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ABSTRACT. Skew-symmetric models offer a very flexible class of distributions for modelling data.
These distributions can also be viewed as selection models for the symmetric component of the
specified skew-symmetric distribution. The estimation of the location and scale parameters corres-
ponding to the symmetric component is considered here, with the symmetric component known.
Emphasis is placed on using the empirical characteristic function to estimate these parameters. This
is made possible by an invariance property of the skew-symmetric family of distributions, namely
that even transformations of random variables that are skew-symmetric have a distribution only
depending on the symmetric density. A distance metric between the real components of the empirical
and true characteristic functions is minimized to obtain the estimators. The method is semipara-
metric, in that the symmetric component is specified, but the skewing function is assumed unknown.
Furthermore, the methodology is extended to hypothesis testing. Two tests for a null hypothesis of
specific parameter values are considered, as well as a test for the hypothesis that the symmetric
component has a specific parametric form. A resampling algorithm is described for practical
implementation of these tests. The outcomes of various numerical experiments are presented.
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1. Introduction

In recent years, there has been a growing interest in flexible parametric classes of distribu-
tions. This has led to several generalizations of known distributions, for example the skew-
normal distribution as a generalization of the normal, see Genton (2004) and Azzalini (2005)
for an overview. Any symmetric density can be generalized to a class of distributions that
capture a wide variety of shapes. This class of skew-symmetric distributions has probability
density function of the form

fSS(z)=2f0(z)�(z), z ∈R, (1)

where f0(z)= f0(−z) for all z ∈ R is the symmetric base density function and the skewing
function �(z) satisfies 0 ≤�(z)=1 −�(−z) ≤ 1, z ∈ R. Location parameter �∈ R and scale para-
meter �> 0 can be introduced through a simple linear transform which leads to the density

fSS(x |�, �)=2�−1f0{�−1(x −�)}�{�−1(x −�)}, x ∈R. (2)

The well-known case of the skew-normal distribution is obtained when f0(z)=�(z) and �(z)=
�(�z), where �(z) is the standard normal density function, �∈R is a parameter that controls
the skewness and �(z) denotes the standard normal distribution function. This family, first
proposed by Azzalini (1985), has been extensively studied. If we let t(z | �) and T (z | �) denote
the Student’s t density and distribution functions with � degrees of freedom, then the skew-t
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distribution is obtained by taking f0(z)= t(z | �) and �(z)=T [�z{(�+1)/(�+ z2)}1/2 | �+1], see
Azzalini & Genton (2008) for a recent account and references therein. When the skewing
function �(z) is equal to 1/2 for all z ∈R, the symmetric base density is recovered. A class of
densities of the form (1) was considered by Azzalini & Capitanio (2003), with parameteriza-
tion �(z)=G{w(z)} where G is a univariate symmetric cumulative distribution function and
w(z) is an odd function. The term skew-symmetric is used for families of the form (1) (see
e.g. Wang et al., 2004). In the present study, we will refer to density functions of the form
(1) with f0(z)=�(z) as generalized skew-normal, and those with f0(z)= t(z | �) as generalized
skew-t (see Genton & Loperfido, 2005).

A skew-symmetric distribution can be viewed as a perturbation of a given symmetric distri-
bution regulated by the skewing function � with the resulting skewed distribution still retain-
ing several of the properties of its symmetric counterpart. The class of distributions in (1)
can also be obtained by applying a suitable censoring mechanism (or selection scheme) to
the base density f0. Here, the censoring is regulated by the function �, which can be viewed
as the probability of inclusion in the sample. This censoring approach has been studied in
detail in Arellano-Valle et al. (2006). When adopting this perspective, one of the main ques-
tions of interest is estimation of the parameters (�, �) in the base density f0 in such a way
that the skewing function � does not have to be known in order to do so. Semiparametric
efficient estimators of the location and scale parameters were first considered by Ma et al.
(2005) and Ma & Hart (2007). In addition, Frederic (2011) considered estimation of skew-
symmetric distributions through the use of B-splines and penalty functions.

One very useful property of the skew-symmetric family is that of distributional invariance.
Let Z1 and Z2 be two random variables, the first having density f0 and the second having
density (1). Let T (·) be an even function, that is, T (−z)=T (z) for all z ∈R. Then,

T (Z1)
d=T (Z2). (3)

The proof can be found in Wang et al. (2004). A method of parameter estimation based on
this distributional invariance property of the skew-symmetric family was considered by Azza-
lini et al. (2010). What makes this invariance property so useful is that the expectations of all
even functions of Z2 can be calculated without requiring any knowledge of �. The method
of Azzalini et al. (2010) is therefore essentially a method of moments approach, using the
first and second absolute moments of Z2 to construct estimating equations. The difficulty
encountered there is not so much with the method of estimation, although it does happen
that the pair of estimating equations does not have a zero. Rather, there are multiple roots
and the problem becomes one of selecting the correct root. The root selection problem was
also encountered by Ma et al. (2005), who considered the optimality aspects of invariance-
based estimating equations.

Parameter estimation using characteristic functions has been considered in contexts other
than skew-symmetric distributions. Feuerverger & McDunnough (1981) considered efficient
parameter estimation where the type of distribution was completely specified and the charac-
teristic function known. Koutrouvelis & Kellermeier (1981) performed both parameter esti-
mation and goodness-of-fit tests using the empirical characteristic function. Yu (2004) also
considered empirical likelihood estimation as an alternative to maximum likelihood with
specific application to diffusion models. Xu & Knight (2011) used empirical characteristic
functions to estimate parameters in distributions that are finite mixtures of normal distri-
butions. Kim & Genton (2011) recently provided a comprehensive description of the
characteristic functions of scale mixtures of skew-normal distributions, in particular for the
skew-normal and skew-t distributions.

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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In the current study, we propose a method based on minimizing a criterion function based
on the real part of the characteristic function. Formulation as a minimization problem has
the advantage that at least one minimum point always exists. However, the selection problem
is still encountered, in that there are typically two local minima. The global minimum is gen-
erally not well separated from the other local minimum. In addition to this, we have found
through extensive simulations that choosing the root corresponding to the global minimum
does not, in general, lead to selecting the root closest to the true parameter values. It should
be noted that there is a similarity between our proposed method and an application of the
generalized method of moments (GMM) when there is a continuum of moment conditions
as in Carrasco & Florens (2000). Braun et al. (2008) also considered GMM estimation by
way of empirical transforms, of which the empirical characteristic function is a special case.

The article is organized as follows. In section 2, we discuss the characteristic function-based
estimation method and derive asymptotic properties of the estimators. The newly proposed
estimators are compared with the invariant-based estimating equation (IBEE) estimators of
Azzalini et al. (2010) in section 3, both asymptotically and in a finite sample setting. The
root selection problem is addressed in section 4. In section 5, the new methodology is used
to construct two tests for specific parameter values for (�, �) and the power properties of these
are explored through simulations. A test is also proposed for testing whether the symmetric
component of the generalized skew-symmetric distribution is correctly specified. Section 6 is
a numerical investigation of the proposed estimators when root selection is applied. Two data
applications are also presented. The methodology extends to both the multivariate case and
the regression setting. These extensions are described in the online supplemental material.
The derivation of the covariance matrix of the proposed estimators can also be found in the
supplemental material.

2. Parameter estimation with characteristic functions

2.1. The empirical characteristic function

The characteristic function plays a central role in statistics. Specifically, the characteristic
function of a random variable X is the function � : R−→C defined as

�(t)=E{exp(itX )}, t ∈R,

where i =√−1. Let X1, . . ., Xn be independent and identically distributed random variables.
The empirical characteristic function (ecf) is

�n(t)=n−1
∑

1≤j≤n

exp(itXj)=n−1
∑

1≤j≤n

cos(tXj)+ in−1
∑

1≤j≤n

sin(tXj).

This empirical estimator of the characteristic function has been extensively studied in the
literature (see Csörgő, 1981; Marcus, 1981). The following two results follow from these.
For any fixed value t ∈ R, the random variable n1/2{�n(t) −�(t)} converges to a zero-mean
complex-valued normal random variable with variance �(t)�(t), where the bar is used to
denote complex conjugate. It is also known that n1/2{�n(t)−�(t)} converges as a stochastic
process in t on any finite interval [−A, A]. The empirical characteristic function as defined
does not include location and scale parameters, which can be introduced by defining functions

cn(t |�, �)=n−1
∑

1≤j≤n

cos{t(Xj −�)/�}, sn(t |�, �)=n−1
∑

1≤j≤n

sin{t(Xj −�)/�}. (4)

These are unbiased estimators of c(t) and s(t), the real and imaginary components of the
characteristic function of Z = (X −�)/�.

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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2.2. Characteristic function-based semiparametric estimators

The real and imaginary components of the characteristic function of Z will be denoted by
c(t |�) and s(t |�), where �∈Rq represents unknown model parameters, in addition to the
location and scale parameters, which may need to be estimated from the data. For example,
in the class of generalized skew-t distributions, the degrees of freedom � may be unknown. As
the empirical estimator cn(t |�, �) converges to c(t |�) in both probability and mean square,
the minimum distance criterion function

Dn(�, �, �)=
∫

R

{cn(t |�, �)− c(t |�)}2w(t) dt (5)

for w(t) a symmetric weight function is proposed for the estimation of the location and scale
parameters � and �. We make use of an L2 distance metric, but other metrics could also
be employed. Beyond computational convenience associated with this metric, it also leads
to the inequality 0 ≤ Dn(�, �, �) ≤ 4

∫
R

w(t) dt. The upper bound of the statistic depends on
the weight function. In practice, the observed sample values are typically all rational, lead-
ing to an empirical characteristic function that is periodic in nature. When this is the case,
the integral in (5) may not converge without an appropriate choice of weight function. When
the parameter � is unknown, it may also be estimated by minimizing this criterion. At this
point, we note that (5) is a function of only the real part of the characteristic function, as
the skewing function � is assumed unknown. However, when a parametric model is assumed,
this methodology can be extended and the minimization problem can be formulated in terms
of both the real and imaginary parts of the characteristic function. We refer to this as the
minimum distance characteristic function (MDCF) estimator.

The IBEE method of obtaining estimators proposed by Azzalini et al. (2010) typically uses
the first two absolute moments of the underlying distribution. The proposed minimization
method also has a connection to a method of moments. Assume that the underlying distri-
bution has finite even moments of all order. The characteristic function therefore admits the
expansion

c(t |�)=1+
∑
k≥1

(−1)kt2k

(2k)!
�2k(�) (6)

with �k(�)=E{(Z −�)k/�k}. The ecf also admits an expansion

cn(t |�, �)=1+
∑
k≥1

(−1)kt2k

(2k)!
�̂2k(�, �) (7)

with �̂k(�, �)=n−1
∑

1≤j≤n(Xj −�)k/�k . Substitution of (6) and (7) into (5) and some straight-
forward calculations gives

Dn(�, �, �)=
∑
j≥1

∑
k≥1

w*
jk{�2j(�)− �̂2j(�, �)}{�2k(�)− �̂2k(�, �)}

with

w*
jk = (−1)j +k

(2j)!(2k)!

∫
R

t2(j +k)w(t) dt.

We therefore see that there is an equivalent quadratic form involving the even moments of the
underlying symmetric distribution. In the case where all even moments exist, the proposed
MDCF method therefore does not use just two absolute population moments, but finds the
estimator that minimize the weighted distance between all even moments and their empirical
counterparts.

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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The minimization problem (5) is equivalent to solving the following equations upon setting
them equal to zero,

∂Dn(�, �, �)
∂�

=2
∫

R

{cn(t |�, �)− c(t |�)}∂cn(t |�, �)
∂�

w(t) dt

= 2
�

∫
R

{cn(t |�, �)− c(t |�)}tsn(t |�, �)w(t) dt,

∂Dn(�, �, �)
∂�

=− 2
�

∫
R

{cn(t |�, �)− c(t |�)}tc′
n(t |�, �)w(t) dt,

∂Dn(�, �, �)
∂�

=−2
∫

R

{cn(t |�, �)− c(t |�)}∂c(t |�)
∂�

w(t) dt.

In the online supplemental material, the asymptotic covariance matrix of these minimum
distance estimators is derived. The covariance matrix is of the form �=�2�(c(t |�), s(t |�),
w(t)) as it is proportional to the square of the scale parameter and is a functional of the real
and imaginary components of the characteristic function of Z, as well as the weight func-
tion w(t). No closed-form expression for this covariance matrix is available, but it can easily
be computed numerically for all of the generalized skew-symmetric distributions considered
here. In practice, the functional form of c(t |�) is known, as it depends only on the symmetric
density function f0. On the other hand, the function s(t |�) is not known, as it also depends
on the unknown skewing function �. Once parameter estimates �̂ and �̂ have been obtained,
the latter function can be estimated by sn(t | �̂, �̂) from (4). The estimated covariance matrix
is then

�̂= �̂2�(c(t | �̂), sn(t | �̂, �̂), w(t)). (8)

The last issue to be addressed is the choice of the weight function. The optimal minimum
variance choice of the weight function depends on the underlying distribution, which is not
known in practice. If one specifies a fully parametric form for the underlying distribution, for
instance that it belongs to the class of skew-normal distributions, it is possible to find the best
possible weight function within a family of weight functions, for instance w1(t |	)= exp(−	2t2),
t ∈ R or w2(t |	)= (1 − t2)	, |t|< 1 and 	> 0. However, all our numerical work suggests the
choice of the parameter 	 within the family of weight functions is more important than the
weight function itself. We illustrate in Fig. 1 the choice of the parameter 	 in w2(t |	) for
minimizing det(�) when the underlying distribution is skew-normal with shape parameter �.
Denote this covariance matrix by ��,	 to indicate its dependence on the skewness parameter
� and the weight function parameter 	. The top panel of Fig. 1 shows arg min	{det(��,	)} as
a function of 0.8≤�≤5. The bottom panel reports min	{det(��,	)}1/2 as well as the asymp-
totic standard deviations of the location and scale parameters for the same choice of 	. For
0 <�≤0.8, the values are easily computed numerically, but because of the scale the standard
deviations do not display well.

In practice, we do not assume a fully parametric form for the underlying family. In this
instance, one can proceed as follows: Find initial estimators (�̂0, �̂0, �̂0) and plug these into
(8). Call this estimator �̂0 and note that it is still a function of the weight function. For a
given family of weight functions, one can then find the value of 	 that minimizes det(�̂0), say
	0. Use the minimizer 	0 to update the estimators. The performance of this estimator will be
evaluated in future work.

Using the general theory of M-estimators, one can easily show that the minimization method
estimators are both consistent and asymptotically normal – see for example sections 5.2 and
5.3 of van der Vaart (2000). One should note that there is a pathological scenario in which
the choice of weight function may affect the consistency of the estimators. Specifically, assume

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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Fig. 1. Top panel: Optimal choice of 	 for an underlying SN(�) distribution with 0.8 ≤�≤ 5. Bottom
panel: Minimum standard deviations obtained by optimal choice of 	.

that the characteristic function of the true symmetric component is c0(t), but that the character-
istic function is incorrectly specified to be c1(t). Also assume that the chosen weight function is
bounded on some interval [−A, A]. When we have supt∈[−A,A] |c0(t)− c1(t)|=0, in other words the
true characteristic function and incorrectly specified characteristic function agree on the interval
[−A, A], consistency of the estimators obtained is suspect.

2.3. A hybrid estimator

Consider for a moment a scenario where the skewing function � is known and maximum
likelihood is used to obtain the location and scale estimators. The log-likelihood function
for a sample of size n from a skew-symmetric distribution is

`(� |X1, . . ., Xn)=n log 2−n log �+
∑

1≤j≤n

log f0

(
Xj −�

�

∣∣∣∣ �

)
+
∑

1≤j≤n

log �

(
Xj −�

�

)
.

The partial derivative with respect to � is

∂`

∂�
=− n

�
+ 1

�

∑
1≤j≤n

(
Xj −�

�

)
f ′
0{(Xj −�)/� |�}

f0{(Xj −�)/� |�} + 1
�

∑
1≤j≤n

(
Xj −�

�

)
�′{(Xj −�)/�}
�{(Xj −�)/�} .

This can be written as

∂`

∂�
=− n

�
+ 1

�

∑
1≤j≤n

k1

(
Xj −�

�

)
+ 1

�

∑
1≤j≤n

k2

(
Xj −�

�

)

where k1(z |�)= zf ′
0 (z |�)/f0(z|�) is a symmetric function and k2(z)= z�′(z)/�(z). Using the

invariance property (3), we have E{k1(Z |�)}=1 for any random variable Z from a skew-
symmetric distribution with symmetric component f0. This also corresponds to the likelihood
equation in the case of an underlying symmetric distribution. Moreover, since E{k2(Z)}=0,
one can argue that k2 contributes little to the likelihood estimation in the asymmetric case.

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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The solution obtained for � by solving the sample version of E{k1(Z |�)−1}=0 is

n−1
∑

1≤j≤n

k1

(
Xj −�

�

∣∣∣∣�
)

−1=0 (9)

and will be close to the likelihood estimator �̂ (as a function of � and �). It seems intuitive
that this even function k1 found using likelihood principles may give a more efficient estimate
of the scale parameter than that found using other arbitrary even functions. However, we
can only find such a function for the scale parameter, and not for the location parameter.
Depending on the underlying symmetric model, it may also be possible to use likelihood
principles to find even functions for estimating some subset of �.

Using this, we propose a hybrid method for estimating the model parameters. Let �̂(�, �)
denote the estimator of � obtained by solving (9) as a function of � and �. Now, find the
remaining parameters by minimizing

D*
n(�, �)=

∫
R

[cn{t |�, �̂(�, �)}− c(t |�)]2w(t) dt.

One of the advantages of following this approach is that the dimension of the problem has
been reduced, as we only have to find the minimum in terms of q +1, rather than q +2 para-
meters. The asymptotic behaviour of these hybrid estimators is equivalent to the asymptotic
behaviour of the following equations,

0= 2
�

∫
R

{
cos
(

t · X −�
�

)
− c(t |�)

}
ts(t |�)w(t) dt,

0=− 1
�

+ 1
�

(
X −�

�

∣∣∣∣ �
)

f ′
0{(X −�)/� |�}

f0{(X −�)/� |�} ,

0=−2
∫

R

{
cos
(

t · X −�
�

)
− c(t |�)

}
∂c(t |�)

∂�
w(t) dt.

As this development is very similar to that of the minimum distance method, outlined in
the online supplemental material, details are omitted. Extensive simulation results, some of
which are reported in section 6 of this paper, suggest that the hybrid method of estimation
results in estimators that perform better in a mean squared error sense than those obtained
by minimizing (5).

3. Comparing estimators

We present here a comparison of the different estimators in an asymptotic sense. Numeri-
cal results comparing the finite-sample performance of estimators can be found in section
6. The IBEE method of finding estimators proposed by Azzalini et al. (2010) is based on
solving estimating equations of the type

n−1
∑

1≤j≤n

Tk

(
Xj −�

�

)
− ck =0

with Tk typically being of the form Tk(z)= |z|k and ck =E{Tk(Z)}, k =1, 2, . . .. In order to
effectively compare this method to the proposed characteristic function-based method, we
consider the special case where the underlying distribution is skew-normal with skewness
parameter 
=�/(1+�2)1/2 ∈ [−1, 1]. In this instance, define
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B1 =
(

(2/�) arctan(
/
√

1−
2) (2/�)1/2�−1

(8/�)1/2
� 2�

)
and B2 =

(
1−2/� �2

√
2/�

�2
√

2/� 2�4

)

from which the asymptotic covariance matrix of the IBEE estimators can be calculated, �=
B−1

1 B2B−1
1 with determinant

det(�)= 1
8

�4�(�−3)

{
−� arctan(
/
√

1−
2)}2
. (10)

Here, det(�) → ∞ as 
 → 0, illustrating how the method fails when the underlying distribu-
tion is symmetric. This is not just a problem that occurs when using the IBEE approach. The
proposed method based on empirical characteristic functions suffers from the same drawback
as 
 → 0. In fact, this is a special case of (2) in Ma & Hart (2007) that shows there is no
semiparametric-efficient estimator of the location parameter in a generalized skew-symmetric
distribution when �(z)=1/2 for all z ∈ R. When multiple parameters are being estimated, the
determinant of the covariance matrix is a good measure of overall performance. It is of interest
to note that the determinant here is inherently a function of the scale parameter � and not just
proportional to �4 as is the determinant of the covariance matrix of the characteristic func-
tion-based semiparametric estimators. When � is close to 0, we have det(�)≈�4�(�−3)/(8
2),
while for � large, we have det(�) ≈�4�(�− 3)/[8{arctan(
/

√
1−
2)}2]. In Fig. 2, we plot the

determinant of � from the IBEE method as a function of 
, as well as the determinant of
� from the MDCF method (5) for two choices of weight function, w1(t)= exp(−t2/2), t ∈ R

and w2(t)=1− t2, |t|≤1 . These specific weight functions were chosen for illustration purposes
only. The methods are compared by considering the log-differences of the determinants of the
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covariance matrices. The IBEE method is used as a benchmark. When a curve falls below the
benchmark line, it indicates better performance, whereas a curve above the benchmark indi-
cates poorer performance. While the asymptotic covariance matrix for the MDCF method only
depends on the scale parameter � in that it is a constant of proportionality, with the IBEE
method � features intrinsically in the covariance matrix of the estimators.

We note that there is no estimator which consistently shows the best performance. For
�=0.9, the MDCF method outperforms the IBEE method for moderate to large values of
the skewness parameter 
. There is an anomalous peaked minimum which is a result of (10)
being an intrinsic function of �. Similar behaviour can be seen for other choices of �< 1.
When �=1, there is very little difference between the IBEE and MDCF estimators. For
�=1.1, the IBEE method outperforms the MDCF method. In general, when the underly-
ing distribution is skew-normal, the IBEE estimator performs better when �> 1, while the
characteristic function method yields better results over a large range of 
-values when �< 1.

4. Root selection

A difficulty when estimating (�, �) is the occurrence of multiple solutions. This was observed
by both Ma et al. (2005) and Azzalini et al. (2010). In the latter study, particular attention
was paid to the generalized skew-normal distribution and a way of selecting the correct root
when the underlying distribution is skew-normal was proposed. The authors also discussed
an approach which was based on the complexity of the models associated with each of the
roots. This method gave mixed results. Their approach, as well as the new implied skewness
method proposed below, is based on estimation of the skewing function �. Let (�̂, �̂, �̂) be
one of the possible estimators obtained from a sample X1, . . ., Xn. Define the standardized
values Z̃j = (Xj − �̂)/�̂ and kernel estimator

f̃ (z)= (nh)−1
∑

1≤j≤n

K

(
z − Z̃j

h

)

for K a symmetric density function, from which an estimator for � is �̃(z)= f̃ (z)/{2f0(z | �̂)}.
It should be noted that while this is a consistent estimator of �(z) for any given z ∈R, it does
not satisfy the constraints imposed on the skewing function, namely that �(z)=1−�(−z)≤1.
One can therefore improve upon the above estimator by defining �̂(z)= �̃(z)/{�̃(z)+ �̃(−z)},
which does satisfy said constraints. The method of choosing between estimators suggested by
Azzalini et al. (2010) was based on a measure of the complexity of the estimated �-functions.
They favoured ‘simpler’ models over more ‘complex’ ones. A typical measure of complexity is

C(�̂)=
∫

R

{�̂′′(z)}2 dz, (11)

and when confronted with competing estimators (�̂1, �̂1, �̂1) and (�̂2, �̂2, �̂2), one would choose
the first triple if C(�̂1)≤C(�̂2) and the second otherwise.

We propose selection based on comparing the sample skewness to the implied skewness
associated with a particular �-function. For an estimated �-function �̂j , the implied mean is

�̂j,1 =2
∫

R

zf0(z | �̂j)�̂j(z) dz

and the implied kth central moment is

�̂j,k =2
∫

R

(z − �̂j,1)kf0(z | �̂j)�̂j(z) dz, k ≥2.
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The implied skewness associated with �̂j is therefore �̂j = �̂j,3/�̂3/2
j,2 . Let �̂ denote the observed

sample skewness. The solution for which the implied skewness is closest to the observed
sample skewness is taken as the estimator.

The suggested root selection algorithm is therefore as follows:

(i) If there is only one root (�̂, �̂, �̂), it is taken as the estimate.
(ii) When there are competing estimates, calculate dj = |�̂j − �̂| and select the estimate with

smallest dj .

We investigate the performance of this root selection algorithm in our numerical studies in
section 6.

5. Hypothesis testing

5.1. Two tests

We consider tests of the hypothesis H0 : (�, �)= (�0, �0) with the parameter � in the model
known. We will also discuss how the assumption of � known can be relaxed in testing. In the
present development, as the latter parameter is assumed known, it is suppressed in the nota-
tion of this section. The statistic Dn in (5) being minimized to obtain parameter estimates
(�̂, �̂) is based on the process Pn(t)=n1/2{cn(t |�0, �0) − c(t)} where �0 and �0 are the true
parameter values. By the multivariate central limit theorem, the process Pn(t) is asymptoti-
cally Gaussian with covariance function K (t1, t2)= c(t2 − t1)/2+ c(t2 + t1)/2 − c(t1)c(t2). Our
interest here is in the limiting process P(t)= limn→∞ Pn(t), multiplied by the weight function
w1/2(t), which has orthogonal decomposition

w1/2(t)P(t)=
∑
j≥1

Zjej(t)

by the Karhunen–Loève representation theorem, see Grenander (1981, chapter 1.4, theorem
2).

Here, the Zj are independent standard normal random variables and the functions ej(t)
are continuous real-valued functions that are pairwise orthogonal in L2. The functions ej(t)
are the eigenfunctions of the kernel function w1/2(t1)w1/2(t2)K (t1, t2). We then have

n ·Dn(�0, �0)=n ·
∫

R

w(t){cn(t |�0, �0)− c(t)}2 dt

−→
∫

R

w(t)P2(t) dt =
∫

R

⎧⎨
⎩
∑
j≥1

Zjej(t)

⎫⎬
⎭

2

dt =
∑
j≥1

�jZ2
j

where

�j =
∫

R

e2
j (t) dt

and it is assumed without loss of generality that �1 >�2 > · · ·> 0. Asymptotically, n ·Dn(�0, �0)
is therefore distributed as an infinite sum of weighted χ2

1 random variables. In practice, this
is usually approximated by the sum of the first M components, where M is chosen in such a
way that

∑
j≥M +1 �j is small. While there are no closed-form expressions for the eigenvalues,

these can be computed numerically if one wishes to use the asymptotic distribution of the
test. Numerical calculation of the eigenvalues may be costly, but methodology as outlined in
Matsui & Takemura (2008) is applicable. In practice, one may wish to rely on a bootstrap
procedure for implementation of the test.
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An alternative test is found by using the estimators obtained by minimizing Dn(�, �). The
asymptotic covariance matrix of these estimators is of the form �2�(c(t), s(t), w(t)), where
the present notation is used to indicate that the covariance is a functional of c(t), s(t) and
w(t). This can be approximated by replacing the unknown function s(t) with its empirical
counterpart sn(t | �̂, �̂), and substituting �̂ for �. The test statistic

Sn =
(

�̂−�0

�̂
, 1− �0

�̂

)
�−1(c(t), sn(t | �̂, �̂), w(t))

(
�̂−�0

�̂
, 1− �0

�̂

)


has an asymptotic χ2
2 distribution. We therefore have two different tests for inference about

specific parameter values. The first of these is not asymptotically distribution-free, but does
not require any knowledge of the skewing function in the underlying distribution. The
second is asymptotically distribution-free, but requires an estimate of the imaginary com-
ponent of the characteristic function.

5.2. Power comparison

A small simulation study was performed to compare the power of the two proposed test
statistics. Data were generated from a distribution of the form (2) with the symmetric com-
ponent taken to be standard normal and the skewing function �(z)=�(�1z +�3z3), �1, �3 ∈R.
The three different parameter specifications were (�1, �3)∈{(2, 0); (0, 2); (2, −1)}. The critical
values of the null distribution were obtained using Monte Carlo resampling with sample size
taken to be n=100. The weight function used for the characteristic function-based semipara-
metric estimators was w(t)=1− t2, |t|≤1. Thereafter, samples were drawn from distributions
under the alternatives H1 : �=�1 and H1 : �=�1. The estimated power is taken to be the
proportion of test statistics under the alternative that exceed the critical value under the null
distribution, with M =1000 samples taken under the alternative. The results are shown in
Fig. 3. As can be seen, the statistic Dn consistently performs better than Sn, with the
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Fig. 3. Estimated power curves for location shift (left column) and scale change (right column). The
solid curve represents the statistic Dn and the dashed curve represents the statistics Sn. The power was
estimated at the 5% level of significance using Monte Carlo sampling.
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exception of a location-shift alternative for the model with (�1, �3)= (2, −1). This parameter
specification corresponds to a bimodal distribution, which may explain the different perfor-
mance under this scenario. In this instance, the statistic Sn performs much better than Dn.

5.3. Other tests

In the previous section, the parameter � was assumed known. This may not be realistic. It
is still possible to test the hypothesis about specific values of � and �. Let �0 and �0 denote
the parameter values under the null hypothesis, and let �̂0 be the minimizer of

D+
n (� |�0, �0)=

∫
R

{cn(t |�0, �0)− c(t |�)}2w(t) dt.

One can use D+
n (�̂0 |�0, �0) to test H0 : (�, �)= (�0, �0) when the parameter � is unknown.

Another hypothesis of interest is whether the symmetric component of the distribution has
been correctly specified, for example H0 : f0(z)=�(z), where �(z) is the normal density func-
tion, or H0 : f0(z)= t(z | �) with t(z | v) the Student’s t density with degrees of freedom �. Here,
� can be assumed known, or can be estimated from the data. To test this hypothesis, the
parameter estimates (�̂, �̂) are plugged into the statistic Dn in (5). The argument for using
this as test statistic is as follows: when the null hypothesis is true, the real component of the
characteristic function c(t |�) will be close to the empirical cn(t | �̂, �̂). The statistic Dn(�̂, �̂)
measures this distance.

While asymptotic theory can be developed for the test statistics here, it is of greater practi-
cal value to find a bootstrap approach. First, standardize the sample Zj = (Xj − �)/�,
j =1, . . ., n. The standardization is performed using either the null values �0 and �0, or the
estimates �̂ and �̂, with the appropriate choice depending on the hypothesis being considered.
Next, using the Z-values, define �̂(z)= f̃ (z)/{f̃ (z)+ f̃ (−z)} where f̃ is a kernel estimator of
the standardized sample. To sample from a skew-symmetric distribution that is ‘close’ to the
sample, proceed as follows. Generate a value Y from the symmetric density f0(z), calculate
the value p= �̂(Y ) and include the value Y in the sample with probability p. The bootstrap
sample obtained in this way comes from a skew-symmetric distribution with specified sym-
metric component and skewing component closely matching that of the sample. Theoretical
properties of a similar test are considered in Jiménez–Gamero (2012).

6. Numerical studies

6.1. Small-sample comparison

To compare the IBEE method of Azzalini et al. (2010) with the new minimum distance
method, a simulation study was performed. For each sample generated, the estimators were
calculated using three different methods: the IBEE estimators, the characteristic function-
based semiparametric estimators and the hybrid estimators. In the case of multiple roots,
which will be more thoroughly addressed in the next section, the pair (�̂, �̂) closest (in L2

norm) to the true value (�, �)= (0, 1) was selected. This was done to compare the
methods in the case where the correct root is always selected. Figure 4 shows the square-root
of the determinant of the covariance matrices which was estimated from the pairs (�̂j , �̂j),
j =1, . . ., M for M =1000. This was done for four different underlying distributions, all of
the generalized skew-t form, with degrees of freedom taken to be �=3, 4, 5 and ∞, respec-
tively, and 
=�/(1+�2)1/2 ∈ [−1, 1]. The characteristic function and hybrid estimators were
obtained using the weight function w(t)= exp(−t2/10). In all instances, the sample size was
n=250.
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Fig. 4. Logarithm of the determinant of the covariance matrices of three estimators (IBEE, MDCF and
hybrid estimators) obtained using Monte Carlo simulation for various skew-t distributions with degrees
of freedom �.

As can be seen in Fig. 4, both the characteristic function and the hybrid methods out-
perform the IBEE method for the skew-t distributions with heavy tails (�=3, 4, 5). The hy-
brid method also performs consistently better than the characteristic function method. In the
skew-normal case (�=∞), mixed results are obtained. For 0.9 <
< 0.95 (2.06 <�< 3.04), the
hybrid method has the best performance, while for 0.95 <
< 0.99 (3.04 <�< 7.02) the IBEE
method performs best. In the case of the skew-normal distribution, however, the difference
in performance is relatively very small.

A second simulation study was done to compare Monte Carlo standard errors of the esti-
mators for the different methods for various choices of skewing functions in the generalized
skew-normal case. Samples were generated from distributions with skewing function �(z)=
�(�1z +�3z3), see Ma & Genton (2004) for the effect of various choices of (�1, �3). In the
simulations, the sample size was n=250.

In Table 1, we present the Monte Carlo root mean square errors (RMSE) of the location
and scale estimators,

RMSE=M−1/2

√ ∑
1≤m≤M

(̂m − true)2 (12)

where ̂ and true are, respectively, the estimator and true value of the parameter of interest.
We also present the determinant of the matrix

�̂=M−1
∑

1≤m≤M

(�̂m −�, �̂m −�)
(�̂m −�, �̂m −�)

as a global measure of performance. The minimum values in each column are highlighted in
bold. Upon inspection of Table 1, it is clear that when estimators are compared in terms of
the marginal performance only, that is, one compares the standard errors of individual esti-
mators, the hybrid and minimum distance estimators of location �̂ have smaller RMSE than
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Table 1. Monte Carlo standard errors of parameter estimates for samples of size n=250 from various
generalized skew-normal distributions with skewing function �(z)=�(�1z +�3z3). The three methods are
invariance-based estimating equations (IBEE), minimum distance characteristic function (MDCF) and
the hybrid estimators.

n1/2 ̂RMSE(�̂) n1/2 ̂RMSE(�̂) d̂et
1/2

(n ·�̂)

(�1, �3) Density IBEE MDCF Hybrid IBEE MDCF Hybrid IBEE MDCF Hybrid

(2, 0) 2.21 2.33 2.14 1.58 1.72 1.59 1.63 1.79 1.52
(0, 0.3) 3.13 2.95 2.85 1.43 1.51 1.33 2.77 2.90 2.37
(0, 1) 3.34 2.31 2.34 1.66 1.76 1.47 3.58 2.08 1.82
(0, 2) 3.53 2.43 2.40 1.93 1.78 1.61 3.26 1.93 1.67
(1, 1) 3.05 2.92 2.82 1.86 1.86 1.77 2.43 2.48 2.25
(1, 2) 2.64 2.29 2.10 1.73 1.61 1.54 1.90 1.82 1.49
(2, −1) 0.84 0.76 1.01 0.74 0.79 0.81 0.62 0.60 0.78

the IBEE estimator, with the hybrid estimator having smallest RMSE in most of the scenarios
considered. When comparing the estimated RMSE for �̂, the hybrid estimator still performs
best in most scenarios, with the exception of the model configurations (�1, �3)= (2, 0) and
(2, − 1) in which case the IBEE estimator has smallest RMSE. When comparing the deter-
minants of the matrix �̂, the hybrid method outperforms the IBEE and minimum distance
methods in six of the seven scenarios reported, the exception being (�1, �3)= (2, 0) where the
minimum distance method performs best. While these results only represent a small fraction
of the possible distributions that could be encountered in practice, it is encouraging to note
the good performance of the newly proposed estimators.

6.2. Simulations

Samples of size n=250 were generated from various skew-symmetric distributions of the
form (2) with f0(z) taken to be the normal density function �(z) and the t-density t(z | �).
In each instance, estimators of (�̂, �̂) were obtained using the hybrid characteristic function
method. Below are reported the results from a simulation study wherein the proposed root
selection algorithms of section 4 are investigated. The two root selection methods, model
complexity and implied skewness, were both implemented and a comparison is provided. The
hybrid method of parameter estimation was used with weight function w(t)=1− t2, |t|< 1. In
Tables 2 and 3, PM represents the proportion of samples in which multiple roots were
obtained and the selection criterion had to be applied. PC represents the proportion of times
that the root closest to the true parameter value was selected when using model complexity as
criterion, given that there were multiple solutions to choose from. Similarly, PS represent the
proportion of times the closest root was selected when using implied skewness as selection cri-
terion. The estimates resulting from the two different selection mechanisms are not only com-
pared in terms of the selection proportions above, but also in terms of the RMSE (12) based
on M =1000 Monte Carlo samples. For each specification, there are three different RMSE
values, the column ‘True’ contains the Monte Carlo estimate of RMSE when the solution
closest to the true value is always selected, the column ‘Comp’ corresponds to using model
complexity as criterion, and the column ‘Skew’ corresponds to using skewness as selection
criterion.

Table 2 provides a summary of the simulation results in the generalized skew-normal case
with �(z)=�(�1z +�3z3). When comparing the two proposed methods for selecting between
competing solutions, there is not a clearly preferred approach. Both model complexity and
implied skewness have instances where they show the best performance in terms of selecting
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Table 2. Investigating root selection for generalized skew-normal distributions. In the
table, PM denotes the propotion of samples in which multiple solutions were obtained
and selection had to be applied, PC denotes the proportion of samples in which model
complexity gave the correct solution and PS denotes the proportion of samples in which
implied skewness gave the correct solution.

RMSE(�̂) RMSE(�̂)

(�1, �3) PM PC PS True Comp Skew True Comp Skew

(2, 0) 0.90 0.90 0.68 0.18 0.29 0.41 0.12 0.14 0.19
(0, 0.3) 0.70 0.31 0.72 0.21 0.46 0.28 0.07 0.16 0.13
(0, 1) 0.81 0.48 0.73 0.20 0.51 0.26 0.10 0.11 0.11
(0, 2) 0.72 0.72 0.88 0.21 0.38 0.26 0.11 0.13 0.12
(1, 1) 0.81 0.91 0.87 0.20 0.28 0.28 0.12 0.13 0.14
(1, 2) 0.84 0.92 0.83 0.19 0.27 0.30 0.12 0.14 0.16
(2, −1) 0.98 0.89 0.76 0.11 0.39 0.62 0.06 0.19 0.31

Table 3. Investigating root selection for generalized skew-t distributions. For the esti-
mated degrees of freedom �̂, we provide the median as measure of location, difference
between the 65th and 35th quantiles as measure of spread. We also report the estimated
probability of �̂=∞.

RMSE(�̂) RMSE(�̂)

(�1, �3) PM PC PS True Comp Skew True Comp Skew

(2, 0) 1.00 0.74 0.70 0.47 0.67 0.60 0.44 0.52 0.40
(0, 0.3) 1.00 0.71 0.61 0.53 0.62 0.65 0.22 0.52 0.52
(0, 1) 1.00 0.86 0.72 0.53 0.62 0.58 0.36 0.52 0.45
(0, 2) 1.00 0.78 0.77 0.41 0.58 0.54 0.37 0.47 0.41
(1, 1) 1.00 0.57 0.74 0.35 0.61 0.55 0.40 0.42 0.32
(1, 2) 1.00 0.47 0.74 0.30 0.71 0.58 0.36 0.57 0.43
(2, −1) 1.00 0.92 0.76 0.16 0.32 0.71 0.13 0.19 0.44

�̂

Median Q0.65 −Q0.35 P̂(�̂=∞)

(�1, �3) True Comp Skew True Comp Skew True Comp Skew

(2, 0) 6.96 7.04 8.14 8.31 14.77 6.10 0.32 0.30 0.24
(0, 0.3) 6.97 7.68 8.78 4.61 5.41 4.40 0.21 0.27 0.25
(0, 1) 7.08 7.66 8.34 6.33 9.03 7.05 0.27 0.31 0.27
(0, 2) 7.33 7.13 7.72 4.71 5.16 4.78 0.27 0.29 0.28
(1, 1) 8.24 6.66 7.59 10.90 5.21 4.12 0.30 0.27 0.22
(1, 2) 7.42 5.88 6.64 5.89 5.56 3.24 0.27 0.26 0.17
(2, −1) 5.22 5.46 6.36 2.19 2.26 2.56 0.08 0.12 0.06

the solution closest to the true parameter values. The proportion of times that implied skew-
ness selects the correct solution is consistently between 0.7 and 0.8, while the same proportion
varies greatly for model complexity. In one instance, when (�1, �3)= (0, 0.3), model complex-
ity only selects the correct solution in 31% of the samples. On the other hand, when
(�1, �3)= (1, 2), model complexity selects the correct solution in 92% of the samples. As an
alternative to comparing the selection mechanisms in terms of how often they select the
correct solution, the methods can be compared in terms of RMSE as defined in (12). Of
the seven parameter configurations considered, model complexity results in smaller RMSE
values three times, implied skewness results in smaller RMSE three times, and in one instance
their performance is virtually identical.

The same type of simulation was done for a generalized skew-t distribution with skew-
ing function �(z)=T

[
(�1z +�3z3){(�+1)/(�+ z2)}1/2

∣∣ �+1
]
. The degrees of freedom was also
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treated as an unknown parameter which needed to be estimated. This was done for �=5, and
results are presented in Table 3.

When the degrees of freedom are also estimated as a parameter in the model, the multiple
solution problem grows in scale. When only location and scale parameters are estimated, most
samples have two potential solutions to which some selection criteria has to be applied. When
degrees of freedom are also estimated, most samples result in either three or four possible
solutions. This highlights the importance of having an effective way of selecting the ‘best’
solution. In Table 3, it appears that model complexity (PC) tends to select the true solution
more often than using implied skewness (PS) as a selection criterion. However, when compar-
ing the RMSE for the solutions selected, using model skewness consistently leads to a lower
RMSE for both �̂ and �̂ than using model complexity. Based on this assessment, implied
skewness may be the preferred selection method. Assessing the performance when it comes
to estimating the degrees of freedom is more difficult. In the simulations, data were gener-
ated from a model with �=5 degrees of freedom. The distribution of the estimator tends
to be very skewed to the right and often the estimated value of � is infinity. The propor-
tion of times this happens is reported in the table. Because of this, RMSE cannot be used
to compare the different methods. Also in Table 3, the median of the simulations, as well as
a measure of spread, the difference between the 65th and 35th quantiles, is reported. This
measure of spread is used because even the interquartile range is equal to infinity for some
of the parameter specifications. In most of the scenarios considered, using implied skewness
leads to a larger median bias when compared with model complexity. However, the estima-
tor of � resulting from implied skewness has a much smaller spread than that selected using
model complexity. The proportion of samples in which �̂ is equal to infinity ranges between
0.2 and 0.3 in most of the scenarios considered.

6.3. The frontier data

The frontier data, a simulated data set of size n=50 from a skew-normal distribution with
(�, �, �)= (0, 1, 5) and first reported in Azzalini & Capitanio (1999), has become quite
infamous in the literature as being an example of a data set that presents difficulties when
estimating the parameters. The profile likelihood function of the shape parameter � is un-
bounded, leading to maximum likelihood estimate �̂=∞. We applied both the characteristic
function minimum distance method and the hybrid method to the frontier data to estimating
the location and scale parameters, each with both w1(t)= exp(−t2) and w2(t)=1− t2, |t|< 1.
The skewness method for choosing between competing solutions was implemented. Also,
while plug-in estimates of the covariance matrices can be obtained from (8), we recognize
that this does not take into account the additional variability introduced by performing root
selection. We therefore implement the semiparametric bootstrap with B =1000 and using im-
plied skewness to choose between competing solutions to estimate the covariance matrices.
We also use these same bootstrap replicates to construct marginal 95% bootstrap confidence
intervals for the location and scale parameters. In Table 4, we report for each method and
choice of weight function the estimated location and scale parameters �̂ and �̂, the bootstrap

covariance matrix �̂
*
, the determinant of the covariance matrix as an overall measure of vari-

ability, the 95% confidence intervals and the lengths of these intervals, and also the estimated
shape parameter if one assumes a skew-normal distribution, but use the MDCF or hybrid
estimates of location and scale substituted in the likelihood function. The estimated skew-
normal density corresponding to (�̂, �̂, �̂)=(0.0003, 1.155, 7.548

)
is shown in Fig. 5, along

with the true density and a histogram of the frontier data. When testing the hypothesis that
f0, the symmetric component, is normal, the bootstrap p-value (resulting from B =1000 boot-
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Table 4. Summary of parameter estimates for MDCF and hybrid parameter estimates for the
frontier data

Weight w1(t)= exp(−t2) w2(t)= (1− t2)I (t2 ≤1)

Method MDCF Hybrid MDCF Hybrid

�̂ −0.113 −0.098 0.0003 −0.060
�̂ 1.254 1.236 1.155 1.206

50�̂
*

[
10.29 −4.10
−4.10 2.82

] [
9.33 −3.90

−3.90 2.79

] [
9.98 −4.37

−4.37 2.79

] [
9.98 −4.37

−4.37 2.79

]
det(50�̂

*
) 12.150 10.825 10.860 12.909

95% CI � [−0.429, 1.282] [−0.414, 1.213] [−0.309, 1.292] [−0.449, 1.257]
95% CI � [0.716, 1.572] [0.699, 1.551] [0.633, 1.477] [0.656, 564]
length CI � 1.712 1.628 1.601 1.706
length CI � 0.856 0.852 0.844 0.908
�̂ 1,028.750 87.129 7.548 15.032
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Fig. 5. A histogram of the frontier data, along with the true skew-normal density with (�, �, �)=
(0, 1, 5) and the estimated density using the hybrid method with w(t)=1 − t2, which has (�̂, �̂, �̂)=
(0.0003, 1.155, 7.548).

strap samples) is 0.320. On the other hand, when testing the hypothesis that f0 is Cauchy, the
bootstrap p-value is only 0.018.

6.4. Ambulatory expenditure data

A practical example where a distribution of type (2) arises is illustrated by an ambulatory
expenditure data from the 2001 Medical Expenditure Panel Survey analysed by Cameron
and Trivedi (2010). The decision to spend is assumed to be related to the spending amount,
hence the observations form a selected sample. Cameron and Trivedi (2010) considered a
sample-selection model based on the assumption of normality, hence leading to a para-
metric skew-normal distribution with f0(z)=�(z) and �(z)=�(�z).

The data consist of 2802 observations, considered on a logarithmic scale for this analy-
sis since the variable, ambulatory expenditure, is strictly positive. The observed data Yi = log
(Ambexi), i =1, . . ., 2802, has mean 6.555, standard deviation 1.411 and skewness coefficient
−0.341. When fitting a generalized skew-normal model using the characteristic function
method, there are two possible solutions for the location and scale parameters � and �,
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namely (�̂1, �̂1)= (6.547, 1.409) and (�̂2, �̂2)= (7.816, 1.891). The first of these solutions is
nearly identical to the mean and standard deviation of the data. However, both model com-
plexity and implied skewness result in the selection of the second solution. If one uses the
hybrid characteristic function method which partially incorporates the likelihood function,
the selected solution is (7.823, 1.897), which is almost the same as the standard solution. For
the standard solution, the plug-in estimate of covariance is

�̂= 1
2802

[
22.112 14.717
14.717 11.584

]
.

If one fits a skew-normal model to the data, the maximum likelihood estimates are (�̂, �̂, �̂)=
(7.907, 1.954, − 1.730). Inverting the estimated information matrix, the estimated covariance
matrix of these parameter estimates is

�̂ML = 1
2802

⎡
⎣ 11.507 7.949 −23.045

7.949 7.400 −17.609
−23.045 −17.609 57.338

⎤
⎦.

As a measure of efficiency, we consider the square root of the ratio of the determinants of
the covariance matrices for the location and scale parameters only. This ratio, when taking
that of the characteristic function-based semiparametric estimators relative to the maximum
likelihood estimators, is 1.342. This indicates that there is an approximate 34% loss in
efficiency when the true model is, in fact, skew-normal, but the estimation is done for a
generalized skew-normal model. If one alternatively decides to fit a generalized skew-t distri-
bution, there are three possible solutions. Using model complexity as criterion, the selected
solution is (�̂, �̂, �̂)= (7.541, 1.655, 26.491). In this instance, implied skewness does not give
the same solution, which is (�̂, �̂, �̂)= (7.342, 1.528, 19.083). It should be noted that these two
solutions have estimates of location and scale that are very similar.

7. Discussion

This study proposed a method of estimating location and scale parameters in skew-
symmetric distributions assuming a specific parametric form for the symmetric base density
f0, but without knowledge of the skewing function �. The method of estimation relies on
both the invariance property (3) of even functions of skew-symmetric random variables, as
well as the characteristic function of said random variables.

The characteristic function methodology was compared with the IBEE approach suggested
by Azzalini et al. (2010). In many instances, specifically when the underlying symmetric com-
ponent is heavy-tailed, the new estimators performed better than the IBEE estimators, while
they were comparable in the generalized skew-normal case.

A question that arises both in the context of the IBEE estimators, as well as the
characteristic function-based semiparametric estimators, is that of selecting between compet-
ing solutions. Azzalini et al. (2010) suggested using model complexity, while an approach
using implied skewness was proposed in this study. These approaches were compared through
Monte Carlo simulations in both the generalized skew-normal and generalized skew-t
scenarios. Both approaches performed well under certain conditions. It would appear that
implied skewness consistently leads to selecting the appropriate root between 70% and
80% of the time. While model complexity performed much better for some of the model
configurations, it also performed far worse in other instances.

The methodology developed here extends very naturally to both the multivariate skew-
symmetric setting and also to a regression setting where the errors are assumed to come
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from a generalized skew-symmetric distribution. These extensions are explored in greater de-
tail in the supplemental material available online.
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