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Summary

The emphasis on renewable energy and concerns about the environment have led to large-scale
wind energy penetration worldwide. However, there are also significant challenges associated with
the use of wind energy due to the intermittent and unstable nature of wind. High-quality short-term
wind speed forecasting is critical to reliable and secure power system operations. This article begins
with an overview of the current status of worldwide wind power developments and future trends. It
then reviews some statistical short-term wind speed forecasting models, including traditional time
series approaches and more advanced space–time statistical models. It also discusses the evaluation
of forecast accuracy, in particular, the need for realistic loss functions. New challenges in wind speed
forecasting regarding ramp events and offshore wind farms are also presented.
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1 Introduction

1.1 Wind Energy

Environmental concerns and supply uncertainties are driving many countries to rethink their
energy mix and develop diverse sources of clean, renewable energy. Cost-effective energy that
can be produced without major negative environmental impacts has become the goal worldwide.
For example, the European Union, with its ambitious 20/20/20 target, aims to reduce greenhouse
gas emissions by 20% (as compared to 1990), to increase the amount of renewable energy to 20%
of the energy supply, and to reduce the overall energy consumption by 20% through improved
energy efficiency by 2020; see European Union (EU) (2008).

Wind energy, as a clean and renewable resource, has been under large-scale development
around the world in the last decade. World total capacity increased quickly and stably from year
2000 to 2010, more than doubling every third year, as the left panel of Figure 1 shows. The total
installed capacity reached 196 630 megawatts (MW) by the end of 2010, out of which 36 864
MW was added in the single year of 2010. The electricity generated from all installed turbines,
430 TWh per annum, is enough to supply the demand of the United Kingdom, the sixth largest
economy of the world, according to the World Wind Energy Association (WWEA, 2009). The
average annual growth rate of wind power capacity was about 27% during the years 2000–2010,
with highest growth rate in year 2001 followed by 2009, as shown in the right panel of Figure 1.
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Figure 1. Left panel: world total installed wind power capacity from year 2000 to 2010. Right panel: world market growth
rate of newly installed wind power capacity from the installed capacity of the previous year during 2000–2010.

Figure 2. Country shares of total installed wind power capacity (in MW and percentage) by the end of 2010.

North America, Europe, and Asia are the top three wind markets, providing 44%, 31%, and
22%, respectively, of the world total wind capacity in 2010. Asia is contributing the largest
amount of new installation, about 55%. This is mainly due to the rapid wind power development
in China which became the new leader in 2010 with a total installed wind capacity of over 44 733
MW, accounting for 23% of the worldwide wind capacity. With the decrease in new capacity in
the U.S., North America has fallen to the third position in newly installed turbines with a share
of 17%.

Figure 2 shows the shares of wind power capacity at the end of 2010 for selected countries,
with 74% being accounted for by China, the U.S., Germany, Spain, and India.

Wind power is on its way to high-level penetration in the electricity supply market. For
example, wind has become one of the largest electricity sources in a number of European
countries, such as Denmark, Portugal, and Spain, supplying 16–21% of the electricity demand
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in 2010. Worldwide, wind power accounted for 2.5% of the electricity supply in 2010, an
increase from 2% in 2009. This value is expected to increase tremendously in future decades.
A 2008 report by the U.S. Department of Energy (DOE, 2008) described a scenario in which
wind energy will provide 20% of the U.S. electricity demand by 2030. China is expecting to
develop a total capacity of 150 gigawatts (GW) by 2020, and 450 GW by 2050 according
to a report published by the Chinese Renewable Energy Industries Association (CREIA,
2010).

Wind energy has become very attractive due to its renewable and clean nature. First, the wind
resource is sustainable and will be available as long as there is uneven heating from the sun on
the surface of the Earth. Second, wind energy is an emission-free resource. Currently, fossil fuel
generation (mainly coal and natural gas) is the largest electricity source, and fossil fuelled power
stations are the major emitters of CO2. Carbon dioxide is the most important greenhouse gas, a
major contributor to the global warming observed over the last 100 years. Power generated from
wind, in comparison, is green without harmful byproducts produced by other traditional energy
sources. Thus, high-level penetration of wind power helps to reduce environmental damages
from other sources.

In addition, wind power generation is cost-effective. Advanced technologies in wind turbine
(or wind generator) design reduce the cost of utilizing wind energy and allow large-scale
integration into the current electricity grid. To generate wind power, the only input needed is the
wind from nature, which is free. Through turbines, wind energy is converted into mechanical
energy which is used to generate electricity. The most modern turbines installed onshore have
a capacity between 1.5 MW and 3 MW of electricity each, which means that they can produce
1.5–3 MW per hour at their maximum rated wind speed. Development of offshore turbine
technology allows for effective utilization of stronger and more uniformly blowing wind with
rated capacity between 2 MW and 5 MW each (DOE, 2010). The cost of a kilowatt (kW) of wind
powered electricity is now nearly the same as that of coal or nuclear energy. Also wind turbines
can work 8–10 years after installation, and the decommissioning is environmentally friendly by
recycling.

1.2 Integrating Wind Energy into the Power System

The benefits of wind energy are accompanied by several challenges: high variability, limited
predictability, limited dispatchability, and non-storability. Unlike fossil fuel generation, wind
power is not fully dispatchable. A coal power plant, for example, can be turned on or off, and
can adjust its output to the demand. Wind power, however, cannot be controlled by power system
operators because wind farms cannot increase their power generation upon request when there
is not sufficient wind. Wind farms can only reduce the output. Also, wind cannot be stored like
coal, natural gas, or atoms for future power generation. All of these disadvantages of the wind
resource pose profound challenges to today’s power system operations to integrate large-scale
wind power.

The basic function of power system operation is to balance the electricity supply and demand
at a minimum cost under the constraints of the transmission network and possible contingencies.
At different time scales (day ahead, hour ahead, or 5–10 min ahead), power system operators
decide the output of each power plant to meet the total load forecast and minimize the total cost
at the same time. Besides producing electricity, power plants also provide ancillary services,
such as frequency regulation and reserve requirement, to help the power system operate in a
reliable and secure manner. For the frequency regulation service, the on-line power plants are
committed to adjust their outputs to maintain the frequency at the base level (60 Hz in the U.S.)
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responding to the automatic generation control signal. For the reserve service, some power plants
are required to save a certain level of capacity for possible contingencies.

The high uncertainty in wind increases the operation cost and reduces the stability and
reliability of power systems. Before integrating variable power resources, such as wind and
solar, the main difficulty in power system operation was coming from the uncertainty of the
demand. However, when large-scale wind power is integrated into the power system, the variation
from the supply brings profound impacts on the operation even on top of the demand uncertainty
at different time scales. For example, close to the real-time operation (5–10 min or hour ahead),
if the wind power generators fail to produce as much electricity as predicted due to the wind
slowing down, other fast-responding units, such as gas-fired power plants, which are very
expensive, are needed immediately to balance the load. Otherwise, tremendous losses could
be caused by blackouts. Xie et al. (2011) analyzed the operational challenges due to the high
variations and limited predictability in wind and discussed possible solutions in detail.

How to reduce the uncertainty in wind has been the focus of research and new developments
in the last decades. To integrate large-scale wind power into power systems smoothly, wind
generation forecasting models have emerged rapidly to improve the accuracy of forecasts. They
include time series models, numerical weather prediction based models (Giebel et al., 2003) and
space–time models. Both short-term (several minutes to hours ahead) and longer term (days,
weeks to years ahead) wind forecasts are valuable to developing wind power. For instance,
Marquis et al. (2011) highlighted the needs of wind forecasts to reach significant penetration
levels of wind energy, especially regarding short-term forecasting.

Compared to long-term wind forecasting, short-term forecasting (hours ahead) is more
accurate and reliable. It is critical for effective operation planning with a high penetration
level of wind power, in terms of increasing the savings due to reduced committed thermal
capacity and savings due to the operation of more efficient units; see Xie et al. (2011). Long-
term wind forecasting is typically based on physics and numerical weather prediction, while
statistical models are thought to be more competitive in short-term forecasting problems (Genton
& Hering, 2007) in terms of forecast accuracy and model interpretation. Short-term forecasting
is the main topic of this article.

1.3 Outline

Short-term wind prediction has been the focus of extensive research in the last decade. The
motivation of this article is to review statistical models for short-term wind forecasting, to
bring up some important issues in evaluating the performance of forecasts, and to describe new
challenges in wind forecasting and future research topics.

The article is organized as follows. Section 2 describes the relationship between wind speed
forecasting and wind power forecasting and the recent trend away from point forecasting to
probabilistic forecasting. Section 3 summarizes some traditional time series statistical models
of wind speed forecasting, including autoregressive models and the Kalman filter method. In
Section 4, space–time statistical forecasting models are introduced. Evaluation of wind speed
forecasting models is discussed in Section 5, emphasizing that loss functions should meet the
practical requirements in power system operations. Future research topics about ramp events
and challenges in offshore wind speed forecasting are discussed in Section 6.

2 Wind Speed Forecasting

The power system operation balances the supply and demand of power at a minimum cost
subject to certain constraints. Given the advanced techniques in load forecasting, the major
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Figure 3. Three power curves with different capacity ranges from low to high from three manufacturers: 0.3 MW from
Nordex, 1.5 MW from GE, and 2.5 MW from Bonus.

difficulty of integrating large-scale wind power into the system lies in the uncertainty of wind
power generation. Accurate wind power forecasting is the primary motivation, while finding
a good way to define the uncertainty so that more information can be provided to the power
system operation for efficient decision making is also of great interest.

This section reports on the relationship between wind power forecasting and wind speed
forecasting, explains why probabilistic forecasting is a better way to define the uncertainty in
wind than just point forecasting, and describes the space–time correlations in wind.

2.1 Wind Speed and Power Forecasting

There are two approaches commonly used in wind power forecasting. One approach is to
forecast wind power generation directly, and another is to convert wind speed forecasts into
wind power based on a certain power curve. A deterministic power curve is usually provided
by the wind turbine manufacturer. It maps wind speed into wind power, and it varies with the
capacity of the turbine. With the same wind speed, different turbines generate different amounts
of energy depending on each turbine’s design. Figure 3 displays three different types of power
curves from 0.3 MW of Nordex (solid), 1.5 MW of General Electric (GE) (dashed) to 2.5 MW
of Bonus (dotted).

A typical wind power curve has a cut-in speed, a rated speed and a cut-out speed, which are
speeds at which a turbine starts to work, starts to have a constant maximum output, and stops
working to avoid damages. For a 1.5 MW turbine of GE, these speeds are 3.5 m/s, 13.5 m/s, and
25 m/s. Recent work by Jeon & Taylor (2012) has, however, recognized the stochastic nature of
the relationship between wind power and wind speed, and has proposed to model it explicitly.
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For power system operation, wind power forecasting by converting wind speed forecasts is
a better approach than predicting wind power output directly. Neighbouring wind farms with
different installed wind turbines may share the same wind speed. Instead of requiring separate
power forecasts, they can get them by converting the common wind speed forecasts based on
their own power curves. Also, wind speed forecasting can be more precise than wind power
forecasting due to the spatial correlation of wind. For example, in order to forecast wind power
output of a wind farm located downstream of the wind, significant benefits from the upstream
wind speed forecasting could be obtained where there is no wind farm or wind power generation
available. Therefore, this article focuses on wind speed forecasting.

2.2 Point Forecasting Versus Probabilistic Forecasting

There are two major approaches to forecast wind speed: point forecasting and probabilistic
forecasting. Point forecasting gives a single value as the forecast of future wind speed, while
probabilistic wind speed forecasting models a probability density function for future wind speed.

Probabilistic forecasting is more informative and useful than point forecasting. Though point
forecasting is the prime interest of wind speed forecasting, it is not enough for a reliable and
secure power system operation. Due to the prediction error, point forecasting has some variability,
and it also has no information about how the true value would spread out around the forecast,
which is very important for power system operators to make correct decisions. On the other
hand, probabilistic forecasting not only gives point forecasts with the mean or quantiles of the
distribution, but also provides information about the uncertainty. Confidence intervals of a point
forecast, for example, can be calculated and this helps power system operators to make more
reliable decisions.

In probabilistic wind speed forecasting, the choice of density functions must be consistent
with the wind patterns. Wind speeds are non-negative valued and usually right skewed due to the
low probability of high values; see Figure 4 for illustration based on data in Hering & Genton
(2010). Some wind regimes can have bimodal rather than unimodal wind speeds, and can also
have high percentages of no wind speed or high wind speed.

Consequently, densities that are right skewed with non-negative domain are usually chosen
to fit the wind speed distribution. For example, gamma, Weibull, Rayleigh, truncated normal,
and beta distributions have all been used to fit wind speed. Among these distributions, the
Weibull distribution is found to be the most accepted for wind energy: it is flexible with a closed
form, only has two parameters that are easy to estimate, and has specific goodness-of-fit tests as
discussed by Ramı́rez & Carta (2005) who also pointed out that the data sampling interval has no
significant effect on the shape of the density. However, the Weibull distribution cannot represent
high percentages of null wind speeds or bimodal cases. The truncated normal distribution was
found useful in describing winds with high percentages of null wind speed; see Carta et al.
(2008). Mixture distributions with one Weibull and one truncated normal distribution have been
fitted to bimodal wind speeds, taking into account null wind speeds as well; see Carta & Ramı́rez
(2007).

The log-normal and square root normal distributions have also been fitted to log and square
root transformed wind speed data, but their goodness-of-fits are controversial. Lau & McSharry
(2010) applied a logistic transformation to normalized wind power data and fitted a model to the
transformed data. They produced 15 min to 24 h ahead probabilistic forecasts that outperformed
the forecasts based on a truncated normal distribution with an exponential smoothing method.
The latter model was still thought to be a useful alternative in probabilistic forecasting problems
due to its robustness and computational efficiency.
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Figure 4. Non-parametric density estimation of 2002 hourly wind speed data at Vansycle, Oregon, U.S. The vertical lines
represent the sample mean (solid) of 6.6 m/s and the sample median (dashed) of 5.4 m/s. The sample skewness is 0.8.

Recently, the bivariate skew-t distribution (Azzalini & Genton, 2008, and references therein)
has been used by Hering & Genton (2010) in wind speed forecasting problems, after converting
wind speed and wind direction into Cartesian components. The space–time forecasting methods
in Section 4 are all probabilistic with truncated normal distributions. A multivariate t modelling
of wind speed and wind direction would be of interest for wind regimes with a high percentage
of high or extreme wind speeds. A valuable review of wind speed probability distributions used
in wind energy analyses can be found in Carta et al. (2009).

2.3 Space–Time Wind Correlations

Winds are correlated both in time and space. Wind is driven by the horizontal difference in
air pressure, which is caused by uneven heating of the Earth’s surface by the sun, and as the
difference in air pressure takes time to be balanced, wind lasts in time. Therefore, future wind
speed is related to current and earlier wind speeds. A windy day at a given location would
be expected with high probability if the wind has already been blowing there for several days.
Additionally, wind speed and direction are affected by the local geographic features. In flat areas,
downstream wind is almost the translation of upstream wind, so the patterns of downstream wind
is similar to that of upstream. In areas with mountains, wind speed is slowed down, and air blows
in directions that are subject to the constraints of mountain shapes. The correlation in space
suggests that information from neighbourhoods of the target location could be very useful for
accurate wind speed forecasting.
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Based on the nature of wind, e.g. correlated in space and time, large amounts of studies have
been devoted to developing wind speed forecasting models in the last decades, including physical
models and statistical models. Most physical models incorporate output from numerical weather
prediction (NWP) models to predict wind speed. However, they are not effective for short-term
forecasting due to their computational costs, see Genton & Hering (2007). Statistical models
are more competitive for short-term wind speed forecasting. Conventional time series methods,
space–time methods, and other techniques (such as neural methods, fuzzy logic methods, and
hybrid methods) have all been applied to wind speed forecasting. The latter techniques usually
use a “black box” approach without good interpretation of the results, while the first two are
more interpretable without loss of accuracy of forecasting and are the main topics of this article.
In the next two sections, conventional time series methods and space–time models for short-term
wind speed forecasting are reviewed and discussed.

3 Time Series Models for Forecasting

3.1 Basic Concepts

Let y1,y2, . . . ,yt be the wind speed observations up to time t , and yt+k be the k-step ahead
unknown future wind speed to be predicted with ŷt+k . Here yt could be an averaged value at
a certain time scale. For example, for hourly average wind speed data, yt is the average wind
speed during hour t , and yt+k is predicted as the average wind speed during the hour t + k.
Given current and past wind speed observations, a point forecast of wind speed estimates yt+k ,
and a probabilistic forecast estimates the density of yt+k , denoted by f (yt+k |θ ), where θ is an
unknown parameter vector of the density.

Depending on the engineering and economic goals, there are long-term, medium-term, and
short-term wind speed forecasting: long-term (months or years ahead) prediction is of interest
for investment planning in generation capacity; medium-term (days ahead) prediction serves for
management and maintenance of power system operation; short-term (1–10 h ahead) prediction
is used for effective operations planning.

In this article, we consider short-term wind speed forecasting because it is closely related to
power system operations. First, hours ahead forecasting allows conventional power sources to
have enough time to start and provide power as demanded in time. Typically, it is between 3 h
and 10 h, but for quick resources, it can be under 3 h (Genton & Hering, 2007). Second, short-
term wind speed forecasting helps power system operations to dispatch more economically.
Other sources with high economical and environmental cost can be down-regulated based on
the short-term wind speed predictions, while wind energy can be fully utilized.

Given current and historical wind speed observations, prediction of future wind speed is a
classic time series problem. After introducing a reference model, this section mainly reviews
some typical statistical time series models used in wind speed forecasting.

3.2 Reference Model

Persistence forecasting assumes that the future wind speed is the same as the current one:
ŷt+k = yt . This method is reasonable because wind lasts in time. However, due to the high
variation of wind, it works better for very short-term forecasting such as 10 min ahead.

Often, persistence forecasting is used as a reference for evaluating the performance of ad-
vanced forecasting methods. A new method is thought to be advanced and worth implementation
when it outperforms the persistence forecasting.
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3.3 Autoregressive Models

A typical autoregressive (AR) model with p autoregressive terms, denoted by AR(p), is
defined as:

yt = c +
p∑

i=1

φi yt−i + εt ,

where c is a constant, φi , i = 1, . . . , p are the autoregressive parameters, εt is a white noise
process, and yt is wind speed at time t in our case. Here p can be decided with the autocorrelation
function or with selection criteria, and parameters can be estimated by the Yule-Walker method
under the assumption of stationarity; see Tsay (2010) for more detail.

An AR(p) model can capture the temporal correlation in wind. It assumes that the future wind
speed is a linear combination of current and past wind speed observations with a white noise
error. The order p defines the number of previous observations with which the future wind speed
correlates, and the parameters φi , i = 1, . . . , p describe how strong the correlations are. Since
the wind speed distribution is non-Gaussian and seasonal, transformation and modelling the
seasonal trend are often necessary. Brown et al. (1984) applied the square root transformation
to a series of hourly average wind speed. After fitting and extracting a diurnal trend component,
an AR model for the residuals was used.

The AR(p) models have been widely used for short-term wind speed forecasting and they
usually outperform persistence forecasting. For example, Schlink & Tetzlaff (1998) used an
AR(5) model to forecast wind speed at an airport and found that the AR(5) model produced
more precise forecasts. That is the forecast confidence intervals based on the AR(5) model
were narrower than those based on the persistence model, permitting a confidence of 97.5%
compared to 95% in the persistence model. More recently, Gneiting et al. (2006) used an AR
model to fit the center parameter of a truncated normal wind speed distribution after removing
the diurnal pattern, and the prediction root mean squared error was reduced by 16% compared
to the persistence method.

The AR(p) model is a special case of the autoregressive moving average, ARMA(p, q),
model, adding q moving average terms to AR(p): yt = c + ∑p

i=1 φi yt−i + εt + ∑q
j=1 θ jεt− j ,

where the θ j ’s are moving average parameters. ARMA models have also been applied to wind
speed forecasting. Tantareanu (1992) found that ARMA models can perform up to 30% better
than persistence forecasting for 3–10 steps ahead in 4 s average of 2.5-Hz sampled data. More
generally, autoregressive integrated moving average (ARIMA) models are also used for wind
speed simulation and prediction purpose; see Kamal & Jafri (1997) for more detail.

3.4 Kalman Filter

The Kalman filter (KF) is another method to predict future wind speed as a linear combination
of the current and past observations. Instead of fixing the linear coefficients used in the model,
the KF updates them recursively based on the previous data observations and the accuracy of
the last forecast, by minimizing mean squared error.

In the KF, wind speed forecasting is described by the following two equations. Here we
illustrate one-step ahead forecasting:

yt = H′
t At + νt , (1)

At+1 = �At + ωt . (2)
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Equation (1) is the observation equation. It calculates a forecast value yt at time t as a
linear combination of the last N observed wind speed values, denoted by the N × 1 vector
Ht = (yt−1, yt−2, . . . , yt−N )′, where N is the order of the filter. The N × 1 state vector At =
(at,1, at,2, . . . , at,N )′ gives the regression coefficients, and it varies at each time step. The system
equation (2) defines the time dependent evolution of At and it has covariance matrix St (N × N ).
Here � is a known N × N transition matrix, and it is usually set to be the identity matrix in
applications. The observation noise νt is assumed to be normally distributed with mean 0 and
variance Vt : νt ∼ N (0, Vt ). And ωt is the system noise, which is also assumed to be normally
distributed with mean 0 and covariance matrix Wt (N × N ): ωt ∼ N (0, Wt ).

With the new observed value yt , At is updated as follows:

At = At |t−1 + Kt (yt − H′
t At |t−1), (3)

where At |t−1 = �At−1, Kt = St |t−1Ht/(H′
t St |t−1Ht + Vt ), and St |t−1 = �St−1�

′ + Wt−1. The
covariance matrix St is updated as

St = (I − Kt H
′
t )St |t−1,

where I is the identity matrix and Kt is the Kalman gain (N × 1). It is related to the uncertainty
in the system noise and the observation noise, a weighting factor on the error yt − H′

t At |t−1

in updating At from At |t−1, as in equation (3). The initialization of the KF is simple to do
due to its insignificant influence on the final results; see Giebel (2001). The KF can easily
adapt to the change in observations, and it does not necessarily require long historical data
records. However, it is a problem to estimate the covariance matrix St when the dimension N is
high.

Applications of the KF in wind speed forecasting can be found in Bossanyi (1985), Giebel
(2001), and Crochet (2004). Bossanyi (1985) found a 10% reduction in root mean squared
forecasting error compared to the persistence method in 1-min-ahead wind speed forecasting
problems, but persistence forecasting performed better for hourly data. Geert (1985) applied
both ARMA models and KF to predict wind speed with a forecast horizon of up to 24 h in
hourly time steps, finding that an ARMA(2, 1) gave better results than KF, but both were better
than persistence forecasting up to a 16-h horizon. Extended from the linear structure of KF,
non-linear functions have been developed. Louka et al. (2006) applied polynomial functions
to the observation equation in the KF to numerical weather predictions and found significant
reduction of the absolute bias with a 4th order polynomial function compared to a linear
one.

A space–time KF that includes spatial correlations has been developed and combined with
dimension reduction ideas by Wikle & Cressie (1999) for spatial kriging prediction of near-
surface winds over the Pacific ocean. Malmberg et al. (2005) also proposed a space–time KF
method to forecast future wind speed over the North Atlantic ocean. However, these space–time
KF models are based on large-scale wind datasets collected from a large number of locations.
They are not well suited for datasets collected from only a few locations within a neighbourhood
because there are not enough data to fit an appropriate spatial covariance model which is usually
assumed to be stationary and isotropic. Therefore, space–time KF models for small-scale short-
term wind speed forecasting would be of interest. Also because the KF updates forecasting
results based on new observations and the last forecasting error, if more information from
spatial correlations were used in the model then better forecasting results than AR models could
be expected.
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4 Space–Time Statistical Models for Forecasting

4.1 Motivation

Wind information from spatial neighbourhoods is also very useful for highly accurate short-
term wind speed forecasting. Because wind is a horizontal movement in the atmosphere near the
surface driven by air pressure, it usually covers a large area. Winds at different locations in that
area tend to be positively correlated and share similar characteristics. That is to say that wind
speed at a certain location could be predicted from wind speed at adjacent locations.

Taking account of the local topographic information into wind speed forecasting is also
highly beneficial. Wind speed and direction are significantly affected by the local terrain, and
this is very important in choosing neighbourhood information. Flat grounds allow wind to blow
uninterrupted, whereas complex terrains can slow down the wind and even change the wind
direction. Choosing neighbourhoods that bring major contributions in predicting wind speed
at a certain location depends on the local geographic features. For example, wind information
observed on one side of a mountain hardly helps to predict wind speed on the other side, while
wind at one end of a valley could provide valuable information for the other end in terms of
wind speed forecasting.

Extended from traditional time series forecasting models, space–time statistical models take
the spatial correlation into account, in addition to the time correlation. They have been the
focus of extensive research in recent years. Alexiadis et al. (1999) found that the use of off-
site predictors can improve forecast accuracy in forecasts of wind speed and wind power at
Thessaloniki Bay, Greece. More recently, de Luna & Genton (2005) provided time-forward
predictions with vector autoregressive (VAR) models based on daily averages of wind speeds
from 11 synoptic meteorological stations in Ireland. Gneiting et al. (2006) proposed a regime-
switching space–time diurnal (RSTD) method, taking into account both spatial and temporal
correlations in forecasting wind speed at the Stateline Wind Energy Center in Oregon, U.S.
Hering & Genton (2010) generalized the RSTD model by including wind direction directly into
the model. The last two models are discussed in more detail in the following subsections.

4.2 Regime-Switching Space–Time Diurnal Model

Gneiting et al. (2006) proposed the regime-switching space–time diurnal (RSTD) model for
predicting the 2-h ahead average wind speed at the Stateline Wind Energy Center in Vansycle,
Oregon, U.S. Their analysis was based on hourly average wind speed data collected in 2002 and
2003 from Vansycle and two other sites: Goodnoe Hills, WA (146 km west of Vansycle), and
Kennewick, WA (39 km northwest of Vansycle); see the map of the locations in Figure 5.

These three locations are along the Columbia River Gorge which runs from east to west.
Due to the high terrain to the north and south, the airflow runs parallel to the channel of walls,
resulting in mostly westerly or easterly winds.

To forecast 2-h ahead hourly average wind speed at Vansycle, the RSTD model takes advantage
of the special landforms of the Columbia River Gorge and chooses Goodnoe Hills, the most
westerly station, as the indicator of the forecast regime. Two regimes are defined: a westerly
regime and an easterly regime. Then, forecasting models are built separately for each of
them.

It is assumed that the 2-h ahead wind speed at Vansycle, denoted by Vt+2, follows a truncated
normal distribution on the positive domain, with center parameter μt+2 and scale parameter σt+2,
that is, Vt+2 ∼ N+(μt+2, σ

2
t+2). The key is in modelling μt+2 and σt+2. For the center parameter
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Figure 5. Map of the three locations: Vansycle, Kennewick, and Goodnoe Hills on the border between Washington and Oregon
in the U.S.

μt+2, different models were fitted for each regime. For the westerly regime, μt+2 = Dt+2 + μr
t+2.

Here Ds , s = 1, . . . , 24, are linear combinations of trigonometric functions of the hour of the
day, fitting the diurnal pattern of the wind speed:

Ds = d0 + d1 sin

(
2πs

24

)
+ d2 cos

(
2πs

24

)
+ d3 sin

(
4πs

24

)
+ d4 cos

(
4πs

24

)
.

After removing a diurnal pattern from the wind speed at Vansycle, the residual, μr
t+2, is fitted

by a linear function of current and past residuals of wind speed at the three locations (predictors
are selected by Bayesian information criteria, BIC):

μr
t+2 = a0 + a1V r

t + a2V r
t−1 + a3 K r

t + a4 K r
t−1 + a5Gr

t , (4)

where V r
t , K r

t , and Gr
t are residual wind speeds at time t at Vansycle, Kennewick, and

Goodnoe Hills, respectively. For the easterly regime, the center parameter is modelled by
a linear function of current and past wind speed of the three locations directly, without
diurnal component removed, since removing a diurnal pattern did not improve the forecasting
results:

μt+2 = a0 + a1Vt + a2 Kt . (5)

The scale parameter σt+2 is fitted with the same model in both regimes:

σt+2 = b0 + b1vt , (6)
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14 X. ZHU & M. G. GENTON

where the volatility value, vt , is

vt =
[

1

6

1∑
i=0

{(
V r

t−i − V r
t−i−1

)2 + (
K r

t−i − K r
t−i−1

)2 + (
Gr

t−i − Gr
t−i−1

)2}]1/2

.

The coefficients b0 and b1 are constrained to be non-negative. All of the coefficients in
equations (4), (5), and (6) are estimated by the continuous ranked probability score (CRPS)
method; see Gneiting & Raftery (2007).

The RSTD model was trained with data in 2002 and tested with data in 2003. The results
were significantly better than univariate time series methods. For example, in July 2003, the
RSTD forecasts had a root mean squared prediction error (RMSE) 28% lower than that of the
persistence forecasts, while the AR model was 16% lower and the spatial VAR was 27% lower.
Moreover, the RSTD model provides a probabilistic forecast, from which uncertainty can be
evaluated.

4.3 Trigonometric Direction Diurnal Model

The RSTD model relies on the geography of the specific forecasting area, and the decision
of the number and position of the forecast regimes can often be far less obvious than the
situation in the Columbia River Gorge forecasting region. Hering & Genton (2010) introduced
the trigonometric direction diurnal (TDD) model which eliminates the regimes by incorporating
wind direction directly into the predictive mean function of the RSTD model. It treats wind
direction as a circular variable and uses its sine and cosine, and achieves similar forecast
accuracy as the RSTD model. Specifically, Hering & Genton (2010) modelled the residual
predictive center, μr

t+2, of a truncated normal distribution based on the present and past residual
wind speed series at all three locations, as

μr
t+2 = a0 + a1V r

t + a2V r
t−1 + a3 K r

t + a4 K r
t−1 + a5Gr

t + a6 sin
(
θ r

V ,t

) + a7 cos
(
θ r

V ,t

)
+ a8 sin

(
θ r

K ,t

) + a9 cos
(
θ r

K ,t

) + a10 sin
(
θ r

G,t

) + a11 cos
(
θ r

G,t

)
, (7)

where θ r
i,t , i ∈ {V , K , G}, are the residual wind directions at each of the three locations at time

t . The coefficients in equation (7) are identified by a forward selection method with BIC on the
dataset of 2002 as training and on the 2003 data as testing. The model for predictive scale, σt+2,
has the same form as for the RSTD model, and CRPS is also used to estimate the coefficients.

The TDD model generalizes the RSTD model while achieving similar forecasting accuracy.
The regime definition of the RSTD model is based on the particular geographic features of the
target area and the fact that its prevailing winds are westerly or easterly. The TDD model did not
need any prior geographic information about the target area, but used the wind direction to help
detect the spatial correlation in wind. It is expected that for some areas there are no significant
wind patterns or the patterns are too complex to be modelled. Under these circumstances, the
TDD model would be more powerful than the RSTD model for wind speed forecasting.

4.4 Other Models

There are some other interesting statistical models for short-term wind speed forecasting. For
example, Hering & Genton (2010) proposed a model based on the bivariate skew-t distribution
as predictive distribution for the first time in wind speed forecasting. They converted wind speed
and wind direction data from the three locations into Cartesian coordinates, removed the diurnal
trend, and then fitted the residuals with a bivariate skew-t distribution. This method not only
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took space–time correlations into account, yielded probabilistic forecasts, and achieved similar
forecasting accuracy as the RSTD and TDD models, but it also provided forecasts of the wind
direction.

Neural networks (NNs), fuzzy logic methods and some hybrid methods have also been applied
to short-term wind speed forecasting. Unlike the traditional time series methods and space–time
models introduced in this section, they use a “black box” approach and often lack a good
interpretation of the model. Still in terms of forecasting accuracy, Sfetsos (2000) compared some
of these techniques and ARIMA models. He applied a persistence model, ARIMA models, NN
and neuro-fuzzy systems to forecast mean hourly wind speed, and found that NN achieved the
best results with a 20–40% average improvement compared to persistence. More studies on NN
can be found in Sfetsos (2002) and Cadenas & Rivera (2000). Fuzzy models were applied to wind
speed forecasting by Damousis & Dokopoulos (2001) and Damousis et al. (2004), including
neighbouring locations as well as the target location, and the improvement ranged from 9% to
28%, depending on the forecast horizon, compared to persistence forecasts.

5 Evaluation of Forecasts

Evaluating the performance of different models is another important component of wind speed
forecasting for power system operation. Before a final decision is made about which forecasting
model should be implemented, the loss of each model needs to be evaluated. How to define
the loss caused by the forecasts from a model depends on the practical requirements in power
system operation. Moreover, the loss of a model should be evaluated based on corresponding
forecasts that minimize it. Besides point forecasting, information on the uncertainty of future
wind speed is also important to operate power systems efficiently and reliably.

In this section, we emphasize the importance of matching loss functions and forecasts, point
out that more realistic loss functions are needed in the problem of wind speed forecasting,
propose two relevant loss functions, and describe a numerical experiment. Comparison and
uncertainty of forecasts are discussed as well.

5.1 Loss Functions and Forecasts

Accurate prediction is one of the most important targets in forecasting uncertain future wind
speeds. It is now a common practice to divide the whole dataset into two non-overlapping
parts: training data and testing data. Forecasting models are built based on the training data
and evaluated on the testing data. The measure of prediction accuracy depends on how one
would evaluate the loss resulting from prediction error, the difference between true value and
forecast. Predictors minimizing the loss are preferred. Mean squared error (MSE) and mean
absolute error (MAE) are two of the most commonly used loss functions to evaluate predictions.
In practice, MSE, MAE, or other loss functions are evaluated with point forecasts from models
for a certain time period. However, Gneiting (2011a) pointed out that “This can lead to grossly
misguided inferences, unless the loss function and the forecasting task are carefully matched”.
Fildes et al. (2008) also state that “Defining the basic requirements of a good error measure is
still a controversial issue”.

If the uncertainty of wind speed yt at time t is modelled by a certain probability distribution
function F , and we let x̂t be any predictor with loss L(yt , x̂t ), then ŷt is called an optimal forecast
if it minimizes the expected loss:

ŷt = arg min
x̂t

EF{L(yt , x̂t )}. (8)
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For MSE, L(yt , ŷt ) = (yt − ŷt )2, and the optimal forecast ŷt is the mean of the distribution F .
For MAE, L(yt , ŷt ) = |yt − ŷt |, and the optimal forecast ŷt is the median of the distribution F .

If the MSE is considered in a wind forecasting problem, then the mean of the predictive
distribution should be used. Reciprocally, if the mean of the predictive distribution is the predictor
of the true value, then the MSE should be used to evaluate the prediction accuracy. Similarly,
when the loss function is MAE, then the median of the predictive distribution should be used.
It would be misleading to compare, for example, the MSE of the mean predictor from one
forecasting model with the MSE of the median predictor from another model.

5.2 Realistic Loss Functions for Wind

Besides ensuring that the point forecasts and loss functions match, we still need to consider
an appropriate choice of loss functions for wind speed forecasting. Since short-term wind speed
forecasting plays a critical role in system operations of wind power, both underestimation and
overestimation of wind speed cause losses in practice. Two properties of loss functions should
be taken into account:

1) Penalization of underestimates. Underestimates of wind power, resulting from underesti-
mates of wind speed, make power system operators order too much energy in advance
from conventional sources to meet the demand. Then down-regulation is needed which
is more expensive than up-regulation (when overestimates happen). So underestimates of
wind speed should be penalized more strongly than overestimates; see Pinson et al. (2007)
for more detail.

2) Penalization of forecasting errors for small true values. Because the relative error is
larger for small true values than for large ones when the prediction errors are the same, a
loss function that penalizes errors for small true values more is preferred in wind speed
forecasting. That is, for smaller true values, we want the forecasts to have lower relative
errors.

Neither MSE nor MAE has the above two properties. To evaluate the accuracy of wind speed
forecasts, more realistic loss functions are needed. Hering & Genton (2010) proposed a new
loss function, the power curve error (PCE). It links prediction of wind speed to wind power by a
power curve and evaluates the loss based on the wind power with penalty on underestimates as
follows:

L(y, ŷ) =
{
α{g(y) − g(ŷ)}, if y ≥ ŷ,

(1 − α){g(ŷ) − g(y)}, if y < ŷ,

where g(·) is a non-decreasing function linking wind speed to wind power. It has the α-quantile
as its optimal forecast (Gneiting, 2011b). This loss function puts a penalty on underestimates
with weight α, which depends on market rules. Hering & Genton (2010) set the penalty to
α = 0.73 based on empirical data from the Dutch electricity market in 2002. The PCE can
penalize underestimates more heavily than overestimates through the weight α. Errors on small
true wind speeds are only partly more penalized through the power curve transformation; see
Figure 3.

The mean absolute percentage error (MAPE), corresponding to the loss function L(yt , ŷt ) =
|yt − ŷt |/yt , is used as a measure of forecast accuracy in time series. MAPE agrees with the two
aforementioned properties, namely, penalizing underestimates and errors on small true values.
Hence it would be a reasonable measure of accuracy for wind speed forecasting. However, its
values vary in the interval [0, ∞) for non-negative wind speed and non-negative forecasts. And
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Figure 6. Squared error (SE), absolute error (AE), absolute percentage error (APE), and symmetric absolute percentage
error (SAPE) for forecasts of true values y = 8, 8.5, 9, 9.5, . . . , 40 with prediction errors 0 (black), 2 (red), 4 (green), 6 (blue),
8 (cyan) for each. Overestimates for extra true values 0, 0.5, 1, . . . , 7.5 with prediction errors 0, 2, 4, 6, 8 are generated for
APE.

for non-negative underestimates their losses are less than 1, but for overestimates they can be
very large. There is also a problem for true values close to zero. When the actual value is small,
it can have large relative errors and make the MAPE meaningless. Both problems were solved
by Armstrong (1985) and Flores (1986) with the mean symmetric absolute percentage error
(MSAPE) based on the loss function L(yt , ŷt ) = 2|yt − ŷt |/(yt + ŷt ). Besides satisfying the
two above properties, MSAPE has values in [0, 2] for non-negative wind speed, but there is still
a problem when both the forecast value and the actual value are close to zero. To avoid this issue,
a modified MSAPE was suggested by Chen & Yang (2004) by adding a non-negative term to
the denominator. Unfortunately, neither MAPE nor MSAPE has closed form for their optimal
forecasts, although they could be obtained from equation (8) via simulations from F .

Figure 6 illustrates the differences between MSE, MAE, MAPE, and MSAPE based on
a numerical experiment: five non-negative forecasts are generated for each true value y =
8, 8.5, 9, 9.5, . . . , 40 with prediction errors 0, 2, 4, 6, 8. To see that overestimates can result
in very large APE values, overestimates for an additional set of true values 0, 0.5, 1, . . . , 7.5
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with errors 0, 2, 4, 6, 8 are generated. The squared error (SE), absolute error (AE), absolute
percentage error (APE), and symmetric absolute percentage error (SAPE) are calculated for
each forecast. In the plots, the colours represent the five different prediction errors: 0 (black),
2 (red), 4 (green), 6 (blue), 8 (cyan). It is easy to see from the top two plots in Figure 6 that the
SE and AE are the same for underestimates and overestimates, and for the same prediction error
(or the same color), errors on smaller true values have the same loss as on larger ones. Unlike
SE and AE, the APE and SAPE in the bottom two plots decrease for the same error when the
true value gets larger. Also, for the same true value, the SAPE of underestimates are larger than
those of overestimates, and the APE of underestimates are less than 1, while the overestimates
can have very large APE values.

With the transition from point forecasting to probabilistic forecasting, verification of
probabilistic forecasts has been developed in recent years. Gneiting et al. (2008) introduced
methods to assess probabilistic forecasts of multivariate quantities: Box’s density ordinate
transform works for density forecasts and the multivariate energy score can be used in comparing
density forecasts using a proper loss function. CRPS is also used to compare forecasting results
in Gneiting et al. (2006) and Pinson & Hagedorn (2012).

5.3 Comparison of Forecast Accuracy

Given a certain measure of prediction accuracy or loss L and evaluation period k, one approach
to compare forecasting models is by calculating their improvement relative to a reference model,
such as persistence forecasting. Specifically,

Impref
L (k) = Lref

k − Lk

Lref
k

,

where Imp denotes improvement, Lref
k is the loss of the reference forecasting model during the

time period k, Lk is the loss of an advanced model, and L can be any of the above loss functions.
Negative values of improvement indicate that the advanced forecasting model performs worse
than the reference model with respect to a certain loss, and positive values of improvement mean
that the advanced model achieves better results in forecasting than the reference model with
respect to that loss; see ANL/DIS (2009).

Since the improvement may be due to chance, the relative improvement mentioned above
is still not sufficient to judge the performance of models, and a statistical test is necessary
to see whether the improvement is significant or not under a certain measure of forecasting
quality. Meese & Rogoff (1988) tested for equal MSEs. Diebold & Mariano (1995) proposed
a statistical test for equal predictive accuracy of two time series models. A robust version
of the test was introduced by Dell’Aquila & Ronchetti (2004). Tests for the evaluation of
point, interval, probability, and density forecasts were generalized by Giacomini & White
(2006). Recently, Hering & Genton (2011) extended the test to compare predictions in spatial
fields.

5.4 Uncertainty of Forecasts

As explained in Section 2.2, probabilistic wind speed forecasting corrects the drawbacks of
point forecasting by fitting a probability distribution to describe the uncertainty of future wind
speeds, from which prediction intervals can be obtained. Usually, in time series wind speed
forecasting models, the prediction errors are assumed to follow a Gaussian distribution, based
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on which forecast confidence intervals are built. In reality, gaussianity may not hold and wind
speed prediction errors may be skewed and heavy-tailed.

Transformations of wind speed, such as logarithm or square root, are commonly used before
fitting probabilistic forecasting models with a normality assumption. However, the transformed
wind speed may still not necessarily follow a normal distribution. Therefore, more adequate
predictive distributions are needed, as discussed in Section 2.2. To evaluate the quality of
probabilistic forecasts, Gneiting et al. (2007) pointed out that the goal of probabilistic forecasting
is to maximize the sharpness of the predictive distribution subject to calibration. In terms
of prediction intervals, this means that the probabilistic forecasts are better if the intervals
are shorter, subject to nominal coverage. More discussion about evaluation of probabilistic
forecasts can be found in Monteiro et al. (2009) and Gneiting (2008). Probabilistic wind speed
forecasting models based on ensembles are also developed, in which multiple point forecasts are
used to generate a probabilistic forecast; see Thorarinsdottir & Gneiting (2010) and Sloughter
et al. (2010). In this article, we focused on building probabilistic forecasting models for the
uncertainty in wind based on wind records instead of ensembles. In Section 6, another difficult
aspect of forecasting the uncertainty in wind due to ramp events is discussed.

6 Discussion

6.1 Wind Ramp Events

A ramp refers to a phenomenon where a sudden rapid increase or decrease in wind speed
occurs. Ramp events can cause severe problems for power system operations with a high
proportion of wind power. When a substantial, sudden drop in wind speed occurs in a very
short time, another conventional power resource may not be started in time to meet the demand.
However, as soon as the wind generation resumes, that conventional power resource is no longer
needed. As the installation of capacity of wind power increases, the size of ramp events raises as
well. It increases the cost of power system operations, and challenges the reliability and security
of systems that have integrated high amounts of wind power.

A big challenge in integration of wind power is to identify and manage ramp events. Recently,
Kamath (2010) described three definitions of ramp events and offered three options about how
to count ramp events. Time-of-day and month-of-year ramp event patterns of power generation
were examined based on datasets from two locations. It was found that there was no significant
difference between the three definitions of ramp events. Although ramp event patterns did
depend on the location, it was still difficult to draw any conclusion about the time-of-day and
month-of-year patterns of ramp events. Bossavy et al. (2010) gave a new definition of ramp
events based on filtered signals of wind power, and proposed two methods to forecast uncertainty
related to ramp events. The first method attempted to take into account additional variables of
ramp information into probabilistic wind power forecasting, including intensity and the time
difference calculated from preliminary point power forecasts. It was found to work well only for
the highest quantile forecasts. The second model used ensembles to forecast the uncertainty in
ramp events and their timing, and was found to have more skill than the climatology.

Studies about ramp events directly through wind speed are in need. Statistical models that can
forecast ramp events would be of great interest.

6.2 Offshore Wind Speed Forecasting

Offshore wind energy exploitation is also an important part in wind power development, since
the wind offshore is often stronger and less variable. DOE released a comprehensive report
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on offshore wind power in the U.S. (DOE, 2010) and discussed the current status and future
plans on developing offshore wind power. Although the current primary challenge of offshore
wind energy lies in minimizing the cost of the turbine installations in the offshore environment,
according to the report, wind speed forecasting also plays an important role in the expansion of
offshore wind energy.

Moreover, offshore winds have some special conditions due to, for example, the thermal
air–sea interaction, dynamic wind–wave interaction, internal stratification of the marine
boundary layer, and displaced height of the marine boundary layer. Tambke et al. (2003) and
Tambke (2004) tried to adapt onshore short-term wind power predictions to offshore sites by
refining the numerical weather prediction with surface roughness and thermal stability, and
found that their methods worked very well. Rugbjerg et al. (2006) introduced wave forecasting
for offshore wind farms. Pinson & Madsen (2012) applied Markov-switching autoregressive
(MSAR) models to model and forecast offshore wind power fluctuations and found them to be
better than persistence and AR-model-based forecasts on time series wind power data with a
10-min resolution at Horns and Nysted Rev, Denmark. More research is needed on wind speed
forecasting for offshore wind farms.

6.3 Final Remarks

This article provided some information about the global overwhelming development of wind
energy as a clean, renewable resource with its unmatched benefits, as well as big challenges to
current power system operations due to the wind’s intermittent and unstable nature. To include
a high proportion of wind power in an energy mix, wind power forecasting is often identified as
a necessary tool. Accurate wind power forecasting is closely related to power unit commitment
and dispatch, and is the key to secure and stable power system operations.

Instead of wind power forecasting, this article has focused on wind speed forecasting,
because in power system operations, short-term wind power forecasting is obtained directly
from predicted wind speeds through a certain power curve, which changes with the size of
turbines. This means that wind speed forecasting is more general in practice than forecasting
wind power. Given historical wind speed data, forecasting future wind speed is a typical time
series problem. We reviewed some classic time series statistical forecasting models, including
Kalman filters and ARMA models.

Recently, more advanced forecasting models taking into account spatial correlations by
considering other neighbouring sites have been developed. We presented the RSTD and TDD
models in detail. Space–time forecasting models performed better than traditional time series
models, and will be the new trend for developing wind speed forecasting models. Moreover, the
RSTD and TDD models deliver probabilistic forecasts by fitting a truncated normal distribution
for the future wind speed, which provides much more information about the uncertainty of the
forecast, for instance using prediction intervals. Hence, they allow power system operations to
work in a more secure manner.

Evaluation of forecasts is also a major issue discussed in this article. As more and more
forecasting methods are proposed, an appropriate criterion is important in decision making.
Matching between point estimates and loss functions should be emphasized in evaluation.
Underestimates of wind speed are not preferred in realistic power system operations, and this
should be penalized in evaluation (similarly for errors on small true values). Developing more
realistic loss functions is of interest for evaluating forecasting results.

Finally, ramp events create difficulties that cannot be overlooked for accurate wind power
forecasting and advanced power system operations. Challenges accompanying offshore wind
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speed forecasting with the new large installations of offshore wind farms must also be addressed
in the near future. Extreme wind speed forecasting is also important to power system operations.
Under high wind speeds, wind turbines must be turned off to avoid possible damages, and power
system operations must generate energy from other power resources to compensate. Distributions
that allow extreme wind speeds, such as multivariate t , would be of interest for future research.
Additionally, Bayesian methods for parameter estimation in wind speed forecasting problems,
and kriging methods to forecast wind speed and wind direction at unrecorded locations for
planning new wind farms, are also interesting future research topics.
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Résumé

L’accent mis sur les énergies renouvelables et les inquiétudes environnementales ont conduit, dans le monde entier,
à un développement considérable des techniques éoliennes. Ces énergies, toutefois, ne sont pas sans poser des défis
importants, liés au caractère intermittent et instable du vent. Les prévisions à court terme dans ce domaine sont
d’une importance cruciale pour une mise en oeuvre fiable des systèmes d’exploitation. Cet article commence par une
vue d’ensemble de l’état actuel des connaissances en matière de ressources d’énergie éolienne. Il passe ensuite en
revue plusieurs modèles de prédiction à court terme des vitesses des vents comprenant, en particulier, les approches
chronologiques traditionnelles, ainsi que certains modèles plus raffinés fondés sur les modèles du type spatio-temporel.
Nous poursuivons avec une discussion de la précision des prévisions, en mettant l’accent sur le choix de fonctions
de perte appropriées. Quelques défis nouveaux liés aux changements soudains des vents et aux énergies éoliennes
offshores sont aussi présentés.
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