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ABSTRACT

This paper presents derivations of some analytical forms for spatial correlations of evolving random fields

governed by a white-noise-driven damped diffusion equation that is the analog of autoregressive order 1 in

time and autoregressive order 2 in space. The study considers the two-dimensional plane and the surface of

a sphere, both of which have been studied before, but here time is introduced to the problem. Such models

have a finite characteristic length (roughly the separation at which the autocorrelation falls to 1/e) and a re-

laxation time scale. In particular, the characteristic length of a particular temporal Fourier component of the

field increases to a finite value as the frequency of the particular component decreases. Some near-analytical

formulas are provided for the results. A potential application is to the correlation structure of surface tem-

perature fields and to the estimation of large area averages, depending on how the original datastream is

filtered into a distribution of Fourier frequencies (e.g., moving average, low pass, or narrow band). The form

of the governing equation is just that of the simple energy balance climate models, which have a long history in

climate studies. The physical motivation provided by the derivation from a climate model provides some

heuristic appeal to the approach and suggests extensions of the work to nonuniform cases.

1. Introduction

This paper considers a family of parsimonious corre-

lation models potentially relevant to studies of surface

temperature fields that may be modeled by random

fields distributed in space and evolving in time [on

stationary but non-time-dependent random fields see

Cramér and Leadbetter (2004), Yaglom (1961, 1987), and

Heine (1955)]. We will be particularly concerned with

how the spatial correlation structure is modified by tem-

porally smoothing the data. Our method is to follow in the

steps of the autoregressive methods familiar from time

series analysis but to extend them to the two-dimensional

spatial domain as well, both on the plane and the surface

of the sphere. Our motivation is based upon the govern-

ing equations of simple energy balance climate models

(EBCMs; see, e.g., North et al. 1983, hereinafter re-

ferred to as NMS83) that have been studied over several

decades. There are potential applications in estimation

problems such as the construction of smooth meteo-

rological fields and space–time averages from datasets

consisting of a finite number of point measurements at

the surface (e.g., Gandin and Smith 1997). In this study

we confine ourselves to models with uniform spatial sta-

tistics. This implies that the statistics are translationally

stationary and isotropic on the plane or rotationally in-

variant on the sphere. This allows us to extract near-

analytic solutions that can be compared to appropriate

datasets. Of course, these idealizations do not strictly

hold for the surface temperatures in general, since land

surfaces induce very different statistical properties from

sea surfaces. We look forward to including such dis-

continuities that occur at the land–sea boundaries, but

first it is instructive to investigate in some detail the

uniform-surface cases. We can do this in a limited way

by utilizing data from a large relatively uniform land-

mass or oceanic region.

The pioneering work of Hansen and Lebedeff (1987,

hereinafter referred to as HL87) showed that when an-

nually averaged station-collected surface temperatures

were collected and partitioned according to the distances
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separating the stations their correlations decayed in a

near-exponential fashion as a function of separation.

They showed these correlation-scatter diagrams for dif-

ferent latitude bands (we reproduce part of the relevant

figure from HL87 in Fig. 1). The (visual) fits to simple

exponentials showed less scatter in northern high lati-

tudes, and the goodness of the fit deteriorated in the

tropics with little sign of decay with separation. Visual

inspection of the HL87 curves suggests a characteristic

decay scale (separation where the correlation estimate

falls below 1/e) of about 1800 km outside the tropics.

For illustrative purposes we show a similar correlation

scatterplot in Fig. 2 that is based on annually averaged

data taken from a fairly homogeneous land surface in

eastern Siberia. The data for this study are from the

Research Data Archive (RDA), which is maintained by

the Computational and Information Systems Labora-

tory at the National Center for Atmospheric Research.

The original data were obtained online from the RDA

(http://dss.ucar.edu/datasets/ds524.0/; includes map of sta-

tion locations). This dataset consists of instrument data

from 223 stations and runs from 1881 to 1989; of course,

each record has a different length. Our analysis was

crude, simply looking at a long time series of annual

averages and estimating the correlation of data from

different points with those from a central point in Asia.

The scatter is large primarily because the records are

so short and the natural variability on this continental

landmass is large. The blue line in the figure is the mean

at a particular separation over the vertical values of points

in a small interval surrounding that separation. The red

curve is the function rK1(r) in units of 3000 km. The

reason for this choice will be shown below. Our point is

simply the similarity to the analysis of HL87, only over

a more homogeneous land surface. We suggest that the

latter homogeneous land surface as opposed to the mix

of land and ocean surfaces results in a correlation length

(distance to where the correlation falls to 1/e) that is

about 50% larger.

North and Cahalan (1981) introduced a noise-forced

EBCM on the uniform sphere to examine the concept of

predictability of individual decay modes in simple cli-

mate models. In that study they made use of both the

space and time dependence of the resulting random

temperature field. Kim et al. (1996) showed that in data

and in model simulations (GCMs as well as noise-forced

EBCMs) correlation lengths differ greatly depending on

whether the underlying surface is land or sea. The large-

spatial-scale relaxation time in EBCMs is a month or

two over land [see also Manabe and Strickler (1964), who

used a radiative convective model] and a few years over

large-scale ocean areas—this last because of the heat

capacity of the entire mixed layer of the ocean (about

50–100 m thick) is participating in thermal changes. This

means that over land the autocorrelation time of annual

averages of the datastream is several times the relaxa-

tion (or correlation) time and is essentially in the low-

frequency limit of Fourier frequency components. On

the other hand, over large-scale expanses of ocean, the

autocorrelation time for annual averages is only a frac-

tion of the relaxation time. This fact leads to very short

autocorrelation lengths over oceans, as seen in Kim et al.

(1996). The HL87 analysis used annual averages, but

they were mixed ocean and land sites and hence lots of

scatter and possibly a shorter length scale than the uni-

form low-frequency limit might be the case.

FIG. 1. Correlation as a function of separation of sites for an-

nually averaged surface temperature data. The three panels are

from different latitude zones. No distinction is made in this analysis

for land or sea surface. Largely upon the basis of these analyses,

Hansen and Lebedeff argued that annually averaged temperatures

averaged over large areas could be estimated if gauges are spaced

closer than about 1000 km apart. This figure is modified from

HL87.
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HL87 argued that given the strong correlation be-

tween neighboring stations (they conservatively chose

1000 km as their characteristic length scale) one could

estimate the annual average temperatures of the global

surface at a tolerable accuracy with only a finite number

of reasonably uniformly spaced sites on the sphere—

perhaps on the order of a few hundred. Shen et al. (1994)

and others have shown that, by using subsets of data as

compared with the larger dataset containing thousands

of sites, one could obtain very reasonable results with as

few as 64 (582) or even 49 (572) well-placed sites. By

very reasonable, they meant that the decadal variations

of the global average temperature fields were resolved

in comparison with sampling error. If correlation lengths

are longer over land, as suggested in Figs. 2 and 3, it can

be argued that even fewer uniformly spaced sites are

necessary for estimating large-scale averages, at least

over land. This will not be the case over ocean for annual

averages. In a heuristic way, the number 49 can be es-

timated from the 1800-km radius of a ‘‘correlation disk’’;

dividing this disk area into the area of the earth’s surface

yields a little over 49. This means that there are about

49 independent oscillators on the earth. The standard

error in estimating an area average goes down as n21/2;

therefore, it is reduced by a factor of 7 or 8 over the

standard deviation of annual averages of global average.

Adding more sites beyond 49 will continue to reduce the

error but much more slowly than the n21/2 dependence

because the additional sites added will be correlated and

therefore partially redundant [for some quantitative es-

timates, see North et al. (1992), Hardin et al. (1992), and

Shen et al. (1996)]. The number of ‘‘independent oscil-

lators’’ on the sphere is referred to as the number of de-

grees of freedom of the random field [see Wang and Shen

(1999) for estimates of these for the real earth; this paper

also contains many references to this concept for mete-

orological fields]. We will return to this interesting con-

cept later.

Noise-forced EBCMs work well in middle and higher

latitudes but fare less well in the tropics. The reason for

this is that the upper latitudes are more prone to the

noisy weather disturbances that have time scales on the

order of days and spatial scales on the order of 1000 km.

Since the radiative relaxation time of a column of air

and over oceans is two orders of magnitude longer, we

have the classic first-order autoregressive (AR1) process,

wherein the weather serves as the white-noise driver and

the radiative damping serves as the response, as pointed

out by Hasselmann (1976). In the tropics we have a very

different situation. There is no weather noise forcing

and length scales are much longer, stretching great dis-

tances in the longitudinal direction. It may be that there

are even fewer degrees of freedom in the tropical sur-

face temperature field than in the mid- and higher lati-

tudes (meaning that even fewer sites would be necessary

for a good estimate of large-area averages). Of course,

FIG. 2. Spatial autocorrelation of data from eastern Siberia. The data were annually aver-

aged. The red curve is based on the correlation model introduced by Whittle (1954): rK1(r),

where K1 is the modified Bessel function. The distance r is in kilometers. The decorrelation

length scale can be estimated to be approximately 2800 km, which is about 50% larger than

in HL87.
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the tropics are also complicated by the El Niño–Southern

Oscillation phenomenon, which is well outside the scope

of EBCMs. For the present, we will acknowledge that

our method will not hold in the tropics. In addition,

in regard to the limitation of this class of EBCMs, we

mention that the mixed layer of the ocean is an ideali-

zation. Below it there is the deeper ocean, and, if the

frequency is low enough, we will activate the deeper

ocean, increasing the effective heat capacity even more.

The turnover time of the deep ocean is many hundreds

of years. This is discussed in many sources, but we refer

the reader to the very recent work of Held et al. (2010)

for an explanation of how this coupling works and af-

fects the transients in climate change.

In this paper we derive some simple parametric forms

for frequency-dependent correlation models that pro-

vide insight into the nature of correlation structure in

data analysis and that could be of utility in practice. The

approach is based on simple physical climatelike models.

These linear damped diffusion models are driven by

white noise in space and time and take the form of fa-

miliar autoregressive statistical models AR1 in time and

FIG. 3. Contours of equal correlation from four sources (top left) observations, (top right) noise-forced EBCM,

(bottom left) a GCM simulation from a circa- 1990s model from the Geophysical Fluid Dynamics Laboratory, and

(bottom right) a similar GCM simulation from the Max Planck Institute (Hamburg, Germany). The datastreams

were bandpassed to include periods from 2 months to 1 yr. Each field employs six protosites, and surface temper-

atures at neighboring locations are correlated with that site. The thick contour represents when the correlation falls

to 1/e. Reproduced from Kim et al. (1996).
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second-order autoregressive (AR2) in space [for studies

of these kinds of models on the sphere see, e.g., North

and Cahalan (1981) and Kim and North (1991, 1992)].

For studies of uniform (rotationally invariant) random

fields on the sphere, refer to North and Cahalan (1981);

see also, among the earliest of these, the studies by

Obukhov (1947) and Jones (1963). These latter papers

show the efficacy of using spherical harmonics in solv-

ing uniform-sphere problems. A modern treatment of

spherical harmonics for scientists is provided by Arfken

and Weber (2001). A recent approach to studying cor-

relation models for nonstationary random fields on the

sphere is reported by Jun and Stein (2008).

An important property of correlations in the tem-

perature field separated by a finite distance depends on

the distribution of frequency components retained in the

data being analyzed. As is the case in many damped-

diffusive or damped-wavelike geophysical fields, low-

frequency-pass filters tend to lead to larger decorrelation

lengths. In the EBCMs this property is very apparent. In

approaching the problem, we begin with the examina-

tion of narrowbandpassfiltered data, wherein we study

the spatial autocorrelation as a function of the (angular)

frequency v filtered out of the datastream. This is easily

extended to the low-pass case, in which the frequency

components that are lower than v are retained. The case

of moving averages is also considered. All three have the

similar property that in the limit v / 0 (or long moving

average) they lead to a finite limiting decorrelation

length [in the low-frequency limit,

C(x, y)
›T

›t
/

FT
ivC(x, y)T

v
/0,

where Tv is the temporal Fourier transform of T(x, y, t)]

and all spatial dependence on C(x, y) vanishes, and we

are left with the long-time-average model; see (1) below.

The plan of the paper is first to introduce the EBCM

forms (noise-driven damped diffusion) on the uniform

plane and then in section 3 to extend this formalism to

the surface of a uniform sphere. Section 4 examines the

differences for our analysis for different ways of filtering

the datastream (narrowband pass and low pass vs mov-

ing average). A discussion and concluding remarks are

in section 5.

2. Simplest EBCM forms

The generic EBCM can be defined on a plane with

uniform properties. Departures from the long-term av-

erage are governed by

C(x, y)
›T

›t
2 D=2T 1 BT 5 BF(x, y, t), (1)

where T(x, y, t) is (nominally) the temperature in the x–y

plane at time t, C(x, y) is a local effective heat capacity,

D is a thermal diffusion coefficient, and B is a damping

coefficient (radiation to space in the climate model). In

the equation, BF(x, y, t) is a climatic driving term that

could be a solar driver such as the seasonal cycle, but we

will take it to be a noise term that excites fluctuations

in the response, T(x, y, t). The noise is to be white (no

correlation between neighboring times or locations). We

will be crude in our treatment of this stochastic process,

where possible ignoring some of the complications aris-

ing in the classical studies of Brownian motion, by think-

ing of the time and space steps as finite (or, equivalent,

the spectra are cut off at finite upper limits) but using

continuous differential forms when there is no danger

of singularities popping up.

The study of random fields based on the solutions of

differential equations driven by noise has a long history,

including papers on the Brownian motion of particles by

Einstein (1905), the collection of papers of Wax (1954),

and the monograph by Gardiner (1985).

For improved clarity we can divide (1) through by B to

obtain

t
›T

›t
2 l2=2T 1 T 5 F(x, y, t), (2)

where t 5 C/B is a relaxation time scale and l 5 (D/B)1/2

is a length scale. These two scale parameters will prove

useful throughout the study. Note that t and l are the

only two parameters that enter this study. In data anal-

ysis these are the two parameters that would need to be

estimated.

First, notice that the governing equation in (1) is not

so strange from the point of view of statistical modeling.

It is simply a first-order process in time (AR1) and a

second-order process in space (AR2). The =2 is a rota-

tionally invariant operator insuring that the statistical

properties of an ensemble of solutions will be rotation-

ally invariant in the plane. Hence, our process is the

lowest-order autoregressive process that can be con-

structed that is rotationally invariant in the plane.

Anisotropy can be introduced with a two-dimensional

symmetric tensor for D (introducing a second length-

scale parameter), and some anisotropy is present in the

data; we will ignore that complication in this study,

however. If D were to depend on position, it would occur

in the form $ �D$, but it will be constant and isotropic in

this study.

In general, the effective heat capacity C(x, y) depends

on position. Over land it is small. The relaxation time of

a large land area due to radiation to space is on the order

of a month or two, whereas over the ocean surfaces this
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characteristic time is larger by at least a factor of 10–80.

Hence, at land–sea boundaries there is a large discon-

tinuity in C(x, y) and therefore also in t(x, y). In a global

model that is solved numerically, this problem is not

serious; in analytical studies, however, this problem is a

formidable impediment to obtaining simple parametric

forms for solutions and correlation models. In addition,

in the real world D might be dependent on x and y as

well. It might even be anisotropic (examination of the

data shows that it is mildly anisotropic in midlatitudes, as

expected). The weakly anisotropic case can be handled

reasonably easily in our problem by the use of a tensor

form for the diffusion coefficient. But we defer inclu-

sion of these complications for this study, relying on the

uniform cases wherein C, B, and D are constants in-

dependent of position. We reproduce in Fig. 3 a figure

from Kim et al. (1996), wherein six protosites are used as

locations from which correlations with neighboring sites

are correlated. The closed contours represent a locus

of equal correlation with data at the center point. The

heavy contour indicates where the correlation falls to

1/e. The panels illustrate the fact that correlation lengths

depend on the land–sea surface type. We do not claim

that this is fair to GCMs of the mid-1990s, when the

models were far more primitive than those of today.

There are several points in Fig. 3 that are worthy of

comment:

1) The correlation lengths are longer over land than over

large oceanic expanses for this datastream, which was

bandpassed for periods between 2 months and 1 year.

2) Even the correlation contour at land’s edge in San

Francisco, California, shows short lengths to the west

and long lengths to the east.

3) Note the hint of ENSO in the top-left panel but none

yet apparent in the GCMs and certainly not in the

EBCM. All current coupled GCMs have some form

of spontaneous ENSO.

4) Note the Himalayan-induced flattening on the equa-

torward side of the contour centered in middle Asia

in all except the (flat!) EBCM.

The paper by Kim et al. (1996) includes some addi-

tional figures showing that the contours swell hori-

zontally as the bandpassed frequencies become lower.

This last is the major point to be raised in the present

paper. We believe that obtaining good agreement among

second-order statistics, such as spatial correlations, is

a necessary condition for trusting a model for various

purposes. The agreement we find in Fig. 3 gives us confi-

dence that the EBCM can provide useful—but, of course,

limited—guidance in exploring various correlation models

and their behavior with respect to the frequency de-

pendence of correlation patterns.

Let us leave the world of variable and/or discontinu-

ous heat capacities to return to the homogeneous world

whereupon most of the rest of this paper focuses—but

first let us give some physical interpretation. In physics

the analog of our mathematical problem is that of heat

flow on a thin flat plate with heat capacity per unit area

C, thermal conductivity D, and damping (Newtonian

cooling, say, to the air above) coefficient B. The noise on

the right-hand side is that of a ‘‘mad’’ Gaussian heater/

cooler who warms and cools spots at random in space

and time. The resulting solution is a random field re-

sponding to the mad heater with a smoother field whose

large-scale averages decay with time scale t and whose

long-term spatial autocorrelation lengths are l (to be

shown presently). A heuristic view might consist of a

temperature anomaly random-walking away from its ini-

tial location. The anomaly spreads horizontally pro-

portional to t1/2. There is the relaxation time t, however.

The distance ‘‘diffused’’ in that relaxation time is just the

length scale l. The correlation length then is the root-

mean-square distance that a disturbance covers in a sin-

gle relaxation time for the field. This can be verified from

the solution to the initial-value problem expressed as the

partial differential equation in which at time t 5 0 all

heat energy is concentrated at the origin (indicated by

the Dirac delta function d(r), where r is the position

vector r 5 xi 1 yj). The solution to the homogeneous

version of (2) yields a temperature distribution in the

plane that is independent of polar angle and dependent

only on radial distance from the origin r 5 jrj and time t:

T(r, t) 5
t

4t
exp 2

r2t

4l2t
2

t

t

� �
.

The last expression can be checked by insertion into (2).

The integral with respect to r of 2pr times this function

(the total heat content) decays exponentially with time

constant t, and the radial width of the function T(r, t) is

proportional to (2l2t/t)1/2. Solutions such as this one

can be found in some of the earliest papers on Brownian

motion [e.g., Einstein (1905) and papers in and referred

to in the collection by Wax (1954)].

Let us derive the response to the white-noise forcing

by the use of Fourier analysis. We assume that the time

is much greater than t, such that all transients have died

away and we are left with the statistically steady forced

solutions. We introduce the white-noise forcing compo-

nent at angular frequency v and vector wavenumber k:

F(x, y, t) 5 F
v,keik�r2ivt,

where the location is denoted as r 5 xi 1 yj. We can

write the response at this same (angular) frequency
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[5(2p)/(cycle period)] and wavenumber (jkj 5 2p/

wavelength) as

T(x, y, t) 5 T
v,keik�r2ivt. (3)

By insertion into (2), we find

T
v,k 5

F
v,k

2ivt 1 l2k2 1 1
.

The space–time spectral density is given by

S
v,k 5 hjT

v.kj
2i5

hjF
v.kj

2i
t2v2 1 (l2k2 1 1)2

,

where the angle brackets denote ensemble average. By

the definition of white noise,

hjF
v,kj

2i5 s2
F 5 constant.

To find the spatial autocovariance function, we must per-

form the Fourier integral (see, e.g., Arfken and Weber

2001, p. 680):

C
v

(r) 5

ð‘

2‘

ð‘

2‘

e2ik
x
x2ik

y
yS

v,k

dkx

2p

dky

2p

5

ð‘

0

ð2p

0
S

v,ke2ikrcosuk du
dk

(2p)2
(4)

5 2p

ð‘

0
J0(kr)S

v,kk
dk

(2p)2

5 s2
F

ð‘

0

J0(kr)

t2v2 1 (l2k2 1 1)2
k

dk

2k
, (5)

where we have indicated the dependence of the covari-

ance on v and separation r by Cv(r). By symmetry we

have assumed that the covariance can only depend on

the separation r, and J0 is the Bessel function of the first

kind of order zero. The angular integral is known as

Bessel’s integral.

First, consider the low-frequency limit, v / 0. In this

case the remaining integral over k can be performed

(e.g., by using Mathematica software):

C0(r) 5 ps2
F

r

l3
K1

r

l

� �
.

The normalized autocorrelation [r0(0) 5 1] is given by

r0(r) 5
r

l
K1

r

l

� �
, (6)

where K1 is the modified Bessel function of degree 1.

This form is known to statisticians as Whittle’s correla-

tion model (Whittle 1954) and is a particular member

of the Matérn class (Matérn 1960); for a review of this

family of correlation functions, see Guttorp and Gneiting

(2006). For a Bayesian approach to kriging of spatial

random fields also using this form, see Handcock and

Stein (1993). It is noteworthy that in linear systems

such as this, the forcing variance s2
F cancels out, making

the correlation function especially appealing.

The result for v . 0 can also be found:

C
v

(r) 5
i

2vt
K0

br

l

� �
2 K0

b*r

l

� �� �
5< i

vt
K0

br

l

� ��
,

�
(7)

where the asterisk denotes as a complex conjugate,

< indicates real part, and b 5 (1 1 ivt)1/2. Note that r

always occurs in the combination r/l and that v always

occurs in the combination vt. The slope of Cv(r) van-

ishes as r / 0 for finite v. This assures that the spatial

random fields on the plane generated in this class of

models will be smooth. This is in contrast with the co-

variance function e2ar, which is sometimes used. Note

the shape of the correlation function in Fig. 2 as r / 0.

Figure 4 shows a family of theoretical autocorrelation

curves, each for a different value of the dimensionless

parameter vt. First, note that they approach a limiting

form as v / 0. Second, the distal extent (roughly mea-

sured by the value of r when its argument falls to e21) of

the correlation shortens dramatically as one increases

the frequency of the bandpass center.

FIG. 4. EBCM-computed correlation of surface temperature

fluctuations between sites that are a distance r/l apart [(6)]. The

geometry is a flat plane with constant values of the coefficients in

the EBCM. Different curves are for values of the dimensionless

parameter vt, where v is the (angular) bandpass frequency of the

observations and t is the relaxation time of the large-scale tem-

perature field.
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We have taken some surface temperature data from

the midlatitude Pacific Ocean as well as those from

eastern Siberia to illustrate the effect. Here we did not

employ bandpass, but rather a series of moving averages

on the data. Figure 5 shows results for these calculations.

We suspect that an effective value of t for the ocean

surface data is a few years (or even more at very low

frequencies; see, e.g., Held et al. 2010) (NMS83); de-

pending on the mixed layer depth, season, location, and

for very low frequencies, it may be even larger as more

depth of ocean is shared in the response. Nevertheless,

we can see a pattern emerging that is similar to the

mathematical construct in Fig. 4. The curves in Fig. 5

tend to flatten for large values of separation. This is

likely to be due to long-term (large spatial scale) trends

in the time series (e.g., global warming or basinwide co-

herent multidecadal oscillations). This effect was partially

removed by treating residuals from straight-line de-

trended time series of the individual grid boxes from

which the data were taken. Of course, we realize that the

time series were influenced by the procedures used in

transferring the ocean surface data onto the grid prior to

our procurement of them. On the other hand, we doubt

whether the feature in which we are interested is very

dependent on this effect. The data for the ocean surface

were obtained online from the RDA (http://dss.ucar.

edu/datasets/ds277.0/). These gridded (58 3 58) data span

1854–2011 and are described in Smith et al. (2008).

All of the curves show the same tendency toward

longer correlation lengths as the averaging time of the

data is increased. It is far more pronounced with the land

data, but we suspect that the assumption of uniform

surface is violated as the distances become large (some

distant points will ‘‘feel’’ the ocean). The ocean surface

data are more orderly partly because the natural vari-

ability is less, reducing sampling errors, but again this

may be influenced by the procedures used by Smith et al.

(2008) in taking those data onto a uniform grid in the

North Pacific. Table 1 shows estimates of decorrelation

length as a function of the moving-average interval for

Siberia and the North Pacific.

3. EBCM correlations on the uniform sphere

Studies of random fields on the sphere can be found in

Fisher et al. (1987). The case of uniform random fields

on the sphere is especially interesting, since the spherical

harmonics happen to be the EOFs (Obukhov 1947; North

and Cahalan 1981). For the uniform sphere, (1) and (2)

still hold. It is convenient to take the earth’s radius to be

unity (or equivalently to take D / DR2). We may write

t
›T

›t
2 l2 ›

›m
(1 2 m2)

›

›m
T 2

l2

1 2 m2

›2

›f2
1 T

5 F(m, f, t),

FIG. 5. Correlation of surface temperatures from sites separated by a distance r. Solid lines are

for sites over the North Pacific; dashed lines are for uniform land areas in Siberia.

TABLE 1. Decorrelation lengths (km) for different averaging

intervals for Siberia and the North Pacific.

Siberia Pacific

1-month avg 1700 1500

1-yr avg 3000 1700

5-yr avg ;3700 2100

10-yr avg .5000 3000
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where m 5 cosu, u is the polar angle, and f is longitude.

The length scale l is in units of earth radius (6400 km).

The appropriate basis set (see, e.g., Arfken and Weber

2001) is the spherical harmonics Yn,m(r̂), where r̂ denotes

the unit vector pointing from the center of the sphere to

a point on the spherical surface. The Yn,m are the ei-

genfunctions of =2:

=2Yn,m(r̂) 5 2n(n 1 1)Yn,m(r̂).

The Y
n,m

(̂r) are also orthonormal over the sphere:

ð ð
4p

Yn,m* (r̂)Yn9,m9
(̂r) dV 5 dn,n9

dm,m9
,

where the integral is over all 4p steradians of solid angle

on the sphere. Now a temperature or forcing field can be

expanded into the basis set:

T
v

(r̂) 5 �
‘

n50
�
m

m52n
T

v;n,m(r̂),

where we have anticipated the sinusoidal driving and

response forms by inserting the dependence e2ivt gov-

erning equation as in the planar case.

As before, we can substitute into the governing equa-

tion to obtain

T
v;n,m 5

F
v;n,m

2ivt 1 l2n(n 1 1) 1 1
,

which leads to

T
v

(r̂) 5 �
‘

n50
�
m

m52n

F
v;n,mYn,m(r̂)

2ivt 1 l2n(n 1 1) 1 1
.

We seek the covariance at frequency v, hT
v
*(̂r9)T

v
(r̂9)i,

which is given by

C
v

(r̂, r̂9) 5 C
v

(r̂, r̂9) 5 C
v

(m)

5 �
‘

n50
�

n

m52n

s2
FYn,m* (r̂)Yn,m(r̂)

v2t2 1 [l2n(n 1 1) 1 1]2
,

wherein we noted that by symmetry the covariance

can only depend on the cosine of the opening angle,

u 5 cos21(̂r � r̂9), between the two points on the sphere;

the function C
v

(̂r � r̂9) indicates the functional depen-

dence on great-circle opening angle u 5 cos21(r̂ � r̂9) be-

tween the two points on the spherical surface. Now we

can use the addition theorem for spherical harmonics

(Arfken and Weber 2001, p. 797):

pn(r̂ � r̂9) 5
4p

2n 1 1
�

n

m52n
Y n,m

* (r̂)Yn,m(r̂9),

where Pn is the nth Legendre polynomial and r̂ � r̂9 5

cosu [ m is the dot product of these two unit vectors,

which point to two distinct locations on the sphere. Re-

calling that the sphere is uniform, we can choose our

prototype site (r̂) at the North Pole (m 5 1) and the other

at polar angle u 5 cos21m so that we can write

C
v

(m) 5 s2
F �

‘

n50

2n 1 1

4p

� �
Pn(m)

v2t2 1 [l2n(n 1 1) 1 1]2
.

Figure 6 shows a family of curves indicating the corre-

lation on the surface of the sphere. In this case l/R 5 0.4,

corresponding to a length scale of 2560 km.

4. Moving average versus bandpass at v

Most data are analyzed by moving average rather than

bandpass filtering at a particular frequency. Consider

the box type of moving average of a continuous time

series T(t). Taking the inverse Fourier transformation

of (5), we have

Tn,m(t) 5

ð1‘

2‘

eivtF
v;n,m

2ivt 1 l2n(n 1 1) 1 1
dv.

Applying a filter

M(t) 5

ð1‘

2‘

eivtM
v

dv

to Tn,m(t) results in

~Tn,m [

ð1‘

2‘

M(t 2 t9)Tn,m(t9) dt9

5

ð1‘

2‘

�ð1‘

2‘

e(iv9t2t9)M
v9

dv9

��ð1‘

2‘

eivt9F
v;n,m

2ivt 1 l2n(n 11) 1 1
dv

�
dt9

5

ð1‘

2‘

ð1‘

2‘

ð1‘

2‘

F
v;n,mMv9

eiv9t1i(v2v9)t9

2ivt 1 l2n(n 1 1) 1 1
dv dv9dt9.
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Noting that hF
v,n,m � Fy,n,m

* i5 d(y 2 v)s2
F , where d is

the Dirac delta function, the space spectral density, which

is given by hj ~Tn;m(t)j2i, can be evaluated (see interme-

diate steps in the appendix):

hj ~Tn;m(t)j2i5 s2
F

ð1‘

2‘

jM
v
j2

(vt)2
1 [l2n(n 1 1) 1 1]2

dv.

(8)

Reinserting the spherical harmonic functions and sum-

ming results in

C
v

(r � r9) 5 s2
F �

‘

n50
�

n

m52n
Yn,m* (r)Yn,m(r9)

3

ð1‘

2‘

jM
v
j2

(vt)2
1 [l2n(n 1 1) 1 1]2

dv.

Applying the addition theorem gives

C
v

(r � r9) 5 s2
F �

‘

n50

(2n 1 1)

4p
Pn(r � r9)

3

ð1‘

2‘

jM
v
j2

(vt)2
1 [l2n(n 1 1) 1 1]2

dv. (9)

For the pure low-pass filter, jMvj2 5 (2V)21 for 2V #

v # V and is 0 otherwise, which leads to

1

2V

ð1V

2V

dv

(vt)2
1 [l2n(n 1 1) 1 1]2

5

arc tan
Vt

b

� �
2Vbt

,

where b2 5 l2n(n 1 1).

For the moving-average box filter of width D,

jM
v
j2 5

4 sin2 vD

2

� �
p(vD)2

,

and the corresponding integral is

2p[bD 1 (21 1 e2bD/t)t]

b3D2
,

where b is the same as above. Figure 7 shows the cor-

relation temperature time series between separated points

on the sphere for different values of 2pt/D, where t is the

relaxation time of the random temperature field and D

is the width of the box-shaped moving average that was

applied to the evolving field. In rough terms, the upper-

most curves represent the cases for which the most lower-

frequency Fourier components are retained.

In the case of the infinite plane, we can similarly re-

duce the problem to a one-dimensional integral (as com-

pared with the sum for the spherical surface). In finding

the spatial spectrum, hjTkj2i, we encounter the same in-

tegral as in (9) with n(n 1 1) replaced by k2. Also the

FIG. 6. EBCM-computed correlation of surface temperature fluctuations between sites a

distance Ru/l apart on the sphere [computed from (9) after normalization, such that rv(0) 5 1].

The geometry is a featureless spherical surface (constant values of the coefficients) in the

EBCM. Different curves are for values of the dimensionless parameter vt, where v is the

(angular) bandpass frequency of the observations and t is the relaxation time of the large-scale

temperature field. Numerical values are for l/R 5 0.4.
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factor eik�r must be inserted to invert the Fourier trans-

form. This means that both the low-pass and moving-

average filters can be solved as in the spherical-surface

case. Next, instead of the sum over the spherical har-

monic indices m and n, we must perform the double

integral over kx and ky, which by symmetry (as in use of

the addition theorem) we can use the polar coordinates

k and u, leading to the integral found in (4) and (5).

Hence, in the planar case we are able to reduce the

problem to a one-dimensional integral, which can easily

be performed numerically if not analytically as a func-

tion of the filter parameter.

5. Discussion and conclusions

This paper introduced some analytical parametric forms

for correlations of random temperature fields on the

plane and on a spherical surface. In each case the time

series were assumed to be stationary and the spatial

field was assumed to be statistically homogeneous and

isotropic. The forms are motivated by simple stochastic

climate models providing some physical insight into the

dependencies. In the homogeneous and isotropic models

considered in this paper, the autocorrelation function

of surface temperature fluctuations between separated

sites exhibits a correlation length (here taken as the dis-

tance at which the autocorrelation falls to e21) that

lengthens with decreasing frequency, approaching a lim-

iting value as the frequency of the corresponding Fourier

component of the datastream tends to zero. A low fre-

quency is the range wherein its inverse is much longer

than the relaxation time of the random field for large-

area averages t. Filtered data of higher and higher fre-

quency exhibit shorter and shorter autocorrelation lengths.

The relaxation time of surface temperature over ho-

mogeneous land areas is on the order of a month or two,

whereas over ocean surfaces it is a few years. Hence, the

meaning of high and low frequency depends on the heat-

capacity characteristics of the surface—land or ocean,

and perhaps topography. The number of statistically

independent regions on the sphere that can be thought

of as the effective number of degrees of freedom is likely

to diminish as data are low-pass filtered.

We tested our correlation model with some data from

fairly homogeneous ocean and land surfaces—the north

central Pacific and Siberia. Both datasets exhibited the

frequency dependence suggested by the homogeneous

EBCM, taking into account the large difference in t over

the two surface types. Correlation lengths were very large

over both surfaces for vt � 1, exceeding 2500 km over

the ocean surface. These lengths might be even larger

for decadally averaged data. Over land the correlation

lengths at low frequencies were even larger, but the data

quality and the assumptions regarding homogeneity were

suspect at the lower frequencies. We also showed that

on the sphere the same conclusions hold for moving-

averaged data as opposed to data filtered to a narrow

frequency band. Although record lengths of instrumental

FIG. 7. Autocorrelation between points in the correlation model on the sphere as function of

great-circle separation s 5 Ru/l (same units as in Fig. 6). Note the convergence toward the

upper curve as the averaging length increases. In this example, l/R 5 0.4. The curves are

labeled by the dimensionless parameter 2pt/D, where t is the characteristic time of the random

field and D is the width of the box-shaped moving average. The uppermost curve corresponds

to the longest range of the temporal moving average.
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data for testing our hypothesis are lacking, it should

be possible to test it with long control runs of GCMs.

Moreover, models should have the same correlation

characteristics as data even given the limited records of

the datastream, as suggested by the early work by Kim

et al. (1996).

Left partially open is the complication of land and sea

distribution. Variance of the surface temperature fields

depends strongly on the positioning of land and sea in

data, EBCMs, and general circulation model simula-

tions (Kim et al. 1996) with large variance over (mid-

latitude) continental interiors and small variance over

the ocean surface. The variance field smoothes as the

filtering frequency is lowered. Similarly, the correlation

lengths are long over continental interiors and short

over oceans. As the frequency is lowered to less than one

per few years the ocean and land surfaces appear to

homogenize, however. This suggests that some further

work on correlation models with land–sea borders might

be of use.

One conjecture that comes from this is that long time

averages of the datastream (or very-low-pass-filtered

datastreams) can lead to very long correlation lengths.

This has implications for paleoclimatic reconstructions,

in the sense that many of these datastreams have been

filtered by biogeophysical processes to very long times

(e.g., ocean sedimentary cores). Fine-resolution data can

always be smoothed in the laboratory or on the com-

puter. This suggests that in many cases, it might be pos-

sible to provide useful estimates of the low-frequency

changes in global or hemispheric average temperatures

with only a few well-separated sites over the entire

earth. For example, a single time series from an ice core

in Antarctica averaged over 1000 yr might be indicative

of the entire Southern Hemispheric average temperature

or possibly even that of the entire globe.

An important caveat is that the EBCM is hardly

expected to hold in tropical areas because the mid-

latitude storms provide the ‘‘noise’’ for the stochastic

model. In the tropics (say, jlatitudej , 308), the trans-

port of heat is dominated by the Hadley circulation,

which is a more direct flow than diffusive. This is ac-

tually helpful in the estimation of large-area averages,

since it suggests that the tropics are mostly homoge-

neous, that is, that they have correlations that cover an

entire latitude belt. Only a few gauges should be suf-

ficient to get a good area mean.
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APPENDIX

Mathematical Steps Preceding (8)

The following equation illustrates the mathematical

steps that precede (8):

ð ð ð ð ð ð hF
v,n,m � Fy,n,m* iM

v9
M

y9
*[eiv9t1i(v2v9)t9][eiy9t1i(v2v9)s9]

[2ivt 1 l2n(n 1 1) 1 1][iyt 1 l2n(n 1 1) 1 1]
dv dv9 dt9 dy dy9 ds9

5 s2
n,m

ð ð ð ð ð ð
d(y 2 v)

M
v
M

y9
*[eiv9t1i(v2v9)t92iy9t2i(y2y9)s9]

[2ivt 1 l2n(n 1 1) 1 1][iyt 1 l2n(n 1 1) 1 1]
dy

� 	
dv dv9 dt9 dy9 ds9

5 s2
n,m

ð ð ð ð ðM
v9
M

y9
*[eiv9t1i(v2v9)t92iy9t2i(v2y9)s9]

(vt)2
1 [l2n(n 1 n) 1 1]2

ds9

( )
dv dv9 dt9 dy9

5 s2
n,m

ð ð ð ð
d(v 2 y9)

M
v
M

y9
*[eiv9t1i(v2v9)t92iy9t]

(vt)2
1 [l2n(n 1 n) 1 1]2

dy9

( )
dv dv9 dt9

5 s2
n,m

ð ð ðM
v9
M

v
*[eiv9t1i(v2v9)t92ivt]

(vt)2
1 [l2n(n 1 n) 1 1]2

dt

( )
dv dv9

5 s2
n,m

ð ð
d(v 2 v9)

M
v9
M

v
*[eiv9t2ivt]

(vt)2
1 [l2n(n 1 n) 1 1]2

dv9

( )
dv and

hj ~T n;mj
2i5

ð1‘

2‘

s2
n,mjMv

j2

(vt)2
1 [l2n,(n 1 1) 1 1]2

dv.
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