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This article proposes functional median polish, an extension of univariate median
polish, for one-way and two-way functional analysis of variance (ANOVA). The func-
tional median polish estimates the functional grand effect and functional main factor
effects based on functional medians in an additive functional ANOVA model assuming
no interaction among factors. A functional rank test is used to assess whether the func-
tional main factor effects are significant. The robustness of the functional median polish
is demonstrated by comparing its performance with the traditional functional ANOVA
fitted by means under different outlier models in simulation studies. The functional me-
dian polish is illustrated on various applications in climate science, including one-way
and two-way ANOVA when functional data are either curves or images. Specifically,
Canadian temperature data, U.S. precipitation observations and outputs of global and
regional climate models are considered, which can facilitate the research on the close
link between local climate and the occurrence or severity of some diseases and other
threats to human health.

Key Words: Analysis of variance; Climate models; Functional data; Health; Image
data; Median polish; Robustness; Spatio-temporal data.

1. INTRODUCTION

Analysis of variance (ANOVA) is an important technique for analyzing the effect of cat-
egorical factors on a response. It decomposes the variability in the response variable among
the different factors to determine which factors have significant effects on the response and
how much of the variability in the response variable is attributable to each factor. A one-
way ANOVA is used when the data are divided into groups according to only one factor.
When more than one factor is present, a multi-way ANOVA is appropriate where both
main effects and interactions among the factors may be estimated. For example, a two-way
ANOVA places observations yij in a two-way table and the additive model without factor
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interactions is

yij = μ + αi + βj + εij , i = 1, . . . , r, j = 1, . . . , c, (1.1)

where μ represents a grand effect, αi and βj denote the ith row effect and the j th column
effect, respectively, εij is the measurement error in the cell of the ith row and j th column,
r ≥ 2 is the number of rows and c ≥ 2 is the number of columns.

The traditional ANOVA model is fitted by arithmetic means which is appropriate for
data which have no outliers. If there are outlying observations in the data, using medians
to estimate the terms is generally robust in the additive decomposition. Median polish is a
technique for extracting row and column effects in a two-way table using medians rather
than means. It is an iterative procedure; see Tukey (1970, 1977), Mosteller and Tukey
(1977), Velleman and Hoaglin (1981), Hoaglin, Mosteller, and Tukey (1983, 1985), and
Emerson and Hoaglin (1983) for details. The median polish has many applications. For
instance, in spatial statistics, Cressie (1993) applied the median polish to gridded data as
a robust method to remove any trend over a spatial domain. The median polish often pro-
duces a fit to the additive model that is close to being optimal in the least-absolute-residuals
sense (Hoaglin, Mosteller, and Tukey 1983, p. 184). The iterative procedure lowers the
L1-norm of the residuals at each iteration. Usually it does not take very many iterations to
converge but in general it does not converge to the least L1-norm residuals. Fink (1988)
provided an algorithm that converges in a finite number of steps for any real data and gives
the least L1-norm residuals.

Traditional ANOVA models fitted by means apply for univariate data. When functional
data are observed, such as temporal curves or spatial surfaces, where observations are the
entire functions rather than a string of numbers, functional ANOVA models are appropri-
ate. They estimate the functional effects of categorical factors in order to determine how
functions differ at different levels of these factors. Such questions arise in many fields,
including meteorology, biology, medicine, and engineering. Kaufman and Sain (2010) de-
veloped a Bayesian framework for functional ANOVA modeling to estimate the effect of
geographic regions on a Canadian temperature dataset and examined sources of variability
in the output of climate models where the factors are the choice of regional climate mod-
els (RCMs) and the choice of their boundary conditions from global circulations models
(GCMs). Based on their work, Sain, Nychka, and Mearns (2011) compared two differ-
ent dynamic downscaling methods in climate model experiments and their projections of
summer temperature and precipitation over North America.

Similar to the univariate case, the functional ANOVA models fitted by means are not
resistant to outliers. In this article, we propose a robust functional ANOVA model fitted by
medians, coined functional median polish, for functional data y(x) where the index x ∈ I .
In classical functional data analysis, x = t represents time and the index set I is an interval
in R. In image and surface analysis, x = s represents space and the index set I is a region
in R

d with d = 2 although d > 2 could be considered as well. A further extension is to
space-time functions where x = (s, t) and the index set I is a region in R

2 ×R. To perform
functional ANOVA fitted by medians, we need to define the median for functional data.
López-Pintado and Romo (2009) introduced the concept of modified band depth (MBD), a
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measure of the centrality of sample curves, defined through a graph-based approach. Sup-

pose we observe n sample curves, y1(t), . . . , yn(t). The sample band depth of a curve yi(t)

is BDn,J (yi) = ∑J
j=2

(
n
j

)−1 ∑
1≤i1<i2<···<ij ≤n I {G(yi) ⊆ B(yi1 , . . . , yij )}, where I {·}

denotes the indicator function, B(yi1, . . . , yik ) = {(t, z(t)) : t ∈ I ,minr=1,...,k yir (t) ≤
z(t) ≤ maxr=1,...,k yir (t)} is the band in R

2 delimited by the curves yi1, . . . , yik , G(yi) =
{(t, yi(t)) : t ∈ I } and 2 ≤ J ≤ n is the number of curves determining a band. Since the

order of curves induced by band depth is very stable in J , we use J = 2 to avoid com-

putational issues. The MBD is a more flexible version which replaces the aforementioned

indicator function by a function which measures the proportion of time that a curve yi(t)

is in a band to prevent too many depth ties. The median curve is then defined as the one

with the largest depth value. It is different from taking the median of (y1(t), . . . , yn(t))

at each t ∈ I pointwisely, which would lead to a curve that is not a real observation. If

there are several curves with the largest depth value, then the median is the average of

them. Consequently, the median curve is simply the average of two curves when n = 2

and J = 2. Using the modified band depth to order sample curves, Sun and Genton (2011,

2012) proposed functional boxplots and adjusted functional boxplots to visualize temporal

curves. Furthermore, as an extension, they also proposed surface boxplots to visualize spa-

tial surfaces where the band depth was extended to a volume-based depth in R
3. Similarly,

the median surface was defined as the one with the largest depth value. Having medians

for both temporal curves and spatial surfaces defined by MBD, the functional median pol-

ish can be performed in an analogous fashion to the univariate median polish. The fast

algorithm in Sun, Genton, and Nychka (2012) is used for MBD computation.

This article is organized as follows. Section 2 describes the functional median polish

algorithm. Section 3 compares the traditional functional ANOVA fitted by means and the

functional median polish by Monte Carlo simulation studies. Applications of the functional

median polish on spatio-temporal datasets from climate science are reported in Section 4

and a discussion is provided in Section 5.

2. FUNCTIONAL MEDIAN POLISH ALGORITHM

For univariate data, the median polish procedure operates on the data in a two-way table

by sweeping out column and row medians. The resulting estimation of the model (1.1)

consists of a grand effect μ̂ common to all cells in the table, plus specific row effects α̂i

and column effects β̂j . The procedure using medians to find grand, row and column effects

operates iteratively on the data table, going through a number of row sweeping and column

sweeping operations until no more changes occur in the row and column effects, or until

changes are sufficiently small. The grand effect can depend on whether one starts with a

row sweep or a column sweep. However, the order is often a matter of arbitrary choice,

and the difference between the two solutions is generally unimportant for many practical

purposes. For functional median polish, we describe the algorithm by starting with the row

sweep.
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2.1. ONE-WAY FUNCTIONAL MEDIAN POLISH

Suppose we observe functional data at each level of one categorical factor and we are
interested in examining the effect of the factor, which we call the functional row effect.
Then the observations can be decomposed as

yik(x) = μ(x) + αi(x) + εik(x), i = 1, . . . , r, k = 1, . . . ,mi, (2.1)

where x ∈ I , r ≥ 2 is the number of rows and mi is the number of replications in the ith
row. Here μ(x) represents a functional grand effect and αi(x) the ith functional row effect,
with constraints, ∀x ∈ I , that mediani{αi(x)} = 0 and mediani{εik(x)} = 0 for all k.

To fit this model by medians, we propose the following algorithm:

1. Compute the functional median of each row and record the functional value to the
side of the row. Subtract the row functional median from each function in that par-
ticular row.

2. Compute the functional median of the row functional medians, and record the value
as the functional grand effect. Subtract this functional grand effect from each of the
row functional medians, and record the values as the functional row effect.

3. Repeat steps 1–2 and add the new functional grand effect and functional row effect
to the current ones at each iteration until no changes occur with the row functional
medians.

2.2. TWO-WAY FUNCTIONAL MEDIAN POLISH

Suppose we observe functional data at each combination of two categorical factors and
we are interested in examining their effects, which we call the functional row or column
effects, respectively. Then the observations can be decomposed as

yijk(x) = μ(x) + αi(x) + βj (x) + εijk(x), i = 1, . . . , r, j = 1, . . . , c, k = 1, . . . ,mij ,

(2.2)
where x ∈ I , r ≥ 2 is the number of rows, c ≥ 2 is the number of columns and mij is the
number of replications in the cell of the ith row and j th column. Here μ(x) represents a
functional grand effect, αi(x) the ith functional row effect, and βj (x) the j th functional
column effect, with constraints, ∀x ∈ I , that mediani{αi(x)} = 0, medianj {βj (x)} = 0
and mediani{εijk(x)} = medianj {εijk(x)} = 0 for all k.

To fit this model by medians, we propose the following algorithm:

1. Compute the functional median of each row and record the functional value to the
side of the row. Subtract the row functional median from each function in that par-
ticular row.

2. Compute the functional median of the row functional medians, and record the value
as the functional grand effect. Subtract this functional grand effect from each of the
row functional medians, and record the values as the functional row effect.
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3. Compute the functional median of each column and record the functional value be-
neath the column. Subtract the column functional median from each function in that
particular column.

4. Compute the functional median of the column functional medians, and add the value
to the current functional grand effect. Subtract this functional grand effect from each
of the column functional medians, and record the values as the functional column
effect.

5. Repeat steps 1–4 and add the new functional grand effect, functional row and column
effects to the current ones at each iteration until no changes occur with the row
functional medians.

2.3. HYPOTHESIS TEST IN FUNCTIONAL MEDIAN POLISH

Based on the band depth, López-Pintado and Romo (2009) also proposed a rank test for
functional data. In the functional ANOVA setting, it can be used to test if two populations Y

and Y ′ have the same location parameter, i.e. the null hypothesis

H0 : μY (x) = μY ′(x), ∀x ∈ I . (2.3)

If we reject H0, the factor effect is significant in the functional ANOVA model. Sup-
pose two functional samples y1(x), . . . , yn(x) and y′

1(x), . . . , y′
m(x) are observed and

let z1(x), . . . , zr (x) be the reference sample from one of the two populations with r ≥
max(n,m). To find the position of yi (i = 1, . . . , n) or y′

j (j = 1, . . . ,m) with respect to
the reference sample, define

R(yi) = 1

n

n∑

k=1

I
{
MBD(zk) ≤ MBD(yi)

}
,

R
(
y′
j

) = 1

m

m∑

k=1

I
{
MBD(zk) ≤ MBD

(
y′
j

)}
.

Then order these values from the smallest to the largest giving them the ranks from 1 to
n+m. Let W = ∑m

j=1 rank{R(y′
j )}. Then the distribution of W under H0 is the distribution

of the sum of m numbers that are randomly chosen from {1,2, . . . , n + m}. The critical
values are determined by simulations.

This rank test is nonparametric and robust which is different from the two-sample func-
tional t-test (Ramsay, Hooker, and Graves 2009) for H0 defined in (2.3). The functional
t-test statistic is defined as

max
x

|Ȳ (x) − Ȳ ′(x)|
√

1
n
s2
Y(x) + 1

m
s2
Y ′(x)

, (2.4)

where Ȳ (x) = 1
n

∑n
i=1 Yi(x), Ȳ ′(x) = 1

m

∑m
i=1 Y ′

i (x), s2
Y(x) = 1

n−1

∑n
i=1{Yi(x) − Ȳ (x)}2

and s2
Y ′(x)

= 1
m−1

∑m
i=1{Y ′

i (x) − Ȳ ′(x)}2. The critical values are determined using a per-
mutation test by randomly shuffling the labels of the two samples and calculating the max-
imum in (2.4) with the new labels. This is repeated by simulations and a null distribution
is constructed.



FUNCTIONAL MEDIAN POLISH 359

3. MONTE CARLO SIMULATIONS

The functional ANOVA model in (2.2) can be fitted by means with

μ̂(x) = 1
∑

i,j mij

r∑

i=1

c∑

j=1

mij∑

k=1

yijk(x),

α̂i(x) = 1
∑

j mij

c∑

j=1

mij∑

k=1

yijk(x) − μ̂(x),

β̂j (x) = 1
∑

i mij

r∑

i=1

mij∑

k=1

yijk(x) − μ̂(x).

To study the robustness of the fit, we compare the performance of the functional median
polish with the mean version of functional ANOVA under different models.

We generate data from a true model in (2.2) with x = t , r = 2, c = 3, and m = 100
curves in each cell at p = 50 time points. Let μ(t) = 4t , αi(t) = iα(t), βj (t) = jβ(t),
where α(t) = 5(t − 0.5)2 has a quadratic form and β(t) = 4, a constant form, for i = 1,2,
j = 1,2,3 and t ∈ [0,1]. We introduce outliers through a stochastic Gaussian process
εijk(t) from different models with similar model structures as studied by Sun and Genton
(2011). Model details are described as follows:

1. Model 1 is a basic one without contamination: εijk(t) = eijk(t), where eijk(t) is
a stochastic Gaussian process with zero mean and covariance function γ (t1, t2) =
exp{−|t2 − t1|}.

2. Model 2 includes an asymmetric contamination: εijk(t) = eijk(t)+cijkK , where cijk

is 1 with probability qij and 0 with probability 1 − qij , K = 20 is a contamination
size constant and the outlier probability qij is different for each cell according to the
matrix:

Q =
(

0.10 0.20 0.15
0.05 0.10 0.10

)

.

3. Model 3 is partially contaminated: εijk(t) = eijk(t)+cijkK , if t ≥ Tijk and εijk(t) =
eijk(t), if t < Tijk , where Tijk is a random number generated from a uniform distri-
bution on [0,1].

For 1,000 replications, we use the functional boxplot introduced by Sun and Genton
(2011) to summarize the estimation of the functional effects, μ̂(t), α̂i (t) and β̂j (t), for
functional median polish and the mean version of functional ANOVA, shown in Figures 1,
2, 3 for models 1, 2, 3, respectively.

Under the three models, functional median polish gives unbiased estimation of the func-
tional grand, row and column effects, whereas the mean version of functional ANOVA is
clearly affected by outliers in models 2 and 3. As can be seen in Figure 2 for the mean
version of functional ANOVA, the median curves of the functional grand, row and column
effects all shift away from the truth due to the magnitude outliers in model 2. In Figure 3



360 Y. SUN AND M.G. GENTON

Figure 1. Functional boxplots of the functional effects estimation for median polish and the mean version of
functional ANOVA for model 1 with blue curves denoting envelopes, and a black curve representing the median
curve. True values are represented by dashed green curves. (Color figure online.)

for the mean version of functional ANOVA, because of the shape of outliers in model 3,
the median curves of the functional grand, row and column effects all depart from the truth
with an increasing trend in magnitude through time. The spread is increasing through time
as well. Moreover, the substantially biased mean version of functional ANOVA in the pres-
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Figure 2. Functional boxplots of the functional effects estimation for median polish and the mean version of
functional ANOVA for model 2. The red dashed curves are the outlier candidates detected by the 1.5 times the
50 % central region rule. True values are represented by dashed green curves. (Color figure online.)

ence of outliers has yet a considerably lower variance which makes the wrong inferences
more misleading.

However, for model 1 in Figure 1 where no outlier is present, the mean version of func-
tional ANOVA is better with unbiased estimates and small variability while the functional
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Figure 3. Functional boxplots of the functional effects estimation for median polish and the mean version of
functional ANOVA for model 3. True values are represented by dashed green curves. (Color figure online.)

median polish is unbiased but has a relatively larger variability. Just like other median
related method, the functional median polish is more variable than the mean version for
normal data but is robust and performs much better for contaminated data. Therefore, the
functional median polish is a robust method to fit the functional ANOVA model and a
better choice when outliers are present.
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4. APPLICATIONS

Researchers have found that there is a close link between local climate and the occur-
rence or severity of some diseases and other threats to human health. For example, extreme
heat contributes directly to the mortality rate of cardiovascular and respiratory diseases,
high temperatures raise the levels of pollutants in the air, and increasingly variable rainfall
patterns are likely to affect the supply of fresh water. Moreover, climate models are used to
study the future climate by running under different scenarios and project climate changes
in the intensity and range of climate sensitive diseases. For instance, a continued increase
of atmospheric green house gases scenario is likely to generate more frequent, more inten-
sive or longer-lasting heat waves threatening human health. A better understanding of the
climate characteristics and the model structures can facilitate a potential health risk study
as well as inform the policy related analysis.

In this section, we present four applications in climate science and comparisons between
the functional median polish and the mean version of functional ANOVA. The Canadian
temperature in Section 4.1 and the U.S. precipitation in Section 4.2 are examples of one-
way functional median polish where temporal curves are observed at weather stations from
different climatic regions and we aim at estimating the functional grand and region effects.
The applications in Section 4.3 are examples of one-way functional median polish where
observations are spatio-temporal outputs from climate models and we treat the data either
as temporal curves at different locations or spatial surfaces at different time points. There-
fore, the functional median polish is applied to both curves and images. An example of a
two-way functional median polish is provided in Section 4.4.

4.1. CANADIAN TEMPERATURE

We consider the Canadian weather data introduced by Ramsay and Silverman (2005)
and studied by Kaufman and Sain (2010) with different mean-based functional ANOVA
models. The data shown in Figure 4 consist of monthly average temperatures for 35 Cana-
dian weather stations from four climatic regions: Atlantic, Continental, Pacific and Arctic.
We perform one-way functional median polish as well as the traditional mean version of
functional ANOVA to estimate the grand and the region effects shown in Figure 5 for the
model in (2.1). The functional grand effect shows the overall temperature trend through
seasons of the year, and the functional region effects represent the different temperature

Figure 4. Averaged monthly temperature (◦C) data at 35 Canadian weather stations from four climatic regions.
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Figure 5. Canadian temperature (◦C): estimation of the functional grand and region effects for the functional
median polish and the traditional mean version of functional ANOVA.

features of the four climatic regions. For example, the Continental region has the same

pattern as the functional grand effect, the Atlantic region tends to be warmer overall, the

Pacific region is warmer, particularly so during the winter months and the Arctic region is

always colder, especially in the winter and spring.

Figure 5 shows that the Atlantic and Arctic effects in the mean version of functional

ANOVA are smaller than those in the functional median polish. By looking at the original

curves in Figure 4, we can see that one curve for Atlantic and one for Arctic are below the

majority, which affects the estimation in the mean version. Similarly, in the mean version

of functional ANOVA, the Continental and Pacific effects are smaller than those in the

functional median polish at the beginning and the end of the year, which can be explained

by the four original curves for Continental and two for Pacific below the majority at the

beginning and the end of the year. Therefore, the functional median polish provides a more

robust estimation of the various effects.
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Figure 6. U.S. precipitation (mm/year): estimation of the functional grand and region effects for the functional
median polish and the traditional mean version of functional ANOVA.

4.2. U.S. PRECIPITATION

Sun and Genton (2011) proposed functional boxplots to visualize and compare the an-

nual precipitation for nine different climatic regions in the U.S. defined by the National

Climatic Data Center (NCDC). The observed annual total precipitation data for the coter-

minous U.S. from 1895 to 1997 at 11,918 weather stations were smoothed by a spline

smoothing approach. We consider the same dataset and the one-way functional ANOVA of

the smoothed curves is shown in Figure 6 for the functional median polish and the tradi-

tional mean version of functional ANOVA. The functional grand effect shows that there is

an increasing overall trend of the precipitation in the U.S. and the functional region effects

represent the different annual precipitation levels in different climatic regions with respect

to the overall pattern. For example, the South East, Central and North East have higher

precipitation while the South West, West and West North Central have drier years.
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Comparing the functional median polish with the mean version of functional ANOVA,
we can see that the grand effect in the mean version is much higher than that in the func-
tional median polish due to the extreme large outliers detected by the functional boxplots
in Sun and Genton (2012). The region effects are also affected by the outliers in the mean
version, especially for the North West which has higher precipitation than the overall pat-
tern whereas the functional median polish actually shows the opposite. Since the mean
version is not resistant to outliers, the region effect is likely (based on simulation results
in Section 3) to be overestimated because of the outlying locations with high precipitation
along the west coast (Sun and Genton 2012).

4.3. GLOBAL CLIMATE MODEL

A global climate model (GCM), also referred to as general circulation model, repre-
sents physical processes in the atmosphere and ocean. It uses complex computer programs
to simulate the response of the global climate system. Sun and Genton (2012) proposed the
adjusted functional boxplot to visualize the U.S. precipitation data from weather stations
studied in Section 4.2 and the data generated from the National Center for Atmospheric
Research-Community Climate System Model Version 3.0 under A2 scenario which con-
siders a continued increase of atmospheric green house gases and the associated warm-
ing throughout the 21st century; see IPCC (2000), Collins et al. (2006), Ammann et al.
(2010) and references therein. The weather station data were matched with GCM data by
averaging the observations within each cell for the coterminous U.S., the two functional
boxplots were then compared. The functional median polish and the traditional mean ver-
sion of functional ANOVA for this example estimate the functional grand effect and data
source (weather station and GCM) effect by treating the output either as temporal curves
at different locations (Figure 7), or images over the spatial region at different time points
(Figure 8).

As shown in Figure 7, the effects in the functional median polish have more annual
oscillations than those in the mean version, and the GCM tends to have higher precipitation
than the weather stations for most of the years. Moreover, the functional median polish
shows more clearly that the GCM has lower precipitation for the last several years. Both
the rank test and the two-sample functional t-test reject H0 in (2.3) at the 5 % significance
level, indicating that the GCM or weather station effect is significant. In Figure 8, from
the functional median polish, we can see that the GCM has higher precipitation than the
weather stations in some locations in the North but lower precipitation in the South and
South East. The effect estimation from the mean version is similar to the functional median
polish but smaller in magnitude. The rank test fails to reject H0 for images at the 5 %
significance level while the functional t-test rejects it.

The GCM also simulates precipitation for the future. We apply the functional median
polish to estimate the segment effect for GCM past (1900–1999) and GCM future (2000–
2099), and estimate the functional grand effect and segment effect by treating the out-
put either as temporal curves at different locations (Figure 9), or images over the spatial
region at different time points (Figure 10) for the functional median polish and the tra-
ditional mean version of functional ANOVA. As shown in Figure 9, the effects in the
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Figure 7. Weather station and GCM precipitation (mm/year) curves: estimation of the functional grand and data
source effects for the functional median polish and the traditional mean version of functional ANOVA.

functional median polish have more annual oscillations than those in the mean version,

and the functional median polish shows more clearly that the GCM future runs have

higher precipitation than the past runs for the last 20 years. In Figure 10, the GCM fu-

ture runs have higher precipitation than the past in the South, but lower precipitation in

the North. Similar to Figure 9, the GCM past and future effects in the mean version are

less significant. For both curves and images, the rank test fails to reject H0 in (2.3) at

the 5 % significance level which does not provide evidence that the GCM past or fu-

ture effect is significant. In contrast, the functional t-test rejects it in both cases. By de-

composition of the variability, the functional median polish helps us better understand

the impacts of the emission scenario on climate variables, and make further connec-

tions between various scenarios and climate change related public health problems pos-

sible.
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Figure 8. Weather station and GCM precipitation (mm/year) images: estimation of the functional grand and
data source effects for the functional median polish and the traditional mean version of functional ANOVA.

4.4. REGIONAL CLIMATE MODEL

A regional climate model (RCM) is a comprehensive physical model representing the
important components of the climate. It has a higher resolution and provides finer spatial
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Figure 9. GCM past and future precipitation (mm/year) curves: estimation of the functional grand and segment
effects for the functional median polish and the traditional mean version of functional ANOVA.

and temporal details than a GCM. A RCM only covers a limited area of the globe and
its lateral boundaries are driven by variables output, for instance, winds, temperatures and
humidity, from a GCM. Functional ANOVA is one way to estimate how much variability
in the model output is from RCM and how much is due to the boundary conditions from
GCM. This problem has been studied by Kaufman and Sain (2010) under a mean-based
Bayesian framework for the data from the PRUDENCE project (Christensen, Carter, and
Giorgi 2002). We apply our functional median polish to the same subset of the data in Kauf-
man and Sain (2010), consisting of control runs (1961–1990) for two RCMs (HIRHAM
and RCAO) crossed with two GCMs (ECHAM4 and HadAm3H), and analyze the output
of summer temperatures for these 30 years over the United Kingdom and Ireland for the
four combinations of the RCM and GCM. The RCM High-Resolution Atmospheric Model
(HIRHAM) was developed in collaboration between the Danish Meteorological Institute,
the Royal Netherlands Meteorological Institute, and the Max Planck Institute for Mete-
orology. The RCM Rossby Centre Atmosphere-Ocean Model (RCAO) was developed at
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Figure 10. GCM past and future precipitation (mm/year) images: estimation of the functional grand and segment
effects for the functional median polish and the traditional mean version of functional ANOVA.
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Figure 11. RCM and GCM temperature (◦C) curves: estimation of the functional grand and RCM/GCM effects
for the functional median polish and the traditional mean version of functional ANOVA.

Figure 12. RCM and GCM temperature (◦C) images: estimation of the functional grand effect for the functional
median polish and the traditional mean version of functional ANOVA.

the Rossby Centre at the Swedish Meteorological and Hydrological Institute. The GCM
European Center HAMburg 4 (ECHAM4) was from the Max Planck Institute, and the
GCM Hadley Atmospheric Model (HadAm3H) was from the Hadley Centre in the United
Kingdom. Details can be found at http://prudence.dmi.dk/.

We estimate the functional grand effect and RCM/GCM effects by treating the output
either as temporal curves at different locations (Figure 11), or images over the spatial re-
gion at different time points (Figures 12, 13, 14) for the functional median polish and the
traditional mean version of functional ANOVA.

http://prudence.dmi.dk/
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Figure 13. RCM temperature (◦C) images: estimation of the functional RCM effect for the functional median
polish and the traditional mean version of functional ANOVA.

Because there are only two levels for each factor, we can only look at the curve or

the image for one factor effect by symmetry. For both curves and images, it is shown

that most of the variability is due to the choice of GCM with a large effect in magnitude

over time or space, especially for the North Sea, and with boundary conditions HadAm3H

from the GCM, the output tends to be warmer. The choice of RCM has a smaller effect in

magnitude for most of the locations, but does have some significant local effects, and the

RCM HIRHAM output tends to be warmer in the west and cooler in the east. For curves, the

rank test fails to reject H0 in (2.3) at the 5 % significance level for the GCM effect. Since

the functional median represents a typical location, the test shows that the local effect is

not significant for different GCM boundary conditions. For the RCM effect, the rank test

rejects H0 at the 5 % significance level showing the significant RCM local effect. For

images, the rank test rejects H0 at the 5 % significance level for the GCM effect indicating

its significant effect over the whole spatial region, but fails to reject it for the RCM effect.

Since the functional median represents a typical map in this case, the test shows that the
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Figure 14. GCM temperature (◦C) images: estimation of the functional GCM effect for the functional median
polish and the traditional mean version of functional ANOVA.

two RCMs only differ at certain locations but overall the effect is not significant. However,
the two-sample functional t-test rejects H0 at the 5 % significance level for all cases.

The information we have obtained from the functional median polish is consistent with
the conclusion in Kaufman and Sain (2010). However, their model is based on means and
provides more similar estimation with the traditional mean version of functional ANOVA.
To better compare the median and the mean version, we look at the two averaged residual
maps in Figure 15. It shows high temperature values at some locations in Ireland and Scot-
land which indicate outliers remaining in the residuals for the functional median polish,
while the residuals in the mean version of functional ANOVA are close to zero everywhere
which implies that the estimation of the effects is affected by outliers as demonstrated in
our simulations in Section 3. We can also see the influence of the outliers in Figure 12
where the grand effect in the mean version is warmer over the area in Ireland and Scot-
land than that in the functional median polish. Thus, further investigation for the GCM and
RCM at these outlying locations is needed.
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Figure 15. Temperature (◦C) residual maps: averaged residual maps for the functional median polish and the
traditional mean version of functional ANOVA.

5. DISCUSSION

This article has focused on the ANOVA for functional data. The functional median pol-
ish we have proposed is a robust method to fit an additive functional ANOVA model by
functional medians, assuming no interaction among factors. As an extension to the uni-
variate median polish, we have described the iterative algorithm for one-way and two-way
functional ANOVA, and our simulation studies have shown that the functional median pol-
ish is robust under different outlier models while the traditional mean version of functional
ANOVA is not resistant to outliers. Our applications focused on climate data collected from
weather stations or generated from climate models, where the functional data can be either
treated as curves in time or images over space. In these examples, compared to the mean
version of functional ANOVA, the functional median polish provided robust estimation of
climatic region effects for weather station data, as well as various factor effects in climate
models which play an important role in understanding the model scenarios and interpreting
model output.

If two factors are taken to be geographic coordinates, e.g. the latitude and longitude of
gridded data, then we obtain a functional version of the median polish algorithm described
by Cressie (1993) in the context of spatial statistics. Instead of just one number at each
spatial locations, we have a whole function of time. Therefore, a large scale trend in space
and time can then be removed.

The functional median polish algorithm is based on functional median defined by mod-
ified band depth (López-Pintado and Romo 2009), which allows us to order functional
data. With this measure, it is natural to extend rank-based tests to functional data. Thus,
in the functional ANOVA framework, besides the estimation problem solved by the func-
tional median polish, hypothesis tests can be set up and rank-based tests can be general-
ized. Moreover, functional median polish can be straightforwardly extended to the setting
of sparse functional data by means of the band depth in that context recently defined by
López-Pintado and Wei (2011).
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Like the classical median polish procedure for univariate data, our functional median
polish algorithm does not guarantee to yield the least L1-norm residuals. Fink (1988) pro-
posed a rather complex modification of the classical procedure that converges to the least
L1-norm residuals. The generalization of his modifications to our functional setting ap-
pears to be very challenging and remains an open problem.
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