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ABSTRACT. We consider a semi-nonparametric specification for the density of latent variables
in Generalized Linear Latent Variable Models (GLLVM). This specification is flexible enough
to allow for an asymmetric, multi-modal, heavy or light tailed smooth density. The degree of
flexibility required by many applications of GLLVM can be achieved through this semi-
nonparametric specification with a finite number of parameters estimated by maximum likelihood.
Even with this additional flexibility, we obtain an explicit expression of the likelihood for condi-
tionally normal manifest variables. We show by simulations that the estimated density of latent
variables capture the true one with good degree of accuracy and is easy to visualize. By analysing
two real data sets we show that a flexible distribution of latent variables is a useful tool for exploring
the adequacy of the GLLVM in practice.
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1. Introduction

Latent variables, as hypothetical constructs, are omnipresent in almost all sciences and in
daily life. Indeed, constructs such as quality of life, physical health or disease are widespread
in research and applications but cannot be measured directly. Usually scientists make and
validate inference on those constructs with help of latent variable models using observable
variables as proxies. In the aforementioned examples, we can imagine quality of life to be
modelled through economic wealth and access to drinking water; physical health can be as-
sessed through cholesterol and haemoglobin rates, body mass index, eyesight, hearing and
presence of chronic diseases; virus infection or other diseases can be revealed by fever, level
of some particular antibodies, erythrocyte sedimentation rate, level of C-reactive protein. The
principal aim of Generalized Linear Latent Variable Models (GLLVM, concept by Barthol-
omew, 1980 and 1984) is to explain most of the variability of p observed (manifest) variables
X1, . . ., Xp by constructing q < p latent variables Z1, . . ., Zq. To this aim, GLLVM assumes that
�Z, with unknown parameter matrix � ∈ Rp×q and Z = (Z1, . . ., Zq)T , explains all the sys-
tematic variability of the manifest variables via the conditional probability density, or mass,
function

g(x | z)=
p∏

j =1

gj(xj |�j + �T
j z), (1)

where x = (x1, . . ., xp)T ∈Rp, z = (z1, . . ., zq)T ∈Rq, �j is the location parameter of xj , �j ∈Rq is
the jth row of the p×q parameter matrix �, gj(·) is a probability density or mass function of
a distribution from the exponential family. The marginal probability density or mass function
of the manifest variables is
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f (x |�, �, �)=
∫

Rq
g(x | z)h(z) dz

=
∫

Rq

⎡
⎣ p∏

j =1

exp

{
xj(�j + �T

j z)−bj(�j + �T
j z)

�j
+ cj(xj , �j)

}⎤
⎦h(z) dz (2)

with functions bj(·), cj(·, ·) and, in some cases, additional scale parameter �j ∈ R with �=
(�1, . . ., �p)T . The linear combination �j + �T

j z is related to the expected values of Xj | z through
the link function denoted here as �−1

j (·): E(Xj | z)=�−1
j (�j + �T

j z). If needed, observable covari-
ates Y1, . . ., Ym possibly explaining the manifest variables X1, . . ., Xp can be introduced by set-
ting E(Xj | z, y)=�−1

j (�j +�T
j y + �T

j z), where y, �j ∈ Rm and �= (�1, . . ., �p)T , �= (�1, . . ., �p)T

and � are parameters to be estimated. Then model (2) becomes a generalization (for
responses with distribution from the exponential family) of the responses equation in a struc-
tural equation model as in Rabe-Hesketh & Skrondal (2004, page 78). Although the
structural relation among latent variables is not the focus of GLLVM, its modelling can
be done straightforwardly through an additional structural equation as in Liu et al. (2005).
Model (2) with observable covariates can be generalized to two or more levels by adding
additional subscript(s) to manifest and latent variables as in Rabe-Hesketh & Skrondal (2004,
page 99), which renders possible modelling of, for example, multivariate longitudinal data as
in Cagnone et al. (2009) or Dunson (2003). Thus GLLVM with observable covariates can be
seen as an approach to a multivariate generalized mixed effects model.

Traditionally it is assumed that the density h(z) of the latent variables is multivariate nor-
mal. Bartholomew (1988) advocated the adequacy of the normal distribution for two prin-
cipal reasons. The first reason is the ‘arbitrariness about the direction of measurement of
a latent scale’, for example, the convention that high customer satisfaction is given a high
score on the corresponding latent variable. Bartholomew (1988) suggested that only symmet-
ric distributions of latent variables can overcome this arbitrariness. This statement is refuted
by Montanari & Viroli (2010b) who showed that any distribution of latent variables would
overcome this arbitrariness. The second reason in which Bartholomew (1988) believed is that
an incorrect specification of the latent variables distribution would not affect the estimates.
To the contrary, Ma & Genton (2010) described settings of GLLVM where an inappropriate
specification of the asymmetric latent variables distribution biases the estimates.

Using alternatives to normality for the latent variables is not new in the statistical literature
on GLLVM and its submodels. For instance in factor analysis Montanari & Viroli (2010b)
introduced skew-normal latent variables alluding to the frequent asymmetry of appreciations;
Yung (1997) and Montanari & Viroli (2010a) modelled latent variables via mixture of normals
in order to handle heterogeneity of clusters; Wedel & Kamakura (2001) assumed the latent
variables to have a continuous distribution from the exponential family in order to construct
test statistics. To date, the explicit expression of the integral in (2) exists only when g(x | z)
is multivariate normal and the distribution of latent variables h(z) is multivariate normal or
mixture of normals as in Yung (1997) and Montanari & Viroli (2010a). For the other cited
cases, a numerical approximation of the integral is required. The model we propose approxi-
mates arbitrarily closely a wider class of latent variable distributions (and then of manifest
variables too) than models proposed by Montanari & Viroli (2010b) and Wedel & Kamakura
(2001) yet yields an explicit expression of the integral in (2) in case of conditionally normal
manifest variables.

In another submodel of GLLVM, the latent trait model with binary manifest, Knott &
Tzamourani (2007) estimated the latent variables distribution by bootstrap combined with
non-parametric maximum likelihood and concluded that the usual normality assumption of
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the latent variables ‘is not always justified’. The semi-nonparametric (SNP) approach be-
ing different from the non-parametric maximum likelihood estimation (Laird, 1978) has an
appealing smoothness property. The smooth density of the latent variable is easier to grasp:
we do not have to take into account the possibility of other differently defined supports as
in the case of the discrete mass-point distribution.

In the case of univariate responses the appropriateness of the normal distribution for other
latent variables (or random effects) models have been studied: for structural measurement
error models in Huang et al. (2006), for generalized mixed effects models in Rabe-Hesketh
et al. (2003), who estimated the latent variable distribution with non-parametric likelihood,
and Chen et al. (2002), who used the SNP approach as in the present article.

In addition to the conclusion about the inappropriateness of the normality assumption for
the latent variables Rabe-Hesketh et al. (2003) highlighted the importance of the correct dis-
tributional assumptions for the prediction of latent scores. The estimated density of latent
scores is simply the estimated density of latent variables. Its inappropriate specification and
visualization lead to overlooking clusters, outliers and misinterpretation of the estimation
results.

In some cases, the inadequacy of the normally distributed latent variables can be caused by
the nonlinear dependence on latent variables as explored for structural equation models by
Wall & Amemiya (2000) and generalized latent variable models by Rizopoulos & Moustaki
(2008).

In this article we consider GLLVM with both discrete and continuous manifest variables
and propose h(z) in (2) to have the SNP specification introduced by Gallant & Nychka (1987)

h(z)=P2
L(z)�(z), PL(z)=

∑
0≤i1 +···+ iq≤L

ai1 ...iq zi1
1 · · · ziq

q , (3)

where ai1 ...iq are real coefficients of the polynomial PL(z) with a tuple i1, . . ., iq such that
i1, . . ., iq ≥ 0 and �(z) is the q-variate standard normal Nq(0, I ) density. It is straightforward
to see that L =0 corresponds to the case Z ∼ Nq(0, I ). Further in the article we discuss the
parametrization of ai1 ...iq (section 2.1) and how the flexibility and number of modes of the
SNP density increase with the degree L of the polynomial PL (section 2.3).

Combining the GLLVM settings (2) and the SNP specification (3) results in what we call
an SNP-GLLVM, where the marginal probability density or mass function of the manifest
variables X is

f (x |�, �, �, PL)= 1
(2�)q/2

∫
Rq

g(x | z)P2
L(z) exp

{
−1

2
zT z

}
dz, (4)

where the expression for g(x | z) is given by (1).
In what follows we propose a necessary and sufficient condition for the identifiability of

(4) and define estimators �̂, �̂, �̂ via maximum likelihood. For conditionally normal mani-
fest variables, the integral in (4) can be computed explicitly. One of our main results is the
demonstration by simulations that in some GLLVM settings the incorrect specification of the
latent variables distribution biases the estimators �̂ and �̂.

The estimated SNP density of the latent variables (or latent scores distribution) is easy
to visualize which is an advantage when compared to the semiparametric GLLVM estima-
tor proposed recently by Ma & Genton (2010). An obvious non-normality (multi-modality
and/or skewness) of latent scores distribution can indicate the presence of outliers, possible
nonlinearity in dependence on latent variables, non-homogeneity of population or simply the
inadequacy of the normal latent density to the particular data.

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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2. Semi-nonparametric GLLVM

2.1. Parametrization of PL(z)

Restrictions must be imposed on the coefficients of PL(z) in order for h(z) in (3) to be a
density. This can be done as in Gallant & Tauchen (1989) by introducing a proportionality
constant 1/

∫
P2

L(z)�(z)dz and setting the constant term of the polynomial equal to 1. Here
we choose another parametrization of PL(z) that avoids difficulties of constrained optimiza-
tion. This parametrization is proposed by Zhang & Davidian (2001) and consists in rewriting
the validity condition on h(z) as

1=
∫

Rq
P2

L(z)�(z) dz = E{P2
L(W )}=aT E(W̃ W̃

T
)a =aTAa, (5)

with W ∼ Nq(0, I ), PL(W )=aTW̃ , W̃ = (1, W1, . . ., Wq, W 2
1 , W1W2, W 2

2 , . . ., W L
q )T , so that A

is a positive definite matrix by definition. Therefore, there exists a positive definite matrix B
such that A=BT B. Defining c =Ba, (5) becomes cT c =1. Hence, c = (c1, . . ., cd )T can be rep-
resented in polar coordinates: c1=sin 	1, c2= cos	1sin 	2, . . ., cd−1= cos	1· · · cos	d−2 sin 	d−1,
cd = cos	1 cos	2 · · · cos	d−2 cos	d−1, with angles −�/2 <	t ≤�/2, t =1, . . ., d − 1 in order
for c to take values only on a half of the unit sphere in Rd . More details on the polar coor-
dinates transformation can be found in Scott (1992). Note that d =∑L

k =0( q +k−1
k ) according

to Stetter (2004, page 228).
Thus, the density (3) can be rewritten as

h(z |	, L)=P2
L(z)�(z)=(

aT z̃
)2

�(z), (6)

where a =B−1c, z̃ = (1, z1, . . ., zq, z2
1, z1z2, z2

2, . . ., zL
q )T and 	= (	1, . . ., 	d−1)T . For example,

when q =1 (one latent variable), L =2 and PL(z)=a0 +a1z +a2z2, we obtain a0 = sin 	1 −
1√
2

cos	1 cos	2, a1 = cos	1 sin 	2 and a2 = 1√
2

cos	1 cos	2.

2.2. Identifiability and constraints

As noted by many researchers, for example Rabe-Hesketh & Skrondal (2001) and Rabe-
Hesketh & Skrondal (2004), the major difficulty of all the models with latent variables is
identifiability. According to Hastie et al. (2001, page 494): ‘this aspect has left many ana-
lysts skeptical of factor analysis, and may account for its lack of popularity in contemporary
statistics’.

A parametric statistical model is said to be identified if distinct values of parameters cor-
respond to distinct probability density or mass functions of the response variables. With this
definition we investigate how any affine transformation of the SNP latent variables Z affects
the resulting probability density or mass function (4) of the random vector X.

Proposition 1. For any P2
L(z) /=0, the orthogonal transformation Z1 =CZ, (CCT =CT C = Iq)

is the one and only one affine transformation of the random vector Z leaving the probability
density or mass function (4) of the random vector X unchanged.

Corollary 1. The loadings matrix � is defined up to to the orthogonal transformation Z1 =CZ,
(CCT =CT C = Iq).

The proofs of these results can be found in the supplementary material.

Huber et al. (2004) demonstrated that if the loadings matrix is defined up to an orthogo-
nal transformation then a sufficient condition for identifiability of a GLLVM with q normal
latent variables is that q(q − 1)/2 elements of the matrix � are set to zero. In other words,
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after permutations the elements of the upper triangle of � should be constrained. The same
authors proved that if, in addition, at least one of the elements of the loadings matrix is
constrained to be either smaller or larger than zero, then the loadings matrix is necessar-
ily identified. We can find similar conclusions in Ma & Genton (2010) for semiparametric
GLLVM. The same number of q(q −1)/2 constraints is used by Jöreskog (1967) to obtain a
single solution in factor analysis.

2.3. Multi-modality and flexibility of SNP

Similar to distributions considered by Ma & Genton (2004), the number of modes of the
semi-nonparametric density increases with the degree L of the polynomial PL(z) and the num-
ber q of latent variables. Indeed, a necessary condition for a mode (local extremum) at the
point z0 is a null gradient:

∂

∂z
P2

L(z)�(z)

∣∣∣∣
z = z0

=
[{

2
∂PL(z)

∂z
− zPL(z)

}
PL(z)�(z)

] ∣∣∣∣∣∣
z = z0

=0, i.e.,

either PL(z)

∣∣∣∣
z = z0

=0

(7)

or
{

2
∂PL(z)

∂z
− zPL(z)

}∣∣∣∣
z = z0

=0. (8)

The set of real solutions of (7) can contain from 0 to L distinct manifolds of dimension q−1
or less. It is easy to see that the solution of (7), if it exists, always corresponds to a local mini-
mum of the density P2

L(z)�(z). Thus, if (7) has up to L different solutions, P2
L(z)�(z) has up

to L − 1 different modes. Independently of the fitted data, if L is odd, the SNP density is
equal to zero on a manifold of dimension q −1 (i.e. if q =2 and L is odd then the SNP den-
sity has to be equal to zero on a curve in R2). For this reason high odd degrees L should be
avoided.

Equation (8) is a system of q polynomials where each polynomial is of degree L +1 and
depends on q variables. In a regular case, that is, without assuming that some coefficients
in (6) are null, the system (8) can have up to (L +1)q different isolated point solutions (i.e.
solutions containing only one point, not manifolds such as curves) according to Stetter (2004,
page 228).

Defining the number of points where both (7) and (8) hold is not trivial. But assuming
that (7) has L different isolated point solutions in which ∂PL(z)/∂z =0 and (8) has (L +1)q

different isolated point solutions, we obtain that (7) and (8) together define at most (L +1)q

isolated point solutions. This implies that an SNP density can have at most three modes when
L =2, q =1; four modes when L =2, q =2; and 13 modes when L =2, q =3. Our practical
experience when L =2, q =1 and L =2, q =2 confirms these conclusions.

The sufficient condition for a local maximum (minimum) at z = z0 is that the Hessian
matrix ∂P2

L(z)�(z)/∂z∂zT at this point is negative definite (respectively positive definite):

∂

∂z∂zT
P2

L(z)�(z)=2
∂PL(z)

∂z
∂PL(z)
∂zT

�(z)+2
∂2PL(z)
∂z∂zT

PL(z)�(z)

+ zzT PL(z)�(z)−2
∂PL(z)

∂z
zT PL(z)�(z)

−2z
∂PL(z)
∂zT

PL(z)�(z)− IqP2
L(z)�(z). (9)

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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Once a density of latent variables is estimated, the solutions of (8) can be found numeri-
cally and the expression (10) estimated at these points. Hence, the number of modes can be
established.

3. Inference in SNP-GLLVM

3.1. Conditionally normal manifest variables

Suppose the conditional density of manifest variables given the latent ones are multivari-
ate normal with the structural scale parameter given by a diagonal positive definite matrix
�= diag(�)∈Rp×p. Then the marginal density of x can be written as:

f (x;�, �, �, PL)= |2�(�+��T )|−1/2 exp
{

−1
2

xT
0 (�+��T )−1x0

}
Ez |x0{P2

L(z)}, (10)

where x0 =x −�, B = Iq +�T �−1� and

Ez |x0{P2
L(z)}= |2�B−1|−1/2

∫
Rq

P2
L(z)

× exp
{

−1
2

(z −B−1�T �−1x0)T B(z −B−1�T �−1x0)
}

dz. (11)

As all the moments of the multivariate normal distribution are known and completely de-
fined by the first two moments, Ez |x0{P2

L(z)} exists in explicit form and represents a 2L-degree
polynomial in x0. Hence the marginal density of x exists in closed form. When PL(z)≡1 we
obtain the classical factor analysis model for normally distributed manifest variables, as de-
scribed, for example, by Mardia et al. (1979).

Using (10) we obtain the following log-likelihood function

`(�, �, �, 	, L | x1, . . ., xn)=−n
2

log |2�(�+��T ) | − 1
2

n∑
i =1

xT
0i(�+��T )−1x0i

+
n∑

i =1

log
[
Ez |x0i {P2

L(z)}]
. (12)

The parameters of interest are those inherited from factor analysis, namely �, �, �, with
additional parameters 	 and L responsible for the shape of the latent variables density. In
practice L is fixed by the rule to be discussed in section 3.3. The final estimators are defined
as

�̂=�∗ +�∗ Ẽ(Z), �̂=�∗ ˜cov1/2(Z), �̂=�∗, (13)

where (�∗, �∗, �∗, 	∗)= argmax�,�,�,	`(�, �, �, 	 |L, x1, . . ., xn), Ẽ(Z) and ˜cov1/2(Z) are found
given 	∗ and the SNP density (6). Thus, �̂ and �̂ are the estimators corresponding to the un-
correlated latent variables with zero expectation and unit variance.

In the optimization of `(�, �, �, 	 |L, x1, . . ., xn) we use an analytically computed gradient
and Hessian matrix (the gradient can be found in section S4 of the supplementary material,
the Hessian expression is available upon request). It should be stressed that the Hessian is
computed in a matrix form offering a considerable advantage in R implementation compared
to existing Hessian matrix computations such as in Lawley (1967), Jennrich & Thayer (1973)
and Ramsey (2010). The optimization is done in R with the nlminb function and is sensitive
to the choice of initial values. We discuss how to cope with this problem at the end of the
next section.

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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3.2. Mixture of discrete and continuous manifest variables

In practice the presence of both continuous and discrete responses is more frequent than
exclusively continuous responses. Suppose, for example, that among p manifest variables
the first p1 are normal conditionally on the latent variables, and the last p−p1 are condi-
tionally Bernoulli, that is, the joint conditional probability mass function from (1) is

g(x | z)=
p1∏

j =1

[
1√
2��j

exp
{

− 1
2�j

(xj −�j − �T
j z)2

}]
p∏

j =p1 +1

{
exp(xj�j +xj�T

j z)

1+ exp(�j + �T
j z)

}
, (14)

where the expression in the last brackets is obtained by setting pr(xj =1)=pj and choos-
ing the logit link, that is, log{pj /(1−pj)}=�j + �T

j z. Then, the manifest variables marginal
density for the SNP-GLLVM model is obtained straightforwardly by plugging (14) in (4).
We approximate the corresponding log-likelihood function `(�, �, �, 	 |L, x1, . . ., xn) with
one latent variable by computing the integral with the R command integrate. The latter
uses multiple algorithms including different adaptive integration algorithms for which ‘the
evaluation points are clustered in the neighbourhood of difficult spot of each integrand’
(Piessens et al., 1983).

In a similar GLLVM setting but with normal distribution of latent variables, Huber et al.
(2004) implemented a Laplace approximation of the integral. We highlight here that the
Laplace approximation for integrals is designed for integrand with only one absolute maxi-
mum (De Bruijn, 1981, page 63) and cannot be used as approximation of the integrand in (4)
which can have multiple local maxima. Similarly, Gaussian or Gauss–Hermite quadratures
and adaptive Gaussian quadrature as in Schilling & Bock (2005) will perform poorly. Other
alternatives for computing the integral would be to consider a Monte Carlo EM algorithm
as implemented by Chen et al. (2002).

The estimators �̂ and �̂ are defined as in (13) with the approximation ˜̀(�, �, �, 	 |L, x1, . . .,
xn) (due to the integral) of the log-likelihood function `(�, �, �, 	 |L, x1, . . ., xn). The optimi-
zation is achieved via nlminb with 10−4 as absolute and relative tolerance and an analytically
computed gradient and Hessian (the gradient is available in section S5 of the supplementary
material, analytical expression of the Hessian is available upon request). As previously, the
optimized function has multiple local optimums. Thus, an appropriate set of initial values is
essential for a reliable optimization. We use as initial values for the parameters �∗, �∗ and �∗

their estimations by maximum likelihood under the normality assumption of latent variables.
Initial values for the 	 parameters are taken through the grid of initial values constructed by
the R command cover.design (Furrer et al., 2009) in the space [−�/2 −�/10, �/2+�/10]d−1.
The number of initial values depends on d −1 and is defined empirically (we stop to increase
the number of initial values if the best value of the optimized function does not change after
few successive increments). In our experience, this approach is faster, and more reliable than
the genetic optimization algorithm (with a very large population size) implemented in the
package rgenoud (Mebane & Sekhon, 2011) or any other optimization method implemented
in the R command optim (R Development Core Team, 2011).

The SNP-GLLVM estimation is computationally expensive. The computational time
depends strongly on the implementation of the objective function (implementation in C called
from R, as for analysis in section 5.2 is faster than a pure R implementation), on the speed
of the implemented optimizer, on the initial values and their ‘quality’, that is on how close
they are to the local optimum (when this optimum does exist), on the number of assumed la-
tent variables, on the sample size and, of course, on the computational resources. For exam-
ple, using our R implementation on a relatively old Acer TravelMate 3270 laptop running
under Windows Vista (with 1.66 GHz Intel Duo Core CPU T5500 and 2 GB RAM) the
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computational time to estimate SNP2-GLLVM (i.e. L =2) with one latent variable on a sim-
ulated sample of size 500 with three conditionally normal and one conditionally Bernoulli
manifest variable is on average 30 minutes when the true latent variable distribution is a
mixture of normals and we use a set of seven arbitrary initial values. With all other things
kept equal this computational time drops to 15 minutes when the true latent variable distri-
bution is SNP2. Our R implementations of the SNP2-GLLVM estimations with one latent
variable for the mixture of conditionally normal and Bernoulli manifest variables, and for
two latent variables for the conditionally normal manifest variables are available in the supple-
mentary material (SNP0-GLLVM and SNP1-GLLVM are particular cases of SNP2-GLLVM
estimation).

Other types of manifest variables can be considered in addition to normal and Bernoulli.
For example, in section 5.2 we assume one of the manifest variables in the real data set to
be conditionally Poisson distributed. In this case, without loss of generality, we can assume
that among p manifest variables the first p1 +p2 variables xj for j =1, . . ., p1 and j =p1, . . ., p2

are respectively normally and Bernoulli distributed with probability density and probability
mass function described in (14); and the last xj for j =p2, . . ., p are conditionally Poisson dis-
tributed manifest variables with probability mass functions

gj(xj | z)= exp{xj(�j + �T
j z)− exp(�j + �T

j z)− log xj !}. (15)

Plugging these probability density and probability mass functions in (1) and (2) we can easily
obtain the corresponding GLLVM likelihood function.

3.3. Tuning the flexibility of the SNP density

The flexibility of the SNP density is controlled by the degree L of the polynomial PL(z) in
(6). Different possibilities have been explored to choose L: the original work by Gallant &
Nychka (1987) proposed to fix L by a deterministic rule L =n
, 0 <
< 1. Davidian & Gallant
(1993) and Fenton & Gallant (1996) explored under different settings whether an adaptive
rule for the choice of L can be applied. Following these authors we select L on the basis of
one of the information criteria taking the form −`(�, �, �, 	 |L, x1, . . ., xn)+C(n)k, where k
is the number of unconstrained parameters in the model with fixed L and C(n)=1 for the
Akaike Information Criterion (AIC, Akaike, 1974), C(n)=0.5 log n for the Schwarz Infor-
mation Criterion (BIC, Schwarz, 1978), and C(n)= log log n for the Hannan–Quinn criterion
(HQ, Hannan, 1987).

For linear mixed effects models with focus on latent variables inference Vaida & Blan-
chard (2005) proposed a conditional Akaike information criterion (cAIC) based on the effec-
tive degrees of freedom introduced by Hodges & Sargent (2001). Lu et al. (2007) suggested
to approximate the number of effective degrees of freedom in generalized linear hierarchical
models with the Laplace approximation of the integral in the likelihood function. Multiple
maxima under the integral in (14) makes the method of Lu et al. (2007) not applicable to
SNP-GLLVM.

The likelihood ratio tests for testing the hypothesis L =0 (i.e. 	1 =�/2) and L =1 (i.e.
	2 =�/2) suffer from the irregularity conditions discussed by Drton (2009) amplified by the
fact that 	1 =�/2, 	2 =�/2 are also boundary points. Resampling techniques for obtaining
the likelihood ratio statistic distribution could help, but this is beyond the scope of this paper.

Given that the above alternatives are not applicable to our setting, we restrict ourselves
to the use of AIC, BIC and HQ for choosing L. When the exact log-likelihood function
`(�, �, �, 	 |L, x1, . . ., xn) cannot be computed, as for the case of the Bernoulli distribution,
we approximate it by ˜̀(�, �, �, 	 |L, x1, . . ., xn) as described in section 3.2.
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4. Monte Carlo simulations

We explore the performance of the proposed method on finite samples by simulating 600
samples of size 500 issued from the GLLVM with four manifest variables and one latent:
three manifest conditionally normal and one conditionally Bernoulli. The univariate scores
of the latent variable are issued from three different distributions: (i) symmetric unimodal
normal N(0, 1); (ii) asymmetric trimodal SNP distribution h(z)= (− cos 0.7/

√
2+ z sin 0.7+

z2 cos 0.7/
√

2)2�(z); and (iii) asymmetric bimodal mixture of normals 0.9N(2, 1)+
0.1N(−2, 0.25). For simulating from the SNP distribution we use the algorithm proposed by
Gallant & Tauchen (1992).

For each simulated data set we estimate the coefficients of the SNP-GLLVM by the meth-
odology of sections 2 and 3 for L =2 (SNP2), L =1 (SNP1) and L =0 (SNP0). The latter cor-
responds to the traditional maximum likelihood estimation under the normality assumption
of the latent variable. Theoretically, as proved by Gallant & Nychka (1987), the parameters
�, � and � are estimated consistently if L is sufficiently large and together with 	 generate
a density (6) close enough to the true one. In practice, as illustrated later in this section, an
unduly large value of L can result in overfitting and bias because of the integral approxi-
mation, while L =1 or 2 are usually sufficient to detect the departure from normality of the
considered latent variable densities.

To make the simulation results comparable we impose the latent variable to have variance
equal to the true one, that is: (i) var(Z)=1 for the normal density; (ii) var(Z)=2.228 for
the SNP density; and (iii) var(Z)=4.135 for the mixture of normals density. These choices
give a slight advantage to the SNP0 estimator. We use grids of six initial values for SNP1
optimization and of 13 initial values for SNP2 (constructed as discussed in section 3.2).

We compute the AIC, BIC and HQ information criteria discussed in section 3.3 for SNP2,
SNP1 and SNP0 estimations on each data set. In Table 1 we report detailed simulation results
for normal and SNP2 generated latent variables. For the normal latent the estimates are
all nearly unbiased, despite three trimodal estimated SNP2 densities not selected by any
information criterion (all other estimated SNP1 and SNP2 densities are unimodal and nearly
symmetric). When the true latent variable distribution is SNP2 all parameters estimates cor-
responding to the conditionally normal manifest variables (i.e. �1, �2, �3, �1, �2 and �3) are
nearly unbiased. The fact that the conditionally normal observable variables are not sensitive
to the wrong specification of the latent variable distribution has been already observed in the
literature theoretically by Anderson & Amemiya (1988) and in simulations by Ma & Genton
(2010). However, the SNP0 and SNP1 estimates of the parameters related to the loading of
the Bernoulli manifest variable (�4) present biases though not large. The bias is clear for the
SNP0 estimates, when the assumed latent variable density is far from the true one, and dimin-
ishes when the estimated density gets closer to the true one. It is surprising that the bias in the
SNP2 estimates of �4 is larger than the SNP1 bias and almost equal to the SNP0 bias for the
same parameter. A closer inspection of estimates shows that the medians of the �4 estimates
for both SNP1 and SNP2 are exactly at the true value and the biases of the mean are both
due to a few (fewer for SNP1) extreme values in �4 estimates. The median of the �4 estimates
by SNP0 is equal to the mean despite the presence of a few extreme values. Similarly, a few
extreme values are found when inspecting the SNP1 and SNP2 estimates of �4 (the median
of �4 estimates by SNP1 is equal to the mean while the median of �4 estimates by SNP2 is
equal to the true value). This phenomenon illustrates the bias induced by the approximate
integration as discussed by Pinheiro & Chao (2006). It seems logical that this bias is larger
for the integrand with greater amount of difficult spots. The integral approximation bias is
an additional reason for a moderate use of high L values in our implementation.
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Table 1. Simulation results on 600 samples of size 500. The true latent variable distribution is normal
and asymmetric trimodal semi-nonparametric (SNP2) distribution h(z)=(− cos 0.7/

√
2+ z sin 0.7+

z2 cos 0.7/
√

2)2�(z). Mean parameters are denoted by (�1, �2, �3, �4)T , loadings by (�1, �2, �3, �4)T and
uniquenesses by (�1, �2, �3)T with true values in parentheses. AVE MC, average of estimates; SD, stan-
dard deviation; SE, average standard errors estimated by sandwich covariance matrix

SNP0 SNP1 SNP2

AVE MC SD SE AVE MC SD SE AVE MC SD SE

NORMAL LATENT
�1(0) 0.06 0.08 0.08 0.00 0.08 0.08 0.00 0.08 0.08
�2(0) 0.07 0.09 0.08 0.00 0.09 0.08 0.00 0.09 0.08
�3(0) 0.06 0.08 0.08 0.00 0.08 0.08 0.00 0.08 0.08
�4(0.7) 0.70 0.16 0.16 0.70 0.16 0.17 0.70 0.16 0.16
�1(1.4) 1.40 0.07 0.07 1.40 0.07 0.07 1.40 0.07 0.07
�2(1.6) 1.60 0.07 0.07 1.60 0.07 0.07 1.60 0.07 0.07
�3(1.4) 1.40 0.07 0.07 1.40 0.07 0.07 1.40 0.07 0.07
�4(2) 2.02 0.23 0.24 2.02 0.23 0.25 2.01 0.23 0.24
�1(1) 1.00 0.09 0.09 1.00 0.09 0.09 1.00 0.09 0.09
�2(1) 1.00 0.11 0.10 1.00 0.11 0.10 1.00 0.11 0.10
�3(1) 1.00 0.09 0.09 1.00 0.09 0.09 1.00 0.09 0.09

AIC preferred 79.2% of time SNP0; 9.8% of time SNP1 and 1% of time SNP2
BIC preferred 99.7% of time SNP0; 0.15% of time SNP1 and 0.15% of time SNP2
HQ preferred 95.5% of time SNP0; 2.5% of time SNP1 and 2% of time SNP2

SNP2 LATENT
�1 (1.95) 1.96 0.10 0.10 1.96 0.10 0.10 1.96 0.10 0.10
�2 (2.22) 2.23 0.12 0.12 2.23 0.12 0.12 2.23 0.12 0.12
�2 (1.95) 1.95 0.10 0.10 1.95 0.10 0.10 1.95 0.10 0.10
�4 (3.49) 3.62 0.43 0.46 3.56 0.45 0.44 3.59 0.48 0.48
�1(1.4) 1.40 0.08 0.08 1.39 0.06 0.09 1.40 0.06 0.09
�2(1.6) 1.60 0.08 0.09 1.59 0.07 0.10 1.60 0.07 0.10
�3(1.4) 1.39 0.08 0.08 1.39 0.06 0.09 1.39 0.06 0.09
�4(2) 2.15 0.36 0.42 1.90 0.25 0.35 2.04 0.30 0.41
�1(1) 0.98 0.09 0.09 0.98 0.08 0.08 0.98 0.08 0.08
�2(1) 1.00 0.11 0.11 0.99 0.10 0.09 0.99 0.10 0.09
�3(1) 1.00 0.09 0.09 1.00 0.09 0.08 1.00 0.09 0.08

AIC, BIC and HQ preferred 100% of time SNP2

Table 2 summarizes the simulation results for the mixture of normal latent variable. As pre-
viously, SNP0 estimates of parameters corresponding to the continuous manifest variables are
all nearly unbiased while the SNP0 estimates related to the Bernoulli manifest variable present
biases. We conclude that for GLLVM with discrete manifest variables the wrong specification
of the latent variable distribution induces a bias in the estimation. Similar conclusions can
be found in Ma & Genton (2010). The differences in �4 and �4 estimates confirm the integral
approximation bias. The table with AIC, BIC and HQ selected estimation results for mixture
of normal latent variable are available in Table S1 in the supplementary material. For normal
and SNP2 latent variables a similar table is not of interest because AIC, BIC and HQ almost
always choose the right model.

From the results of Tables 1 and 2 we infer that AIC prefers models with larger L, BIC
with smaller L and HQ choices are intermediate. Our conclusions meet those by Zhang &
Davidian (2001) and Chen et al. (2002).

The advantage of using the proposed method can be appreciated when looking at the shape
of estimated densities in Fig. 1. The figure illustrates that the SNP1 and SNP2 specifications
selected by HQ capture the main features of the true density of the latent variable.
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Table 2. Simulation results on 600 samples of size 500. The true latent variable distribution is asym-
metric mixture of normals 0.9N(2, 1)+0.1N(−2, 0.25). Mean parameters are denoted by (�1, �2, �3, �4)T ,
loadings by (�1, �2, �3, �4)T and uniquenesses by (�1, �2, �3)T with true values in parentheses. AVE MC,
average of estimates; SD, standard deviation; SE, average standard errors estimated by sandwich covari-
ance matrix

SNP0 SNP1 SNP2

AVE MC SD SE AVE MC SD SE AVE MC SD SE

�1 (2.24) 2.25 0.10 0.11 2.25 0.10 0.11 2.25 0.10 0.11
�2 (2.57) 2.57 0.12 0.12 2.57 0.12 0.12 2.57 0.12 0.12
�3 (2.24) 2.25 0.11 0.11 2.25 0.11 0.11 2.25 0.11 0.11
�4 (3.90) 4.36 0.56 0.58 3.91 0.43 0.44 3.95 0.46 0.65
�1(1.4) 1.39 0.08 0.09 1.39 0.06 0.10 1.39 0.06 0.10
�2(1.6) 1.59 0.09 0.10 1.59 0.07 0.11 1.59 0.07 0.11
�3(1.4) 1.40 0.08 0.09 1.39 0.06 0.10 1.39 0.06 0.10
�4(2) 2.22 0.40 0.53 2.00 0.29 0.45 2.05 0.29 0.63
�1(1) 0.99 0.09 0.09 1.00 0.08 0.09 1.00 0.09 0.09
�2(1) 0.99 0.11 0.11 1.01 0.11 0.10 1.01 0.11 0.10
�3(1) 0.99 0.09 0.09 1.00 0.09 0.09 1.00 0.09 0.09

AIC preferred 0% of time SNP0; 11.4% of time SNP1 and 88.6% of time SNP2
BIC preferred 0% of time SNP0; 69.7% of time SNP1 and 30.3% of time SNP2
HQ preferred 0% of time SNP0; 33.4% of time SNP1 and 66.6% of time SNP2
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Fig. 1. The dashed line is the average of estimated densities for fits preferred by Hannan-Quinn
Criterion, the shaded area is the pointwise estimated confidence envelope, the dotted line is
the true density for (A) mixture of normals 0.9N(2, 1)+0.1N(−2, 0.25), (B) semi-nonparametric
(SNP2) density h(z)= (− cos 0.7/

√
2+ z sin 0.7+ z2 cos 0.7/

√
2)2�(z) (dashed and dotted lines coincide for

SNP2).

5. Data analyses

5.1. Swineford–Holzinger data analysis

This data set is a subset of the widely cited data set introduced by Holzinger & Swineford
(1939) and contains scores of nine psychological tests for 145 individuals. These nine tests
are: ‘visual perception’, ‘cubes’, ‘lozenges’, ‘paragraph comprehension’, ‘sentence completion’,
‘word meaning’, ‘addition’, ‘counting group of dots’ and ‘straight-curved capitals’. The first
three tests are usually supposed to measure the spatial ability, the second three the verbal
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Table 3. Information criteria divided by n=145 (smaller values
are preferred) for the Swineford–Holzinger data

Model AIC/145 BIC/145 HQ/145

q =2, L =0 11.46 11.82 11.61
q =2, L =1 11.43 11.81 11.58
q =2, L =2 11.78 12.19 11.95
q =3, L =0 11.34 11.80 11.53
q =3, L =1 11.31 11.77 11.50
q =3, L =2 11.35 11.87 11.56

ability and the last three mental speed. This data set is used in Jöreskog (1969), Jöreskog &
Sörbom (1993) and as an illustration of non-normal data in LISREL 8.80.

We assume all manifest variables to be conditionally normal given the latent and fit the
standardized data with the SNP0, SNP1 and SNP2 estimation methods for two (q =2) and
three (q =3) latent variables. The loadings and uniquenesses estimates by SNP0 were used as
initial values for SNP1 and SNP2 estimations. The estimated information criteria for different
models are reported in Table 3.

All computed criteria chose the SNP1 model with three latent variables (q =3, L =1) con-
firming the conclusions of Jöreskog (1969) that three latent variables is a reasonable assump-
tion for this data set. As expected the estimates of loadings and uniquenesses by SNP0, SNP1
and SNP2 are very close (the detailed estimation results are available in Table S2 in the sup-
plementary material).

We assess the estimated latent variables density by plotting contours of its bivariate mar-
ginal densities in Fig. 2. The visualized estimated densities suggest the presence of two groups
for the three latent variables solution and illustrate the inadequacy of a trivariate normal
latent variable on this data.

5.2. Swiss consumption data analysis

This data set contains n=9960 observations and is part of the Swiss consumption survey
data collected in 1990. Continuous variables are food, clothing, leisure – natural logarithm of
household expenses in food, clothing and leisure, respectively (assumed conditionally normal
given the latent); three binary variables, dishwasher, car and motorcycle indicate the presence
of a dishwasher, a car or a motorcycle in the household; finally the count variable bicycle
(assumed conditionally Poisson) indicates the number of bicycles in the household. These
variables are supposed to represent the latent variable ‘financial wealth of the household’ in
its different realizations. Different subsets of this data set were analysed by Ma & Genton
(2010), Huber et al. (2004) and Moustaki & Victoria-Feser (2006). The exploratory analysis
of the data set in Fig. 3 reveals the asymmetry of the log-expenses distributions (despite the
log transformation). This suggests the presence of particular groups of consumers in Switzer-
land, for example, consumers with extremely high food and leisure expenditures, possessing
dishwasher, car and at least two bicycles.

We fitted an SNP-GLLVM with one (q =1) and two (q =2) latent variables to this data set.
The integral involved in the log-likelihood function when q =2 was approximated with the
adaptive multidimensional integration algorithm based on Genz & Malik (1980) and imple-
mented in the R-package ‘cubature’ by Steven G. Johnson (Johnson & Narasimhan, 2009).
This package is suited for cases with at most q =6 latent variables. The integral involved in
the log-likelihood function when q =1 is approximated as described in section 3.2 and imple-
mented in section 4.
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Fig. 3. Scatter plots of the Swiss consumption survey data set.

Table 4 presents the values of the estimated information criteria AIC, BIC and HQ for
different models. All three information criteria choose the SNP2 model with q =2 as the
best fit.
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Table 4. Information criteria divided by n=9960 (smaller values are preferred) and estimated coeffi-
cients with estimated standard errors for the SNP-GLLVM model with two latent variables fitted to
Swiss consumption data. Mean parameters are denoted by (�food, �clothing, �leisure, �dishwasher, �car,
�motorcycle, �bicycle)T , loadings for ith latent variable by (�i, food, �i, clothing, �i, leisure, �i,dishwasher, �i, car,
�i,motorcycle, �i,bicycle)T and uniquenesses by (�food, �clothing, �leisure)T

Model AIC/9960 BIC/9960 HQ/9960

q =1, L =0 5.60 5.61 5.60
q =1, L =1 5.41 5.42 5.42
q =1, L =2 5.38 5.39 5.38
q =2, L =0 5.52 5.53 5.53
q =2, L =1 5.36 5.36 5.36
q =2, L =2 5.28 5.29 5.28

SNP0 SNP1 SNP2

Parameter Estimate SE Estimate SE Estimate SE

�food 4.18 0.0039 4.15 0.0098 3.46 0.0043
�clothing 2.76 0.0051 2.76 0.0072 2.01 0.0052
�leisure 3.38 0.0056 3.22 0.0059 2.61 0.0053
�dishwasher −0.48 0.0028 −0.56 0.0105 −0.59 0.0201
�car 1.76 0.0075 3.18 0.0101 1.84 0.0162
�motorcycle −1.24 0.0071 −0.41 0.0209 −1.02 0.0501
�bicycle −0.05 0.0002 0.96 0.0014 0.33 0.0071
�1, food 0.33 0.0016 0.43 0.0125 0.86 0.0018
�1,clothing 0.42 0.0033 0.55 0.0244 0.60 0.0261
�1, leisure 0.17 0.0020 0.25 0.0053 0.23 0.0071
�1,dishwasher 1.58 0.0041 2.57 0.0080 5.02 0.0103
�1,car 2.10 0.0010 3.00 0.0024 5.23 0.0136
�1,motorcycle 1.21 0.0088 1.60 0.0091 1.83 0.0066
�1,bicycle 1.59 0.0081 1.67 0.0460 3.03 0.0085
�2, food −0.95 0.0019 −1.03 0.0072 −1.99 0.0043
�2,clothing −1.06 0.0090 −1.18 0.0390 −2.22 0.0514
�2, leisure −1.00 0.0037 −1.11 0.0076 −1.87 0.0052
�2,dishwasher −0.43 0.0095 −0.31 0.0121 −2.54 0.0287
�2,car −0.86 0.0018 −0.62 0.0027 −2.17 0.0042
�2,motorcycle 0.26 0.0072 0.20 0.0201 −0.66 0.0281
�2,bicycle 0.16 0.0009 −0.04 0.0007 −1.08 0.0007
�food 0.07 0.0006 0.07 0.0015 0.06 0.0016
�clothing 0.20 0.0008 0.21 0.0035 0.22 0.0038
�leisure 0.19 0.0013 0.18 0.0013 0.18 0.0018

Estimated uniquenesses and loadings for the model with two latent variables with covari-
ance matrix standardized to be the identity matrix can be seen in Table 4 (the corresponding
results for q =1 is available in Table S3 in the supplementary material). An orthogonal rota-
tion of the loadings could suggest a different interpretation but the pattern from unrotated
loadings is the most intuitive. Also the SNP2 estimation is very dissimilar with SNP0, and
this dissimilarity is increased by orthogonal rotation (varimax). For interpretation, as sug-
gested by Moustaki & Knott (2000), loadings should be standardized because normal, binary
and Poisson manifest variables are measured on different scales. Taking this into account for
all three estimators, the first latent variable measures mostly what the household possesses
already (with car being the most important measure for SNP0 and SNP1, for SNP2 this
importance is shared between car and dishwasher), while the second latent variable measures
the current expenses of the household with opposite sign. The clothing expense is the most
important component in the second latent for all three estimators.

We present the estimated bivariate SNP2 density on Swiss consumption data in Fig. 4
by showing marginal densities and contours of the estimated bivariate density (a figure of
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Fig. 4. Estimated semi-nonparametric (SNP2) density of two latent variables for the SNP-GLLVM
fitted to Swiss Consumption data. (A) and (B) marginal densities of the latent variables; (C) contours
of the joint bivariate density.

the estimated density when q =1 can be found in the supplementary material, Fig. S1). The
SNP2 estimated density clearly detects the presence of four unequal groups of households:
an important group of households with low expenditures, a less important group with high
expenditures (we interpreted by taking into account the opposite sign of loadings) but not
differentiated clearly by belongings and two tiny groups of households with almost similar
expenses but opposite in belongings. The latent variable related with belongings is slightly
skewed to the right, while the latent variable related with expenses is clearly bimodal.

6. Discussion

We considered GLLVM with flexible distribution of latent variables specified by smooth den-
sities from the SNP approach of Gallant & Nychka (1987). The proposed method was shown
to estimate the true density of latent variables with a good degree of accuracy. The estimated
density is easy to visualize. We established by simulations that the GLVVM with a combina-
tion of binary and normal observable variables is sensitive to the wrong specification of the
true latent variables distribution. Our experience makes us believe that this holds with other
discrete distributions for the manifest variables. One may argue that our SNP-GLLVM does
not gain much over normal modelling when there is no discrete manifest variable, however
exactly in this case the estimation and visualization easiness give an important insight into
the behaviour of the assumed latent variables. This is why we expect the proposed method
to be useful to the community of latent variables users and researchers.

Supporting Information

Additional Supporting Information for this article may be found in the online version of this
article.
S1. Simulation results selected with AIC, BIC and HQ criteria for the mixture of normal
latent variable as mentioned in section 4.
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S2. Detailed estimation results for Swineford–Holzinger data in section 5.1.
S3. SNP-GLLVM with one latent variable fitted to Swiss consumption data from section 5.2:
coefficients with standard errors and estimated densities of latent variable.
S4. Gradient of the log-likelihood function for SNP-GLLVM with conditionally normal
manifest variables in section 3.1.
S5. Gradient of the log-likelihood function for SNP-GLLVM with mixed scale manifest vari-
ables in section 3.2.
S6. Proof of Proposition 2.1 and Corollary 2.2 from section 2.2.
S7. R code for estimating SNP-GLLVM with mixed scale manifest variables and one latent
variable as mentioned in section 3.2.
S8. R code for estimating SNP-GLLVM with conditionally normal manifest variables and
two latent variables as mentioned in section 3.2.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any sup-
porting materials supplied by the authors. Any queries (other than missing material) should
be directed to the corresponding author for the article.
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