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Functional Boxplots

Ying SUN and Marc G. GENTON

This article proposes an informative exploratory tool, the functional boxplot, for vi-
sualizing functional data, as well as its generalization, the enhanced functional boxplot.
Based on the center outward ordering induced by band depth for functional data, the
descriptive statistics of a functional boxplot are: the envelope of the 50% central region,
the median curve, and the maximum non-outlying envelope. In addition, outliers can be
detected in a functional boxplot by the 1.5 times the 50% central region empirical rule,
analogous to the rule for classical boxplots. The construction of a functional boxplot
is illustrated on a series of sea surface temperatures related to the El Niño phenom-
enon and its outlier detection performance is explored by simulations. As applications,
the functional boxplot and enhanced functional boxplot are demonstrated on children
growth data and spatio-temporal U.S. precipitation data for nine climatic regions, re-
spectively. This article has supplementary material online.

Key Words: Depth; Functional data; Growth data; Precipitation data; Space–time
data; Visualization.

1. INTRODUCTION

Functional data analysis is an attractive approach to study complex data in statistics. In
many statistical experiments, the observations are functions by nature, such as temporal
curves or spatial surfaces, where the basic unit of information is the entire observed func-
tion rather than a string of numbers. Such functional data appear in many fields, including
meteorology, biology, medicine, and engineering. Human growth curves, weather station
temperatures, gene expression signals, medical images, and human speech are all real-life
examples; see, for example, the work of Dryden and Mardia (1998), Fletcher et al. (2004),
and Ramsay and Silverman (2005).

To analyze functional data, researchers often used mathematical models, among which
Ramsay and Silverman (2005) provided various parametric methods while Ferraty and
Vieu (2006) developed detailed nonparametric techniques. Quantile regression, as a popu-
lar model-based method, has been widely used, and many economic applications were dis-
cussed by Fitzenberger, Koenker, and Machado (2002). In contrast to model-based analy-
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sis, visualization methods often help to display the data, highlight their characteristics, and
reveal interesting features. For functional data, Hyndman and Shang (2010) proposed two
graphical methods with outlier detection capability: the functional bagplot and the func-
tional highest density region boxplot, both of which are based on the first two robust prin-
cipal component scores. They applied the bivariate bagplot (Rousseeuw, Ruts, and Tukey
1999) to the first two robust principal component scores, and then mapped the features of
the bagplot into the functional space. In this article, we aim to develop visualization tools
for functional data directly in the functional space rather than in the feature space that
requires principal component analysis techniques.

It is well known that the boxplot is a graphical method for displaying five descrip-
tive statistics: the median, the first and third quartiles, and the non-outlying minimum and
maximum observations. A boxplot may also indicate which observations, if any, can be
considered as outliers. First introduced by Tukey (1970) and Tukey (1977, pp. 39–43) in
exploratory data analysis, boxplots have evolved into a straightforward but informative
method in data interpretation. The first step to construct a boxplot is the data ordering. In
the univariate setting, the ranking is simply from the smallest observation to the largest.
However, multivariate ordering is much more complicated and has attracted considerable
interest over the years. To generalize order statistics or ranks to the multivariate setting,
different versions of data depth have been introduced to measure how deep (central) or
outlying an observation is. Examples of data depth include the Mahalanobis depth (Maha-
lanobis 1936), the Tukey halfspace location depth (Tukey 1975), the Oja depth (Oja 1983),
the simplicial depth (Liu 1990), the majority depth (Singh 1991), and the likelihood depth
(Fraiman and Meloche 1999). Vardi and Zhang (2000) proposed an L1-depth which can be
extended to functional data. Febrero, Galeano, and González-Manteiga (2007, 2008) have
reviewed a series of functional depths, such as the functional depth of Fraiman and Mu-
niz (2001), the functional depth of Cuevas, Febrero, and Fraiman (2006), and the random
projection functional depth of Cuevas, Febrero, and Fraiman (2007).

For functional data, López-Pintado and Romo (2009) recently introduced a notion of
band depth (BD). It allows for ordering a sample of curves from the center outward and,
thus, introduces a measure to define functional quantiles and the centrality or outlyingness
of an observation. Having the ranks of curves, the functional boxplot is a natural extension
of the classical boxplot and is an appealing visualization tool for functional data.

This article is organized as follows. Section 2 explains the definition of band depth for
functional data and its modified version. Section 3 illustrates the construction of functional
boxplots and enhanced functional boxplots, as well as the associated outlier detection rule.
Simulation results on the performance of our outlier detection method are reported in Sec-
tion 4. The visualization capabilities of the functional boxplots are demonstrated in Sec-
tion 5 when applied to classical functional data and a space-time dataset. A discussion is
provided in Section 6.

2. BAND DEPTH FOR FUNCTIONAL DATA

In functional data analysis, each observation is a real function yi(t), i = 1, . . . , n, t ∈ I ,
where I is an interval in R. The band depth for functional data provides a method to order



318 Y. SUN AND M. G. GENTON

all the sample curves. Indeed, we can compute the band depths of all the sample curves and
order them according to decreasing depth values. Let y[i](t) denote the sample curve asso-
ciated with the ith largest band depth value. We view y[1](t), . . . , y[n](t) as order statistics,
with y[1](t) being the deepest (most central) curve or simply the median curve, and y[n](t)
being the most outlying curve. The implication is that a smaller rank is associated with a
more central position with respect to the sample curves. The order statistics induced by a
band depth start from the most central sample curve and move outward in all directions.
Therefore, they are different from the usual order statistics which are simply ordered from
the smallest sample value to the largest.

With this basic idea, López-Pintado and Romo (2009) introduced the band depth con-
cept through a graph-based approach. The graph of a function y(t) is the subset of the
plane G(y) = {(t, y(t)) : t ∈ I}. The band in R

2 delimited by the curves yi1, . . . , yik is
B(yi1 , . . . , yik ) = {(t, x(t)) : t ∈ I,minr=1,...,k yir (t) ≤ x(t) ≤ maxr=1,...,k yir (t)}. Let J be
the number of curves determining a band, where J is a fixed value with 2 ≤ J ≤ n. If
Y1(t), . . . , Yn(t) are independent copies of the stochastic process Y(t) generating the ob-
servations y1(t), . . . , yn(t), the population version of the band depth for a given curve y(t)

with respect to the probability measure P is defined as

BDJ (y,P ) =
J∑

j=2

BD(j)(y,P ) =
J∑

j=2

P {G(y) ⊂ B(Y1, . . . , Yj )},

where B(Y1, . . . , Yj ) is a band delimited by j random curves. The sample version of
BD(j)(y,P ) is obtained by computing the fraction of the bands determined by j dif-
ferent sample curves containing the whole graph of the curve y(t). In other words,
BD(j)

n (y) = (
n
j

)−1 ∑
1≤i1<i2<···<ij ≤n I {G(y) ⊆ B(yi1 , . . . , yij )}, where I {·} denotes the in-

dicator function. The implication is that by computing the fraction of the bands containing
the curve y(t), the bigger the value of band depth, the more central position the curve has.
Then, the sample band depth of a curve y(t) is

BDn,J (y) =
J∑

j=2

BD(j)
n (y). (2.1)

Instead of considering the indicator function, López-Pintado and Romo (2009) also pro-
posed a more flexible definition, the modified band depth (MBD), by measuring the propor-
tion of time that a curve y(t) is in the band: MBD(j)

n (y) = (
n
j

)−1 ∑
1≤i1<i2<···<ij ≤n λr{A(y;

yi1, . . . , yij )}, where Aj(y) ≡ A(y;yi1, . . . , yij ) ≡ {t ∈ I : minr=i1,...,ij yr (t) ≤ y(t) ≤
maxr=i1,...,ij yr (t)} and λr(y) = λ(Aj (y))/λ(I), if λ is the Lebesgue measure on I . If
y(t) is always inside the band, the modified band depth degenerates to the band depth
in (2.1).

Because the modified band depth takes the proportion of times that a curve is in the
band into account, it avoids having too many depth ties and is more convenient to obtain
the most representative curves in terms of magnitude. The band depth is more dependent on
the shape of curves often yielding ties, thus it can be used to obtain the most representative
curves in terms of shape. Consequently, there are two types of outliers: magnitude outliers
and shape outliers. In general, magnitude outliers are distant from the mean and shape
outliers have a pattern different from the other curves.
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Figure 1. An example of BD and MBD computation: the gray area is the band delimited by y1(t) and y3(t).
The curve y2(t) completely belongs to the band, but y4(t) only partly does.

A sample median function is a curve from the sample with largest depth value, defined
by arg maxy∈{y1,...,yn} BDn,J (y). If there are ties, the median will be the average of the
curves maximizing depth.

Although the number of curves determining a band, j , could be any integer between 2
and J , the order of curves induced by band depth is very stable in J . To avoid computa-
tional issues, we use J = 2, and for simplicity, we write BD(2)

n as BD and MBD(2)
n as MBD

in the sequel.
Figure 1 provides a simple example with n = 4 curves on how to compute BD and

MBD in practice. When J = 2, there are six possible bands delimited by two curves. For
instance, the gray area in Figure 1 is the band delimited by y1(t) and y3(t). We can see
that the curve y2(t) completely belongs to the band, but y4(t) only partly does. We define
that a curve is contained in a band even if this curve is on the border of the band. Then
BD(y2) = 5/6 = 0.83 since only the band delimited by y3(t) and y4(t) does not completely
contain the curve y2(t) and BD(y4) = 3/6 = 0.5 as it is only completely contained in the
bands delimited by itself and another curve. Similarly, we could compute BD(y1) = 0.5
and BD(y3) = 0.5. To compute MBD, note that the curve y2(t) is always contained in the
five bands, hence MBD(y2) = 0.83, the same value as BD. In contrast, the curve y4(t) only
belongs to the band in gray 40% of the time, thus MBD(y4) = (3 + 0.4 + 0.4)/6 = 0.63
by definition. For the other two curves, MBD(y1) = 0.5 and MBD(y3) = 0.7.

3. CONSTRUCTION OF FUNCTIONAL BOXPLOTS

In the classical boxplot, the box itself represents the middle 50% of the data. An interest-
ing idea that can be extended to functional data is the concept of central region introduced
by Liu, Parelius, and Singh (1999). The band delimited by the α proportion (0 < α < 1) of



320 Y. SUN AND M. G. GENTON

deepest curves from the sample is used to estimate the α central region. In particular, the
sample 50% central region is

C0.5 =
{
(t, y(t)) : min

r=1,...,�n/2�y[r](t) ≤ y(t) ≤ max
r=1,...,�n/2�

y[r](t)
}
,

where �n/2� is the smallest integer not less than n/2. The border of the 50% central region
is defined as the envelope representing the box in a classical boxplot. Thus, this 50% central
region is the analog to the “inter-quartile range” (IQR) and gives a useful indication of the
spread of the central 50% of the curves. This is a robust range for interpretation because
the 50% central region is not affected by outliers or extreme values, and gives a less biased
visualization of the curves’ spread. There is also a curve in the box that indicates the median
y[1](t), or the most central curve which has largest band depth value. The median curve is
also a robust statistic to measure centrality.

The “whiskers” of the boxplot are the vertical lines of the plot extending from the box
and indicating the maximum envelope of the dataset except the outliers. Thus, we need to
identify the outliers first. Again, we extend the 1.5 times IQR empirical outlier criterion to
the functional boxplot. The fences are obtained by inflating the envelope of the 50% central
region by 1.5 times the range of the 50% central region. Any curves outside the fences are
flagged as potential outliers. It is worth noting that when each curve is simply a point, the
functional boxplot degenerates to a classical boxplot. We suggest the constant factor 1.5 as
in a classical boxplot, but we leave to the user the possibility of modifying it.

Now that the pieces of the functional boxplot have been identified, we illustrate its con-
struction on a dataset used by Hyndman and Shang (2010) to demonstrate their functional
bagplot shown in Figure 3(c). The data consist of monthly sea surface temperatures (SST)
measured in degrees Celsius over the east-central tropical Pacific Ocean and are shown
in Figure 2. In this case, each curve represents one year of observed SST in degrees Cel-
sius from January 1951 to December 2007. In our functional boxplot (Figure 3(a)), only
the median curve and the flagged outliers are real observations. The border of the box in
the middle denotes the envelope of the 50% central region and the minimum and maxi-
mum provide the range of non-outlying envelope. To show this difference, we use blue
curves to denote envelopes, a black curve to represent the median curve, and red dashed
curves to indicate outlier candidates. Thus, instead of having five summary statistics as in
a classical boxplot, the functional boxplot has the envelope of the central 50% region, the
median curve, and the maximum non-outlying envelope as descriptive statistics. As can be
seen from Figure 3, (a) and (c), the two methods display the same median curve in this
example, but slightly different outlier detection results. Our functional boxplot detects two
outliers by using MBD: the years 1983 and 1997. In addition, the year 1982 from Sep-
tember to December and the year 1998 from January to June are viewed as being part of
the maximum envelope. The information discovered by the functional boxplot that Sep-
tember 1982 to December 1983 and January 1997 to June 1998 are abnormal is in close
agreement with the recent major El Niño events reported by Dioses, Dávalos, and Zuzu-
naga (2002). Similarly, the functional bagplot of Hyndman and Shang (2010) detects the
years 1982–1983 and 1997–1998 as outliers. For functional data, such as these sea surface
temperatures, there will be necessarily dependence in time. This is why the outliers come
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Figure 2. Data of monthly sea surface temperatures measured in degrees Celsius over the east-central tropical
Pacific Ocean from 1951 to 2007.

in adjacent years. Considering that the dependence in time may affect outlier detection
performance, we allow the constant factor 1.5 to be adjustable in practice.

By introducing the concept of central regions, the functional boxplot can be generalized
to an enhanced functional boxplot shown in Figure 3(b). Besides the 50% central region,
the 25% and 75% central regions are provided as well. We have implemented a function
fbplot in R (R Development Core Team 2010) to produce functional boxplots and en-
hanced functional boxplots. It is available as supplemental material on the JCGS website.

One may think of using the most intuitive approach, the pointwise boxplots shown in
Figure 3(d), which do not treat each curve as one observation. Obviously, such an approach
has lost the information of the curves’ shapes. In general, the central regions provided by
pointwise boxplots are narrower than those given by the functional boxplot, thus many
more points would be detected as outliers. By comparing these two types of boxplots, we
see that the functional median could be equivalent to the medians in pointwise boxplots
only if all the points on the functional median curve are the pointwise 50% quantiles si-
multaneously. This is rarely true for functional data, especially when curves are very irreg-
ular. Specifically, in the above sea surface temperatures example, outliers are detected for
each month without taking the annual trend into account. One may connect those monthly
outliers from the same year, but it is very difficult to visualize the whole outlying yearly
curve and there are cases where only one or two monthly observations within one year are
relatively extreme. Furthermore, using the connected pointwise medians (the middle black
line in Figure 3(d)) as the most representative curve is not very sensible since it smooths
out too many monthly features of a typical yearly temperature curve and is no longer a true
curve of the sample.

It is important to note that the box, the whiskers, and the median can reveal useful
information about a functional dataset by looking at their position, size, length, and even
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Figure 3. (a) The functional boxplot of SST with blue curves denoting envelopes, and a black curve representing
the median curve. The red dashed curves are the outlier candidates detected by the 1.5 times the 50% central region
rule. (b) The enhanced functional boxplot of SST with dark magenta denoting the 25% central region, magenta
representing the 50% central region, and pink indicating the 75% central region. (c) The functional bagplot of
SST. (d) The pointwise boxplots of SST with medians connected by a black line.

the shape of the box or the median curve. Moreover, the spacings between the different
parts of the box help indicate the degree of skewness in the data and identify outliers.

4. SIMULATION STUDIES

Hyndman and Shang (2010) proposed the functional bagplot and the functional highest
density region (HDR) boxplot, which both can detect outliers. The former obtains the outer
region (the “fence”) by inflating the inner region (the “bag”) by a constant factor 2.58
and the latter needs to prespecify the coverage probability of the outlying region. We will
focus on comparing our functional boxplot with their functional bagplot since the empirical
outlier rule we have proposed obtains the outer region (the “fence”) by inflating the inner
region (the “envelope”) by 1.5 times the range of the 50% central region. We prefer not to



FUNCTIONAL BOXPLOTS 323

Figure 4. Left panel: curves generated from model 1. Middle panel: the corresponding functional boxplot. Right
panel: the corresponding functional bagplot.

have to prespecify the coverage probability of the outlying region in case there is no outlier
or the fraction of outliers is unknown.

To further compare our functional boxplot with the principal component (PC) based
functional bagplot and assess their performance for outlier detection, we have generated
curves from different models introducing either magnitude outliers or shape outliers. The
model structures are similar to those of López-Pintado and Romo (2009), but with dif-
ferent parameter values. Some of these models were already considered by Fraiman and
Muniz (2001).

Model 1 is a basic one without contamination shown in the left panel of Figure 4.
Model 2, model 3, and model 4 have magnitude outliers while model 5 has shape con-
tamination as shown in the left panels of Figure 5. Model details are described as follows:

1. Model 1 is Xi(t) = g(t) + ei(t),1 ≤ i ≤ n, with mean g(t) = 4t , t ∈ [0,1], and
where ei(t) is a stochastic Gaussian process with zero mean and covariance function
γ (s, t) = exp{−|t − s|}.

2. Model 2 includes a symmetric contamination: Yi(t) = Xi(t) + ciσiK , where ci is 1
with probability q and 0 with probability 1 − q , K is a contamination size constant,
and σi is a sequence of random variables independent of ci taking values 1 and −1
with probability 1/2.

3. Model 3 is partially contaminated: Yi(t) = Xi(t) + ciσiK , if t ≥ Ti , and Yi(t) =
Xi(t), if t < Ti , where Ti is a random number generated from a uniform distribution
on [0,1].

4. Model 4 is contaminated by peaks: Yi(t) = Xi(t) + ciσiK , if Ti ≤ t ≤ Ti + �, and
Yi(t) = Xi(t) otherwise, where Ti is a random number from a uniform distribution
in [0,1 − �].

5. Model 5 considers shape contamination with different parameters in the covariance
function γ (s, t) = k exp{−c|t − s|μ}. The basic model 1, Xi(t) = g(t) + e1i (t), has
parameter values k = 1, c = 1, and μ = 1 for the covariance function of e1i (t). To
generate irregular curves, let Yi(t) = g(t)+e2i (t), where e2i (t) is a Gaussian process
with zero mean and covariance function parameters k = 8, c = 1, and μ = 0.2. The
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Figure 5. Left panels: curves generated from each contaminated model. Middle panels: the corresponding func-
tional boxplots. Right panels: the corresponding functional bagplots.

contaminated model is given by Zi(t) = (1 − ci)Xi(t) + ciYi(t), 1 ≤ i ≤ n, where
ci is 1 with probability q and 0 with probability 1 − q .

In the simulation studies, we generate n = 100 curves with parameters q = 0.1, K = 8,
� = 3/49, and compute depth values by MBD, the more flexible version of band depth.
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Table 1. The percentage p̂0, the mean, and standard deviation of the percentage p̂f for the functional boxplot
and functional bagplot with 1000 replications, 100 curves for model 1.

Method p̂0 Mean(p̂f ) SD(p̂f )

Functional boxplot 93.2 0.07 0.27
Functional bagplot 24.4 2.42 6.24

Figures 4 and 5 show the difference of outlier detection between our band depth based
functional boxplots and the functional bagplots of Hyndman and Shang (2010) based on
the first two PC scores. For this particular generated dataset, both methods work equally
well on the first three models and the first two PCs of the robust covariance matrices ex-
plain 87.0%, 85.0%, and 89.3% of the total variation, respectively. However, the PC based
functional bagplot only detects one outlier in model 4, and in model 5 it misses most of
the outliers and falsely detects one non-outlying curve. For these two models, the first two
PCs explain only 78.3% and 77.5% of the total variation, respectively, which are smaller
than those in models 1 to 3. Thus, using only the first two PCs is sometimes a potential
drawback of the functional bagplot.

To assess the variability of the outlier detection methods, we are interested in the dis-
tribution of two quantities: pc , the percentage of correctly detected outliers (number of
correctly detected outliers divided by the total number of outlying curves), and pf , the
percentage of falsely detected outliers (number of falsely detected outliers divided by the
total number of non-outlying curves).

For model 1, the basic model without outliers, we estimate the percentage, p0, that each
of the two methods detects no outliers, and obtain the distribution of the percentage p̂f

with 1000 replications and 100 curves. The percentage, the mean, and standard deviation
of p̂f are shown in Table 1. For models 2 to 5, we obtain the distribution of the two percent-
ages p̂c and p̂f with 1000 replications and 100 curves. The means and standard deviations
are shown in Table 2. A good performance is defined as high correct detection percentages
p0 and pc , but a low false detection percentage pf . As can be seen, overall the functional
boxplot method works better than the functional bagplot except for model 3, where, how-
ever, the two methods are not significantly different considering the variation. Focusing on
the models 1, 4, and 5, the better performance of the functional boxplot method is obvious

Table 2. The mean and standard deviation (in parentheses) of the percentages p̂c and p̂f for the functional
boxplots and functional bagplots with 1000 replications, 100 curves for models 2 to 5.

Model 2 Model 3 Model 4 Model 5

p̂c

Functional boxplot 99.1 (3.1) 83.7 (13.9) 55.0 (18.4) 78.6 (15.3)
Functional bagplot 99.5 (5.5) 88.4 (10.8) 18.6 (15.7) 32.7 (17.0)

p̂f

Functional boxplot 0.03 (0.19) 0.03 (0.20) 0.05 (0.27) 0.03 (0.18)
Functional bagplot 1.81 (5.80) 1.51 (4.59) 1.82 (5.51) 1.66 (5.13)
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and significant. The simulation results show that the functional bagplot method is more
likely to either miss a true outlier or falsely detect a non-outlying curve because it only
depends on the first two principal components.

Notice that the peaks only appear during short intervals in model 4. By definition, BD
would give small depth values for this type of outlying curves but MBD may not. Thus, an
alternative would be to compute depth values by BD and to break the possible ties by their
MBD values. In this way, simulation results show that the mean of p̂c could be increased
to 95%.

As another simulation study with harmonic signals, we simulated n = 100 curves
of the form Yi(x) = (1 − ci){a1i sin(t) + a1i cos(t)} + ci{b1i sin(t) + b2i cos(t)}, where
0 < t < 2π , ci is 1 with probability 0.1 and 0 with probability 0.9. The coefficients a1i

and a2i follow independent uniform distributions on [0,0.05], and b1i and b2i also follow
independent uniform distributions but on [0.1,0.15]. This model (model 6) is similar to the
third example studied by Hyndman and Shang (2010), but we introduce outliers randomly
with probability 0.1.

For one particular generated dataset, the original curves and the corresponding func-
tional boxplot and functional bagplot are shown in the top panels of Figure 6. Since the
functional highest density region (HDR) boxplot needs to prespecify α, the coverage prob-
ability of the outlying region, the corresponding HDR boxplots for α = 0.05,0.1,0.2 are
shown in the bottom panels of Figure 6. For this dataset, the functional boxplot correctly
detects all the outliers, but the functional bagplot fails to detect any. The three HDR box-

Figure 6. Top panels: the original curves generated from model 6, the corresponding functional boxplot, and
the functional bagplot. Bottom panels: the corresponding functional HDR boxplots for α = 0.05,0.1,0.2, respec-
tively.
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Table 3. The mean and standard deviation (in parentheses) of the percentages p̂c and p̂f for the functional
boxplot, the functional bagplot, and the HDR boxplots with 1000 replications, 100 curves for model 6.

Functional HDR boxplots

Method Functional boxplot Functional bagplot α = 0.05 α = 0.1 α = 0.2

p̂c 100 (0.2) 72.8 (42.4) 54.7 (17.7) 90.7 (12.9) 100 (0.6)
p̂f 0 (0) 0.48 (4.50) 0.07 (0.32) 1.41 (1.75) 11.1 (3.0)

plots clearly show that the outlier detection performance highly depends on the prespeci-
fied α. When α increases, more outliers are detected but non-outlying curves are also more
likely to be flagged as potential outliers at the same time.

Similarly, we obtain the distribution of the two percentages p̂c and p̂f for model 6
with 1000 replications and 100 curves. The means and standard deviations are reported
in Table 3. The simulation results show that the functional boxplot also works better than
the functional bagplot for model 6 and also better than the functional HDR boxplot even
with the correctly prespecified outlier probability. For the functional HDR boxplots, the
means of p̂c and p̂f both increase as α increases. Hence, the outlier detection performance
depends on the choice of α.

Any outlier detection method should take care of both magnitude and shape outliers.
However, to detect shape outliers not far from the median curve with lower density is not an
easy task. The functional boxplot would be a good outlier detection method when outliers
are either far away from the median in magnitude (models 2 to 4), or outlying in terms
of shape but with some outlyingness in magnitude as well (models 5 and 6). However, it
may miss outliers which are completely outlying in shape without showing any feature of
magnitude outliers. This is where a density approach such as a functional highest density
region boxplot can be useful, albeit the percentage of potential outliers must be known
and the first two PC scores must explain most of the variation. To illustrate this situation,
we let the parameters a1i and a2i in model 6 follow independent uniform distributions on
[0,0.1], and b1i and b2i follow independent uniform distributions on [0.1,0.12]. In this
model (model 7), the parameters have the same values as the third example in the article
by Hyndman and Shang (2010), which make the outliers not very outlying in magnitude.
The only difference is that we still simulate 100 curves and introduce outliers randomly
with a probability of 0.1.

For one particular generated dataset, the original curves and the corresponding func-
tional boxplot and functional bagplot are shown in the top panels of Figure 7, and the
corresponding HDR boxplots for α = 0.05,0.1,0.2 are shown in the bottom panels of Fig-
ure 7. For this dataset, the functional boxplot and functional bagplot fail to detect any of
the outliers because the outlying curves are not sufficiently distant from the median. All
three HDR boxplots detect some of the outliers but also flag other curves as potential out-
liers. As in model 6, when α increases, more and more outliers are detected. With 1000
replications and 100 curves, we obtain the distribution of the two percentages p̂c and p̂f

for model 7. The means and standard deviations are reported in Table 4. It is shown that
the functional boxplot fails to detect the outliers that are not far from the median, and the
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Figure 7. Top panels: the original curves generated from model 7, the corresponding functional boxplot, and
the functional bagplot. Bottom panels: the corresponding functional HDR boxplots for α = 0.05,0.1,0.2, respec-
tively.

functional bagplot also fails most of the time. In contrast, the HDR boxplots can identify
more such outliers but the correct detection rate is not high. For instance, the mean of p̂c

is only 17.5% even with the correctly prespecified α = 0.1. A larger α could increase the
correct detection rate; however, the false detection rate increases as well.

5. APPLICATIONS

5.1 CHILDREN GROWTH DATA

A strong point of the functional boxplot is its ability to display differences between
populations without making any assumptions on the underlying statistical distribution. We
start by applying the functional boxplot to the children growth data of Ramsay and Silver-
man (2005). The heights of 54 girls and 39 boys were measured at 31 unequally spaced

Table 4. The mean and standard deviation (in parentheses) of the percentages p̂c and p̂f for the functional
boxplot, the functional bagplot, and the HDR boxplots with 1000 replications, 100 curves for model 7.

Functional HDR boxplots

Method Functional boxplot Functional bagplot α = 0.05 α = 0.1 α = 0.2

p̂c 0 (0) 1.73 (12.31) 8.25 (19.39) 17.5 (29.9) 33.0 (38.5)
p̂f 0 (0) 0.66 (5.26) 5.07 (1.15) 9.95 (2.08) 19.7 (3.3)
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Figure 8. Top panels: the heights of 39 boys and 54 girls at 31 unequally spaced ages. Bottom panels: the
corresponding functional boxplots of the children growth data using MBD.

ages from 1 year to 18 years. Within each population, the growth curves are monotonic and
similar to a shifted version of each other. Thus we use the MBD because it is more suitable
for magnitude outliers as we have discussed in Section 2.

Comparing the original curves to the functional boxplots in Figure 8, we see that the
latter are very informative to compare the boys and girls data. The four blue curves and
the black curve are the analog to the five summary statistics in a classical boxplot as we
explained in the previous section. The median curves can be interpreted as the most repre-
sentative observed patterns of children growth with age. In the functional boxplot for girls,
we notice that there is one detected outlier candidate (red dashed curve), and girls reach
lower height values at the end of the growth curves. Also, the shape of the boxes and the
median curves depict that boys grew faster than girls between age 13 and 15 years. This
information is difficult to obtain by simply looking at the original curves. In addition, one
girl is detected as an outlier candidate whose growth curve is always higher in magnitude
than the rest. In terms of the shape, this girl grew a little faster at her early age and stopped
growing earlier but then still ended up taller than the others.
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5.2 SPATIO-TEMPORAL PRECIPITATION DATA

Another feature of the functional boxplot is its ability to summarize information from
complex data, such as space-time datasets. To illustrate this aspect, we use the observed
annual total precipitation data for the coterminous United States from 1895 to 1997, pro-
vided by the Institute for Mathematics Applied to Geosciences (http://www.image.ucar.
edu/Data/US.monthly.met/ ). There are 11,918 stations reporting precipitation at some time
in this period. The observations are functional data since we have one time series with
p = 103 yearly precipitation observations, or one curve, at each spatial location. Before
we apply the functional boxplot to this complex dataset, we first need to perform smooth-
ing to estimate each mean precipitation curve because the records of precipitation at each
weather station are so variable. The original data were smoothed by a spline smoothing
approach in a nonparametric regression model yj = f (xj ) + εj , where εj iid ∼ N(0, σ 2),
j = 1, . . . , p. Spline smoothing uses all unique data points x1, . . . , xp as knots in the for-
mulation of the cubic spline. Then the cubic spline estimator is obtained by minimizing∑p

j=1{yj − f (xj )}2 + λi

∫
f̈ (x)2 dx, where f̈ (x) is the second derivative of f (x) and λi

is the smoothing parameter of the ith curve. The smoothing parameters were estimated
from the data by generalized cross-validation.

Using functional boxplots to summarize and compare the annual precipitation for differ-
ent climatic regions is an interesting application. Nine climatic regions for precipitation in
the United States are defined by the National Climatic Data Center (NCDC) and shown in
Figure 9. The number of stations is large for each region: the minimum number is 823 for
the East North Central region and the maximum number is 2084 for the South region. Blue
dots denote stations with normal precipitation and red plus signs present potential outlying
stations with respect to their respective climatic region detected by enhanced functional
boxplots.

The nine enhanced functional boxplots based on MBD in Figure 10 reveal information
about the different annual precipitation characteristics for different climatic regions. For

Figure 9. U.S. climatic regions for precipitation from NCDC with abbreviations for North East, East North
Central, Central, South East, West North Central, South, South West, North West, and West. Blue dots denote
stations with normal precipitation and red plus signs present potential outlying stations with respect to their
respective climatic region detected by enhanced functional boxplots.

http://www.image.ucar.edu/Data/US.monthly.met/
http://www.image.ucar.edu/Data/US.monthly.met/
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Figure 10. Enhanced functional boxplots of observed yearly precipitation over the nine climatic regions for
the coterminous United States from 1895 to 1997 using MBD. Dark magenta, magenta, and pink denote the
25%, 50%, and 75% central regions, respectively, and the outlier rule is 1.5 times the 50% central region. The
percentage of outliers in each climatic region is provided.

each region, the global spatial outliers denoted by red dashed curves correspond to the red
plus signs on the U.S. map in Figure 9.

There are mainly four areas of potential outliers within the United States shown in Fig-
ure 9. Two of them are located along the Rocky Mountains in the West and the Appalachian
Mountains in the East with different patterns from the other locations in the corresponding
climatic regions. In addition, certain amounts of potential outliers appear along the west
coast with higher precipitation which can be clearly seen in the enhanced functional box-
plot of North West in Figure 10. By identifying the locations of the potential outliers in the
enhanced functional boxplot of South East, we notice that the annual precipitation at the
southmost tip in Florida shows an oscillatory pattern. It varies greatly from year to year
when hurricanes and droughts have occurred. In Florida, wet springs and summers make
up the wet season, and relatively dry winters and autumns form the dry season. If we go
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back to look at the original monthly precipitation, it matches the wet and dry seasons at
normal locations. However, the outlying locations usually have drier springs, but wet sea-
son from July to November even though it is during the drought. And during wet years,
most of the precipitation is contributed by the period from July to November which is the
hurricane season in Florida. Therefore, the high points of the oscillation in the enhanced
functional boxplot capture the effects of hurricanes. If we use a logarithmic scale, it would
yield fewer potential outliers. However, it is common that an observation could be an out-
lier in one scale but not in another. As the classical boxplot also suffers from the same
problem, we prefer not to do any transformation in general.

As we have noticed, for spatio-temporal data, we do not have independent curves like
in the children growth data example. These precipitation curves are spatially correlated,
but the dependence between the curves should only affect the variance of the band depth
estimator, not its unbiasedness. The percentage of potential outliers might be different
because of the spatial correlation.

6. DISCUSSION

This article presented the functional boxplot as an informative exploratory tool for vi-
sualizing functional data, as well as its generalization, the enhanced functional boxplot.
These functional boxplots were applied to sea surface temperatures, children growth, and
spatio-temporal precipitation datasets. With this new technique, outliers can be detected
based on the 1.5 times the 50% central region empirical rule. Our approach is distinct from
others in treating each curve as an observation rather than summarizing datasets point-
wisely. The descriptive statistics in a functional boxplot are rank-based, hence they may
lead to building robust statistical models to capture the features of complex datasets.

For spatio-temporal data, we have viewed the information as a temporal curve at each
spatial location. An alternative would be to treat the dataset as a spatial surface at each
time. In that case, we could define a volume-based surface band depth for a surface S by
counting the proportion of surface bands determined by J different surfaces (2 ≤ J ≤ n)
in R

3, containing S. This would lead to a three-dimensional surface boxplot with similar
characteristics as the functional boxplots defined in this article. An illustrative surface box-
plot is shown in Figure 11. Similarly, the fences are obtained by the 1.5 times the 50%
central region rule. Any surfaces outside the fences are flagged as outlier candidates. The
surface boxplot is a natural extension of the functional boxplot to R

3. However, to obtain
a three-dimensional functional bagplot, one would definitely need robust principal compo-
nent analysis techniques to an array rather than a matrix (Hyndman and Shang 2010).

SUPPLEMENTARY MATERIALS

Supplements: R-code for functional boxplots: R-code for the command fbplot de-
scribed in the article (fbplot.R) and help file (fbplot.html), with the code for applica-
tions (application.R). Simulation code: Simulation code for the seven models described
in the article (simulation.R). Children growth data: Heights of 39 boys and 54 girls at 31
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Figure 11. The surface boxplot with the box in the middle representing the 50% central region in R
3, the middle

surface inside the box denoting the median surface, and the upper and lower surfaces indicating the maximum
non-outlying envelope.

unequally spaced ages described in the article (hgtgirls.dat and hgtboys.dat). Sea sur-
face temperatures data: The data of monthly sea surface temperatures (SST) measured
in degrees Celsius over the east-central tropical Pacific Ocean described in the article
(sst.dat). All files can be found in a single zip file. (fbplot.zip)
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