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Exact fast computation of band depth for large
functional datasets: How quickly can one million
curves be ranked?
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Band depth is an important nonparametric measure that generalizes order statistics and makes univariate methods
based on order statistics possible for functional data. However, the computational burden of band depth limits its
applicability when large functional or image datasets are considered. This paper proposes an exact fast method to
speed up the band depth computation when bands are defined by two curves. Remarkable computational gains
are demonstrated through simulation studies comparing our proposal with the original computation and one exist-
ing approximate method. For example, we report an experiment where our method can rank one million curves,
evaluated at fifty time points each, in 12.4 seconds with Matlab. Copyright © 2012 John Wiley & Sons, Ltd.
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1 Introduction
Functional data analysis is an attractive approach to study complex data in statistics. Functional data are observed
in many disciplines, such as electroencephalogram (EEG) tests for brain wave activity in medicine, spatio-temporal
evolution of cells in biology, climate variables from monitoring networks or climate models in meteorology, chemical
processes in engineering, to name but a few; see Ramsay et al. (2009) for many applications. Even longitudinal data
can be viewed from a functional angle (Zhao et al., 2004). Many univariate methods have been extended to functional
data. López-Pintado & Romo (2009) introduced a notion of band depth to generalize order statistics to functional
data. It provides an ordering within a sample of functions, thus makes univariate methods based on order statistics
possible for functional data. For example, the median function or a trimmed mean function can be defined for robust
statistical analysis, whereas functional boxplots and adjusted functional boxplots (Sun & Genton, 2011; 2012a) can
be constructed for visualization; see Zuo & Serfling (2000) for key properties that a depth measure should satisfy.

Data depth is an important concept to order functional data. In general, it allows for ordering a sample of functional
data from the center outwards and, thus, introduces a measure to define the centrality or outlyingness of an obser-
vation. Indeed, one can compute the depth values of all the sample curves and order them according to decreasing
depth values. Suppose each observation is a real function yi.t/, i D 1, : : : , n, t 2 I, where I is an interval in R. Let
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y[i].t/ denote the sample curve associated with the ith largest band depth value. Then y[1].t/, : : : , y[n].t/ can be viewed
as order statistics, with y[1].t/ being the deepest (most central) curve or simply the median curve, and y[n].t/ being the
most outlying curve. The implication is that a smaller rank is associated with a more central position with respect to
the sample curves. The order statistics induced by depth start from the most central sample curve and move outwards
in all directions.

More specifically, López-Pintado & Romo (2009) defined the band depth through a graph-based approach. The graph
of a function y.t/ is the subset of the plane G.y/ D ¹.t, y.t// : t 2 Iº. The band in R2 delimited by the curves
yi1 , : : : , yik is B

�
yi1 , : : : , yik

�
D ¹.t, x.t// : t 2 I, minrD1,:::,k yir.t/ 6 x.t/ 6 maxrD1,:::,k yir.t/º. Let J be the number of

curves determining a band, where J is a fixed value with 2 6 J 6 n. If Y1.t/, : : : , Yn.t/ are independent copies of the
stochastic process Y.t/ generating the observations y1.t/, : : : , yn.t/, the population version of the band depth for a
given curve y.t/ with respect to the probability measure P is defined as BDJ.y, P/ D

PJ
jD2 BD.j/.y, P/ D

PJ
jD2 P¹G.y/ �

B.Y1, : : : , Yj/º, where B.Y1, : : : , Yj/ is a band delimited by j random curves. The sample version of BD.j/.y, P/ is
defined as

BD. j/
n . y/ D

 
n
j

!�1 X
16i1<i2<���<ij6n

I
®
G.y/ � B

�
yi1 , : : : , yij

�¯
, (1)

where I¹�º denotes the indicator function. Then, the sample band depth of a curve y.t/ is

BDn, J.y/ D
JX

jD2

BD. j/
n . y/. (2)

When curves are very irregular, few bands will completely contain a curve, and then many sample curves will have
the same band depth value as implied by the indicator function involved in (2), which results in a poorly defined
ranking. For example, the band defined by J D 2 curves that cross at one point does not contain any other curve with
probability 1, hence it does not contribute to the band depth value. Another example is given by Brownian motion
in continuous time, for which the band depth is identically zero with probability 1 for all J, for any n, and any time
period [ 0, T]. To solve this problem, López-Pintado & Romo (2009) proposed a more flexible definition, the modified
band depth (MBD), by measuring the proportion of time that a curve y.t/ is in the band:

MBD.j/n .y/ D

 
n
j

!�1 X
16i1<i2<���<ij6n

�r
®
A
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y; yi1 , : : : , yij

�¯
, (3)

where Aj. y/ � A
�
y; yi1 , : : : , yij

�
�
®
t 2 I : minrDi1,:::,ij yr.t/ 6 y.t/ 6 maxrDi1,:::,ij yr.t/

¯
and �r. y/ D �.Aj. y//=�.I/, if �

is the Lebesgue measure on I. Then, the sample modified band depth of a curve y.t/ is

MBDn,J. y/ D
JX

jD2

MBD.j/n . y/. (4)

If y.t/ is always inside the band, the modified band depth degenerates to the band depth in (2).

From the definitions in (1) and (3), we can see that the computational cost of calculating the depth values in a sample
with size n grows with the sample size at rate

�n
j

�
, 2 6 j 6 J. Nowadays, with the advancement of technology, massive

amounts of data are often observed at a large number of spatial locations in geophysical and environmental sciences.
For example, the weather station monitoring network provided by the Institute for Mathematics Applied to Geosciences
has n D 11, 918 stations for the coterminous United States reporting monthly temperature and precipitation. If the
number of curves in the sample of interest is large, the computational burden limits the applicability of the band depth,
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especially when iterative procedures are involved in the analysis, for example such as the bootstrap in nonparametric
testing for functional data (Li & Liu, 2004), the clustering and classification methods (Jornsten, 2004) and the
functional median polish for functional ANOVA (Sun & Genton, 2012b). Therefore, from a practical perspective, it is
important to devise fast and efficient computations of data depth. López-Pintado & Jornsten (2007) have proposed
a resampling method to speed up the band depth computation which only provides an approximate solution. In this
paper, we instead propose an exact fast method to alleviate the computational burden for J D 2.

The rest of our paper is organized as follows. The proposed exact fast method is described in Section 2. Section 3
provides the comparisons between our exact fast method and the approximate resampling method through simulation
studies. A discussion is given in Section 4 and pseudo code is provided in the Appendix.

2 An exact fast method
The computational cost of calculating the band depth depends on the sample size n and j, the number of curves
determining a band (2 6 j 6 J). Since the order of curves induced by band depth is very stable in J, a small value of
J is preferable to avoid computational issues. However, for large datasets, the computation is still very intensive even
for J D 2. To solve this problem, a resampling method has been proposed by López-Pintado & Jornsten (2007), which
computes the band depth in the following way:

S1. Randomly assign n sample curves into K blocks B1, : : : , BK, with each block of size � n=K.
S2. Compute depth values of each curve y.t/ with respect to each group Bi, denoted as D.yjBi/, i D 1, : : : , K.
S3. The depth value of a curve y.t/ is D. y/ D 1

K

PK
kD1 D.yjBk/.

Suppose n=K D m. The computational cost is at rate K �
�m
2

�
, which is smaller than

�n
2

�
for large n and K > 1.

Computational gains are then achieved. However, this is an approximate method that saves the computational time
by sacrificing the accuracy, so a trade-off between the accuracy (block size) and the computational time is important.

To find an exact solution, we propose a fast method to compute the BD and MBD for J D 2, where the band depth
in (2) becomes

BD.2/n . y/ D
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, (5)

and the modified band depth in (4) becomes
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To illustrate the exact fast method procedure, we consider an example (Figure 1) similar to the one in Sun & Genton
(2011) with n D 4 curves on how to compute BD and MBD in practice. When J D 2, there are 6 possible bands
delimited by 2 curves. For instance, the grey area in Figure 1 is the band delimited by y1.t/ and y3.t/ which completely
contains the curve y2.t/, but only partly contains y4.t/. Moreover, a curve is also defined as “contained in a band” if
it is on the border of the band. Then BD.y2/ D 5=6 D 0.83 since only the band delimited by y3.t/ and y4.t/ does not
completely contain the curve y2.t/ and BD.y4/ D 3=6 D 0.5 as it is only completely contained in the bands delimited
by itself and another curve. Similarly, BD.y1/ D 0.5 and BD.y3/ D 0.5 can be computed.

From a programming perspective, there are two ways to implement this idea. One could use double loops to construct
each possible band, then check which curves are contained in a certain band (López-Pintado & Jornsten, 2007;
López-Pintado & Romo, 2009). In the first loop, the index i goes from 1 to n 	 1, and in the second loop, the index j
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Figure 1. An example of BD and MBD computation: the grey area is the band delimited by y1.t/ and y3.t/. The curve y2.t/
completely belongs to the band, but y4.t/ only partly does.

goes from iC 1 to n, with a total number of
�n
2

�
iterations. Then for the band delimited by the ith curve and the jth

curve, all the n sample curves are checked to see which ones are contained in this band and which ones are not. The
count number for each sample curve is accumulated respectively at each iteration. Let M be the p � n data matrix
denoting n sample curves evaluated at p time points. The pseudo code is provided in Appendix A.1.

An alternative way that we propose is to check how many bands contain a certain sample curve without using loops
based on a rank matrix. For the p � n data matrix M, we order the n data points for each row (time point) from the
smallest value to the largest, and save their ranks rij 2 ¹1, : : : , nº to the p � n rank matrix R. Then, it is clear that
for the jth curve, nb D min16i6prij 	 1 denotes the number of curves that are completely below the jth curve, and
na 	max16i6prij denotes the number of curves that are completely above the jth curve, j D 1, : : : , n. This method has
an absolute advantage over the former for large n and programming languages that are inefficient in loops since na

and nb can be computed by matrix operations. The pseudo code is provided in Appendix A.2.

In the example in Figure 1, BD.y2/ D 5=6 D 0.83 can be obtained by checking all the 6 bands and finding that 5
out of 6 completely contain y2.t/ in the original method. For our exact fast method, the 5 bands are obtained by
na � nb C n 	 1 D 1 � 2C 4 	 1 D 5, where na is the number of curves completely above y2.t/, nb is the number of
curves completely below y2.t/ and n 	 1 is the number of bands with y2.t/ on the border. When n is large, the exact
fast method achieves remarkable computational gains.

To compute MBD, note that the curve y2.t/ is always contained in the five bands, hence MBD.y2/ D 0.83, the
same value as BD. In contrast, the curve y4.t/ only belongs to the band in grey 40% of the time, thus MBD.y4/ D
.3C 0.4C 0.4/=6 D 0.63 by definition. For the other two curves, MBD.y1/ D 0.5 and MBD.y3/ D 0.7. Similar to the
computation of BD, to obtain the MBD of y4.t/, for example, we only consider the combination of the curves above
and below y4.t/ for our exact fast method, but measuring the proportion of time that y4.t/ is in the bands. The pseudo
code is provided in Appendix A.3.

3 Simulations
In this section, we compare the performance of our exact fast method to that of the approximate resampling method
for J D 2 in terms of computational time and accuracy. Intuitively, when the sample size n is fixed, the smaller each
block is, the faster the computation. However, it is also necessary to keep the block size large enough in order to
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Table I. The median curve index, averaged 50% central region range and elapsed time (in seconds) obtained by the exact
fast method and the approximate resampling method for different values of K. Computations are done in R.

K 1 5 10 20 50 100 Fast Exact
n=K 1,000 200 100 50 20 10 Method

Median index 934 934 934 934 934 934 934
50% central region range 3.2763 3.2763 3.2763 3.2763 3.2466 3.2118 3.2763
Elapsed time (seconds) 1,189 239 120 54 20 10 0.02

ensure the accuracy of the band depth computation within each block. To illustrate this aspect as well as compare
the two methods, we choose different values for the number K of blocks with K D 1 indicating the original exact band
depth computation, and compare the median curve index and the 50% central region in the functional boxplot defined
by Sun & Genton (2011).

The original sample curves are generated from an outlier model as in Sun & Genton (2011). The model is: Yi.t/ D
Xi.t/ C ci�is, where ci is 1 with probability 0.1 and 0 with probability 0.9, s D 6 is a contamination size constant
and �i is a sequence of random variables independent of ci taking values 1 and 	1 with probability 1/2. Here
Xi.t/ D g.t/C ei.t/, i D 1, : : : , n, with mean g.t/ D 4t, t 2[ 0, 1] and where ei.t/ is a Gaussian stochastic process with
zero mean and exponential covariance function �.s, t/ D exp¹	jt 	 sjº.

We generate n D 1, 000 curves at p D 50 time points. The depth values are computed by MBD and all the compu-
tations are done by a single threaded application in R (R Development Core Team, 2012) on a 2.80Ghz Intel Xeon
X5560 with 48GB of RAM. The results are summarized in Table I where the 50% central region range is an averaged
value over all the time points.

Table I shows the performance of two methods compared to the original band depth computation, i.e. the case with
K D 1. For the approximate resampling method, when the number of blocks is relatively small or reasonably large,
for example, K D 5, 10, 20, the results are accurate with respect to the correct median curve and the averaged 50%
central region range, but have less computational time. For instance, the computational time is reduced from 1,189
to 54 seconds when K D 20. The computational time can be further reduced when K D 50, 100, but with a loss of
accuracy in the 50% central region range due to the small block sizes. For the exact fast method, it not surprisingly
achieves the exact solution yet with a much shorter computational time, only 0.02 seconds. Such great computational
gains will be even more prominent when the sample size n becomes larger.

4 Discussion
This paper proposed an exact fast method to speed up the computation of the band depth, a measure to order
functional data. It greatly alleviates the computational burden and makes a wider application of the BD and MBD for
large functional datasets possible. Compared to the approximate resampling method proposed by López-Pintado &
Jornsten (2007), the exact fast method provides exact solutions for J D 2 and computes the depth values much faster
as shown in Section 3, where it only costs 0.02 seconds in R for n D 1, 000. Code in R and Matlab is available in the
online supplement.

The exact fast method can also handle much larger datasets. For example, under the same simulation setting, we get
the depth values in 0.2 seconds in R and 0.1 seconds in Matlab for n D 10, 000 which is already impossible for the
original computation to handle. For n D 100, 000, it takes 1.6 seconds in R and 1.1 seconds in Matlab, whereas for
n D 1, 000, 000, it takes 24.4 seconds in R and 12.4 seconds in Matlab. If n gets even larger, we can consider to
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sacrifice some of the accuracy and combine the exact fast method with the approximate resampling method to further
speed up the band depth computation.

Let B.j/ denote a band delimited by j curves. The exact fast method we described is for J D 2, only considering bands
B.2/ in (5) and (6). For J > 2, J D 3 for instance, the method can be modified in a similar way by considering bands
B.3/ instead. If a band B.2/ contains the ith sample curve, it is straightforward that the new band B.3/ consisting of
the band B.2/ and one of any other curves also contains the ith sample curve. However, if a band B.3/ contains the
ith sample curve, the three curves do not necessarily include at least one completely above and one completely below
the ith curve. Therefore, more special cases need to be considered. Since the order of curves induced by band depth
is very stable in J, we only focused on J D 2 in this paper. However, further computational savings may be obtained
by making use of the theory of partial ordering and directed acyclic graphs (Bang-Jensen & Gutin, 2008).

For spatio-temporal data, we have viewed the information as a temporal curve at each spatial location. An alternative
would be to treat the dataset as a spatial surface at each time point. Sun & Genton (2011) proposed surface boxplots
by defining a volume-based surface band depth for a surface S by counting the proportion of surface bands determined
by J different surfaces (2 6 J 6 n) in R3, containing S. Under this setting, our exact fast method is particularly useful
for the spatial surfaces or images ordering due to the high resolution in space and time.

Appendix
A.1. Pseudo code for original computation of band depth

"count", "check" and "depth" are vectors of length n;
count=0;
for i from 1 to n-1

for j from i+1 to n
check[k] = if M[,k] is between M[,i] and M[,j], for each k=1,...,n;
count = count + check;

end
end
depth=count/nchoose2;

A.2. Pseudo code for exact fast computation of band depth
"n.a", "n.b" and "depth" are vectors of length n;
R[i,] = rank of M[i,], for each i=1,...,p;
n.a[j] = n-max(R[,j]), for each j=1,...,n;
n.b[j] = min(R[,j])-1, for each j=1,...,n;
depth = (n.a*n.b+n-1)/nchoose2;

A.3. Pseudo code for exact fast computation of modified band depth
"n.a", "n.b" and "match" are p by n matrices; "depth" is a vector of length n;
R[i,] = rank of M[i,], for each i=1,...,p;
n.a = n-R;
n.b = R-1;
match = n.a*n.b;
proportion = sum(match[,j])/p, for each j=1,...,n;
depth = (proportion+n-1)/nchoose2;
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