
√
1+�T1·2 
�11·2�1·2. In fact, note first

that �T1·2 � �T0 = z	 ∼ tk1 ��1·2z� ���1·2 + z2	/��1·2 + 1	�� 
�11·2 −
�1·2�T1·2�� �1�2 + 1	, where f�T0 �z	= t1�z��1·2	/T1��̃�u2	� �1·2	 for
z > −�̃1·2�u2	. It follows that fT1·2 � �T0=z�w	 = fT �T0=z�w	 and
f�T0 �z	= fT0 �z	/T1��̃�u2	� �1·2	 for z >−�̃1·2�u2	, where[

T0

T

]
∼ t1+k1

([
0

0

]
�

[
1 0

0 
�11·2−�1·2�T1·2

]
� �1·2

)
� (10)

Therefore, from the symmetry of fT0 and the identity
fT �T0=z�w	fT0 �z	= fT�w	fT0 �T=w�z	, we obtain

fT�w	 =
1

T1��̃1·2�u2	� �1·2	

∫ 	

−�̃1·2�u2	
fT �T0=z�w	fT0 �z	 dz

= fT�w	
T1��̃1·2�u2	� �1·2	

∫ �̃1·2�u2	

−	
fT0 �T=w�z	 dz

= tk1 �w�

(1·2� �1·2	

× T1�
√
��1·2+k1	/��1·2+�w�2	��T1·2w+ �̃1·2�u2		��1·2+k1	

T1��̃1·2�u2	��1·2	
�

because, by (10), �T0 �T=w	∼ t��T1·2w���1·2+�w�2	/��1·2+k1	�
�1·2+k1	, with �1·2= 
�−1

11·2�1·2/
√
1−�T1·2 
�−1

11·2�1·2. Finally, con-
sidering (7), the density of �U1·2 can be computed as

f�U1·2 �u1	 =
(

�+ k2
�+Q�u2	

)k1/2
��1·2�−1

× fT1·2

(√
�+ k2

�+Q�u2	
�−1
1·2�u1− �1·2�u2		

)
�

leading to the density (2).
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In (8), we note also that

T0
d=
√
�+ k2
V0

Z0 and T1
d=
√
�+ k2+ 1

V1
Z1� (11)

where

Z0 ∼N�0�1	� Z1 ∼Nk1
�0� 
�11·2−�1·2�T1·2	�

V0 ∼ �2�+k2� and V1 ∼ �2�+k2+1�
(12)

and all of them are independent.
With the aforementioned ingredients, we can easily gen-

erate a random sample from the conditional distribution of
U1·2 following the procedure described in §2.2.

A.3. Conditional Mean Vector and Covariance Matrix
Let )∗�u2	 = E�T0 � T0 + �̃1·2�u2	 > 0	, )∗2�u2	 = E�T 20 � T0 +
�̃1·2�u2	 > 0	, and *2∗ �u2	 = Var�T0 � T0 + �̃1·2�u2	 > 0	 =
)2∗�u2	 − )2∗�u2	. From Arellano-Valle and Genton (2010),
we have

)∗�u2	 =
�

�− 1
(
1+ �̃21·2�u2	

�

)
t1��̃1·2�u2	� �	
T1��̃1·2�u2	� �	

� � > 1�

)∗2�u2	 =
�

�− 2
T1

(√
��− 2	/��̃1·2�u2	� �− 2

)
T1��̃1·2�u2	� �	

− �̃1�2�u2	)∗�u2	� � > 2�

From the stochastic representation in (7), we obtain easily
that

E�U1·2	 = �1·2�u2	+
√
�+Q�u2	
�+ k2

�1·2E�T1·2	� �1·2 > 1�

Var�U1·2	 =
(
�+Q�u2	
�+ k2

)
�1·2Var�T1·2	�1·2� �1·2 > 2�

where by (8)

E�T1·2	 = )∗�u2	�1·2� �1·2 > 1�

Var�T1·2	 =
(
�1·2+)∗2�u2	

�1·2− 1
)
� 
�11·2−�1·2�

T
1·2	

+ *2∗ �u2	�1·2�
T
1·2� �1·2 > 2�

References
Arellano-Valle, R. B., A. Azzalini. 2006. On the unification of

families of skew-normal distributions. Scand. J. Statist. 33(3)
561–574.

Arellano-Valle, R. B., H. Bolfarine. 1995. On some characterizations
of the t distribution. Statist. Probab. Lett. 25(1) 79–85.

Arellano-Valle, R. B., M. G. Genton. 2010. Multivariate extended
skew-t distributions and related families.Metron. Forthcoming.

Arellano-Valle, R. B., M. D. Branco, M. G. Genton. 2006. A unified
view on skewed distributions arising from selections. Canad. J.
Statist. 34(4) 581–601.

Azzalini, A. 2005. The skew-normal distribution and related mul-
tivariate families (with discussion by Marc G. Genton and a
rejoinder by the author). Scand. J. Statist. 32(2) 159–188.

Azzalini, A., A. Capitanio. 1999. Statistical applications of the mul-
tivariate skew-normal distribution. J. Roy. Statist. Soc., Ser. B
61(4) 579–602.

Azzalini, A., A. Capitanio. 2003. Distributions generated by pertur-
bation of symmetry with emphasis on an multivariate skew t
distribution. J. Roy. Statist. Soc., Ser. B 65(2) 367–389.

Azzalini, A., M. G. Genton. 2008. Robust likelihood methods based
on the skew-t and related distributions. Internat. Statist. Rev.
76(1) 106–129.

Barak, B., K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, K. Tal-
war. 2007. Privacy, accuracy, and consistency too: A holistic
solution to contingency table release. Proc. Twenty-Sixth ACM
SIGMOD-SIGACT-SIGART Sympos. on Principals of Database
Systems, ACM, New York, 273–281.

Branco, M. D., D. K. Dey. 2001. A general class of multivariate
skew-elliptical distributions. J. Multivariate Anal. 79(1) 99–113.

Branco, M. D., D. K. Dey. 2002. Regression model under skew ellip-
tical error distribution. J. Math. Sci. 1 151–169.

Burridge, J. 2003. Information preserving statistical obfuscation.
Stat. Comp. 13(4) 321–327.

Clemen, R. T., T. Reilly. 1999. Correlation and copulas for decision
and risk analysis. Management Sci. 45(2) 208–224.

Domingo-Ferrer, J. 2007. A three-dimensional conceptual frame-
work for database privacy. W. Jonker, M. Petković, eds. Lec-
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