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ABSTRACT

Current ensemble-basedKalman filter (EnKF) algorithms are not robust to gross observation errors caused

by technical or human errors during the data collection process. In this paper, the authors consider two types

of gross observational errors, additive statistical outliers and innovation outliers, and introduce a method to

make EnKF robust to gross observation errors. Using both a one-dimensional linear system of dynamics and

a 40-variable Lorenz model, the performance of the proposed robust ensemble Kalman filter (REnKF) was

tested and it was found that the new approach greatly improves the performance of the filter in the presence of

gross observation errors and leads to only a modest loss of accuracy with clean, outlier-free, observations.

1. Introduction

In data assimilation, the process of detecting and ac-

counting for observation errors that are statistical out-

liers is called quality control (QC; e.g., Daley 1991). An

operational numerical weather prediction system may

employ multiple layers of QC. For instance, observa-

tions with implausible values are usually rejected even

before they enter the data assimilation process.We refer

to the algorithms used for such rejection decisions as

offlineQC algorithms. The fact that an observation passes

the offline QC procedures does not guarantee that it is

not a statistical outlier, however. For instance, an error in

a highly accurate observation can be a statistical outlier

when the error has a large representativeness error

component. Such errors have to be dealt with by the

data assimilation algorithm. We refer to the QC pro-

cedures that are part of the data assimilation algorithms

as online QC algorithms.

Online QC algorithms detect observation errors that

are statistical outliers by examining the difference be-

tween the observation and the prediction of the obser-

vation by the background. This difference is called the

innovation. For instance, a simple online QC can be

implemented by rejecting the observations for which the

absolute value of the innovation is larger than a pre-

scribed threshold. Another approach, which is more

desirable from a theoretical point of view, is to employ

robust statistics in the formulation of the state-update

step of the data assimilation scheme (e.g., Huber 1981;

Hampel 1968; Maronna et al. 2006). In particular, the

presumed probability distribution of the observation
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errors can be modified such that the update step can

anticipate errors that would be considered statistical

outliers if the observation errors were strictly Gaussian.

The practical challenge posed by this approach is to find

a modification of the prescribed probability distribution

function, which leads to a data assimilation algorithm

that can be implemented in practice.

An operational online QC algorithm using robust

observation error statistics (Anderson and J€arvinen

1999) was first introduced by the European Centre for

Medium-Range Weather Forecasts (ECMWF). The

general idea of this approach was to define the proba-

bility distribution of the observation errors as the sum

of two probability distributions: a normal distribution

representing the ‘‘normal’’ observation errors and an-

other distribution representing the ‘‘gross’’ observation

errors. This approach was originally proposed as an

offline QC procedure by Ingleby and Lorenc (1993), but

the variational framework made its integration into the

data assimilation scheme possible. The formulation of

the algorithm by Anderson and J€arvinen (1999) became

known as variational QC (Var-QC). In the latest oper-

ational version of Var-QC, called the Huber norm QC

(Tavolato and Isaksen 2010), the probability of medium

and large observation errors decreases linearlymaking it

faster than a Gaussian distribution but slower than

a uniform distribution.

A wide variety of robust filtering schemes has been

proposed in the mathematical statistics literature in the

past decades. In particular, Meinhold and Singpurwalla

(1989) replaced the normality assumption with fat-tailed

distributions such as the t distribution, whereas Naveau

et al. (2005) considered a skewed version of the normal

distribution. West (1981, 1983, 1984) suggested a method

for robust sequential approximate Bayesian estima-

tion. Fahrmeir and Kaufmann (1991) and Fahrmeir and

Kunstler (1999) offered posterior mode estimation and

penalized likelihood smoothing in robust state-space

models. Kassam and Poor (1985) discussed the mini-

max approach for the design of robust filters for signal

processing. Schick andMitter (1994) derived a first-order

approximation for the conditional prior distribution of

the state. Ershov and Liptser (1978), Stockinger and

Dutter (1987), Martin and Raftery (1987), Birmiwal

and Shen (1993), and Birmiwal and Papantoni-Kazakos

(1994) also proposed robust filtering schemes that were

resistant to outliers.

Recently, Ruckdeschel (2010) proposed a robust

Kalman filter in the setting of time-discrete linear

Euclidean state-spacemodelswith an extension to hidden

Markov models, which is optimal in the sense of mini-

max mean-squared errors. He used the Huberization

method but investigated its performance only on a

one-dimensional linear system. Luo and Hoteit (2011)

employed the H‘ filter to make ensemble Kalman filters

(EnKF) robust enough to gross background errors. The

H‘ filter minimizes the maximum of a cost function dif-

ferent from the minimum variance used in the Kalman

filter. They demonstrated their approach on both a one-

dimensional linear and a multidimensional nonlinear

model. Calvet et al. (2012) introduced an impact function

that quantified the sensitivity of the state distribution and

proposed a filter with a bounded impact function.

EnKFs have been successfully implemented in highly

complex operational prediction models in the atmo-

spheric and oceanic sciences. They are Monte Carlo

approximations of the traditional Kalman filter (KF;

Kalman 1960) and use ensembles of forecasts to esti-

mate the mean and covariance of the presumed normal

distribution of the background. Similar to KF, EnKFs

are not robust enough to gross errors in the estimate of

the background mean or the observation (e.g., Schlee

et al. 1967). The main goal of this paper is to design an

EnKF scheme that is robust to observation errors that

are statistical outliers. Harlim and Hunt (2007) and Luo

and Hoteit (2011) made EnKF robust to unexpectedly

large background errors. Here, we propose to make

EnKF robust to gross observation errors by Huberiza-

tion, a procedure that can be implemented on any EnKF

scheme.

The rest of the paper is organized as follows. Section 2

first illustrates the effects of gross observation errors on

the performance of EnKF; then, it describes our pro-

posed approach to cope with such errors. Section 3

demonstrates the effectiveness of our approach for

a one-dimensional linear system, while section 4 shows

the results for the 40-variable Lorenz model. Finally,

section 5 summarizes the main results of the paper.

2. A robust ensemble Kalman filter

a. Ensemble Kalman filters

Let xt 2 R
n be a finite-dimensional representation of

the state of the atmosphere at time t, and

xt 5M(xt21) (1)

be a model for the evolution of the state between discrete

times with a fixed interval. For the sake of simplicity, we

assume that the observations of the state are taken at

discrete times, for which the model solution is available,

and that the functional relationship between the state and

the vector of observations, yt 2 R
p, at time t is

yt 5Htxt 1 et . (2)
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Here, Ht 2 R
p3n is the observation operator and the

random variable et 2 R
p is the observation error, which

is assumed to be a zero-mean (Gaussian) process with

a known covariance matrix Rt. The Kalman filter pro-

vides an estimate of the state xt based on the observations

taken at the past and the present observation times and

on the assumed knowledge (model) of the dynamics.

An EnKF algorithm assumes the availability of an

M-member ensemble (sample), fxb(k)t :k5 1, . . . ,Mg, of
a priori state estimates (backgrounds) with random

sample errors available at time t. This ensemble is called

the background ensemble. The mean of the background

ensemble xbt , which is called the background, is our best

estimate of the state xt before the assimilation of the

observations taken at time t. The analysis step of an EnKF

generates an analysis ensemble, fxa(k)t : k5 1, . . . ,Mg, such
that its mean xat , called the analysis, satisfies

xat 5 xbt 1Kt(yt 2Htx
b
t ) , (3)

while the ensemble-based estimate of the analysis error

covariance matrix Pa
t 2 R

n3n, which is defined by the

sample mean covariance matrix for the ensemble, sat-

isfies either

Pa
t 5 (I2KtHt)P

b
t , (4)

without the perturbed observations, or

Pa
t 5 (I2KtHt)P

b
t 1O(M21/2) , (5)

with the perturbed observations. In Eqs. (3), (4), and (5),

the Kalman gain matrix Kt 2 R
n3p is given by

Kt 5Pb
t H

T
t (HtP

b
t H

T
t 1Rt)

21 , (6)

and the ensemble-based estimate of the background error

covariance matrix Pb
t 2 R

n3n is provided by the sample

covariance matrix for the background ensemble. In our

numerical experiments, we use the method of perturbed

observations (Houtekamer and Mitchell 1998; Burgers

et al. 1998) to obtain the analysis ensemble. In this tech-

nique, Pa
t satisfies Eq. (5). The analysis process at time t

is completed by the forecast step of the EnKF, in which

the model dynamics are applied to each member of the

analysis ensemble to obtain the members of the back-

ground ensemble for the next observation time, t 1 1.

The components of the vector of differences yt 2Htx
b
t

between the observations and their predicted values are

called innovations (each innovation describes the dis-

crepancy between an observation and its predicted

value). In addition, the components of the change in

the state estimate xat 2 xbt , due to the assimilation of the

observations included in yt, are called analysis increments.

The role of the Kalman gain matrix Kt is to map the in-

novations into analysis increments. According to Eq. (6),

the Kalman gain accounts for the observation errors

based on the prescribed error statistics included in Rt. It

thus has no information about the errors in a particular

observation or the magnitude of a particular innovation.

Since the analysis increments are unbounded functions of

the innovations, a large innovation due to a gross (outlier)

observation error can cause a large degradation in the

accuracy of the state estimate.

b. The effects of observation outliers

We consider two common types of observation out-

liers: additive outliers (AO) and innovations outliers

(IO; Fox 1972; Genton 2003; Genton and Lucas 2003,

2005). In an AO model, we observe

yt 5Htxt 1 jt 1 et , (7)

where jt 2 R
p is a vector of unknown outlying values. It is

assumed that only a few components of jt are different

fromzero. In an IOmodel, the observation error is assumed

to be a contaminated multivariate Gaussian distribution

et ; (12a)Np(0,Rt)1aNp(0,kt 3Rt) , (8)

where 0 , a , 1, kt . 1, and Np denotes the p-variate

Gaussian distribution. That is, the observation errors

have a zeromean and a probability 12 a of coming from

a normal distribution with covariance matrix Rt and a

FIG. 1. Plot of the true states (solid line) and the traditional

EnKF (dashed line) as a function of time t for a one-dimensional

linear system with (top) additive outliers jt 5 5 and (bottom) in-

novations outliers with a 5 0.2 and kt 5 25. The occurrences of

outliers are marked with open circles.
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(usually small) probability a of coming from a normal

distribution with higher variances kt 3 Rt. The value of

kt is assumed to be unknown. The additive outlier model

corresponds to a situation where some of the observa-

tions are affected by a strong observation bias, whereas

the innovations outlier model corresponds to a situation

where there is an 100 3 a percent chance that the ob-

servation error variance is larger than the prescribed

value given by Rt.

We illustrate the effects of the type of outlier on EnKF

analyses with the help of a one-dimensional linear system

xt 5 xt211 et (9)

and the observation equation

yt 5 xt 1 �t , (10)

where et and �t are zero-mean Gaussian processes with

unit variance. The results shown in Fig. 1 were obtained

by using the traditional EnKF algorithm to obtain the

analysis ensemble that satisfies Eqs. (3) and (5) for Eqs.

(9) and (10). We assimilate observations at every time

step. The outliers occur at the times where the errors

are marked by open circles. The top panel shows the

results for the AO model, with jt 5 5 for the outliers,

while the bottom panel shows the results for the IO

FIG. 2. Bias vs efficiency for the EnKF and two REnKFs for a one-dimensional linear system for t5 30, 31, 32, 33, 34, and 35. The additive

outliers with jt 5 8 occur at times t 5 31, 32, and 33.
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model, with a 5 0.2 and kt 5 25 for the outliers. The

accuracy of the state estimates are clearly degraded at

the time steps where the outliers are present in either

outlier model.

c. A robust ensemble Kalman filter

The detrimental effect of the outliers on the EnKF

state estimate can be reduced by decreasing the mag-

nitude of those components of the innovation vector

that have unusually large absolute values. This can be

done by defining an upper bound for the allowable ab-

solute value of the innovations. When the magnitude of

an innovation is found to be larger than the prescribed

upper bound, the magnitude of the innovation can be

clipped at the upper bound. To be precise, the innova-

tion dy is left unchanged if 2c , dy , c for some c . 0

and clipped at 2c if dy , 2c and at c if dy . c. This

componentwise clipping of the innovation is called

Huberization, and the tunable parameter c is called the

clipping height.

The Huberized analysis x̂a can be written as

x̂at 5 xbt 1KtGc(yt 2Htx
b
t ) , (11)

where for any c 2 R
p
1 and u 2 R

p, the Huber function

Gc(u) is defined by (i 5 1, . . . , p)

FIG. 3. As in Fig. 2, but for bias vs radius.
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[Gc(u)]i 5

8<
:

ui , if juij, ci ,

ci , if ui $ ci ,

2ci , if ui # 2ci .

(12)

Here, ci and ui are the ith elements of c and u, re-

spectively. The observation is clipped componentwisely

by the clipping height of the same dimension. When

Huberization achieves its goal of reducing the contam-

ination of the prescribed distribution of the observation

errors, the observation error covariance matrix Rt pro-

vides a better representation of the observation error

covariance. Hence, we do not modify any entries of Rt.

A simple alternative to Huberization for handling

observation error outliers is to discard the suspect ob-

servations from the data assimilation process. In fact,

this is the online QC approach that has been employed

by EnKF algorithms in weather prediction models (e.g.,

Szunyogh et al. 2008). In the simple numerical examples

given here, we discard the observation if jdyj . c for

a prescribed c. In these applications, the prescribed

smallest magnitude of the innovation that triggers a re-

jection of the observation depends on the magnitude of

the ensemble-based estimate of the background error

variance at the observation location (the related entry of

HtP
b
t H

T
t ) and/or the variance of the observation error

(the related diagonal element of Rt). Because this ap-

proach is based on discarding the observation rather

than reducing the contamination from the observation

error, the entries of Rt that are related to the discarded

observation must also be removed.

d. Choosing parameter c

The tunable parameter of both strategies to handle

the outlier observation errors, which were described in

section 2c, is the p-dimensional vector c 2 R
p. An ideal

choice for c would remove the contamination from the

observation error or lead to the rejection of the obser-

vation without making any change in the state estimates

of clean, outlier-free, observations. While such an ideal

choice for c usually does not exist, we can define

a measure of our tolerance for degradation in the ac-

curacy of the state estimates for clean observations.

One measure of tolerance can be defined by in-

troducing the notion of relative efficiency. The relative

efficiency of two algorithms to estimate the state is de-

fined by the ratio of the variance of the error in the two

estimates they provide. The relative efficiency of EnKF

with and without online QC,

d5
Ejxt 2 xa

t
j2
id

Ejxt 2 x̂a
t
j2
id

, (13)

falls into the interval d 2 (0, 1]. Here, j�j denotes the
Euclidean norm and the subscript id indicates that the

norm is to be computed for clean, outlier-free, ob-

servations. If no quality control was applied (the com-

ponents of c were set to infinity), then the relative

efficiency would be d 5 1. Equivalently, achieving

a perfect relative efficiency, d 5 1, would require

choosing c 5 ‘. The lower the value of d we accept, the

lower the values we can choose for the components

of c. A common choice for the relative efficiency is

d 5 0.95 (e.g., Huber 1981).

FIG. 4. The true states, EnKF, and two REnKFs with efficiencies

d5 0.99 and 0.7 for a one-dimensional linear system. The additive

outliers with jt 5 8 occur at times t 5 31, 32, and 33.

FIG. 5. As in Fig. 4, but for radii r 5 0.0001 and 0.01 rather than

efficiencies.
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To use the relative efficiency as a criterion for the

selection of c, we have to find a practical approach to

computing the components of c for a given value of d. In

Kalman filtering, the variance of the analysis error is

usually estimated by the trace of Pa
t given by Eq. (4).

While this approach would provide a simple formula for

the numerator in Eq. (13), the denominator could not

be written with the help of Eq. (4) because Gc(u) is

a nonlinear function of the innovation. It cannot thus be

absorbed into the Kalman gain matrix. Hence, after

dropping the subscript t that denotes the time, the only

alternative left is to substitute xa from Eq. (3) and x̂a

from Eq. (11) into Eq. (13), which yields

d5
Ejx2 xb 2K(y2Hxb)j2id

Ejx2 xb 2KGc(y2Hxb)j2
id

5
Ej(I2KH)(x2 xb)1 ej2id

Ej(x2 xb)2KGc[H(x2 xb)1 e]j2
id

. (14)

The second equality comes from the observation Eq. (2).

The ith component ci of the clipping height c is ob-

tained by using

Ejx2 xaj2id 5Ejx2 xb 2 (K)i(y2Hxb)ij
2

id
(15)

FIG. 6. As in Fig. 2, but with innovations outliers with kt5 25 occurring at times t5 31, 32, and 33 with probability of contamination a5 0.2.
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for the computation of the numerator and

Ejx2 x̂aj2id 5Ejx2 xb 2 (K)iGc
i

[(y2Hxb)i]j
2

id
(16)

for the computation of the denominator. In the above,

(K)i is the ith column of the Kalman gain matrix

y2Hxb 5H(x2 xb)1 e, x2 xb ;Nn(0,P
b) and e ;

Np(0, R). In Eqs. (15) and (16), the means are then

computed using aMonte Carlo approach, sampling from

these Gaussian distributions. The ci used to clip the ith

innovation is chosen as if the analysis process consisted of

assimilating the ith observation only. The selected clip-

ping heights vary according to whether we clip the ob-

servation to c by Huberizing or to 0 by deleting. There

is a precedent for this criterion of selecting a clipping

height for robust Kalman filters (Ruckdeschel 2010). In

Ruckdeschel (2010), however, a one-dimensional clip-

ping height is selected to clip the norm of the multi-

dimensional observations for the multidimensional case.

When outliers occur at few variables, the norm may not

be changed much by these few outliers and therefore

the outliers may not be clipped. The variables where the

outliers do not occur should be evenly clipped once

FIG. 7. As in Fig. 3, but with innovations outliers with kt 5 25 occurring at times t 5 31, 32, and 33 with a probability of contamination

a 5 0.2.
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the one-dimensional clipping height is smaller than the

norm.Amultidimensional clipping height that we propose

clips the elements that are considered to have outliers.

Another criterion is to select ci such that

(12 r)E[j(y2Hxb)ijid 2 ci]15 rci (17)

for a given radius r2 (0, 1).Here, (x)15 jxj3max(x/jxj, 0).
The radius r is a proportion of the amount of clipping in

the innovation. The clipping heights are the same for

either type of clipping because this criterion does not

depend on how we clip innovations. A smaller radius

provides a larger clipping height and fewer clipping

outliers. This radius criterion has been used to select

a clipping height in the robust Kalman filter scheme

(Ruckdeschel 2010).

The important issues in selecting the clipping height c

are the computational complexity of the sample co-

variance matrices. First, a small ensemble size may

produce inaccurate estimates of the covariance matrices

(Whitaker and Hamill 2002). Another is that doing the

Monte Carlo integration method to choose the clipping

height c for all time steps is time consuming. To increase

the accuracy of the covariance matrices and save com-

putation time, we may use lim
t/‘

Pb
t for one common

clipping height c to use at every time step in case we can

obtain the limit, instead of using Pb
t at each time t. If we

let P‘ be the unknown n 3 n true covariance matrix at

t 5 ‘, then we have P‘ 5 lim
M/‘,t/‘

Pb
t . When M is suffi-

ciently large, we can assume that lim
t/‘

Pb
t ’P‘. We show

in the next sections that the sample covariance matrix

converges to its limit in a one-dimensional linear system

and that the average of the sample covariance matrix is

used as an alternative to a limit in our multidimensional

nonlinear system.

3. A one-dimensional linear system

To illustrate the effect of outliers in a one-dimensional

linear system, we assume that the system equation and

the observation equation are given by Eqs. (9) and (10),

respectively. These simple equations have been used by

Meinhold and Singpurwalla (1983). The estimate of the

classical ensemble Kalman filter [Eq. (3)] becomes

xa
t 5 xbt 1Pb

t (P
b
t 1 1)21(yt 2 xbt ) , (18)

given that the observation error variance is 1.

We investigate the performance of the robust en-

semble Kalman filter (REnKF) for this system using 20-

member ensembles and a variance inflation factor of 1.1.

A limit of the sample variance of the ensembles Pb
t of

1.63 is used to determine the clipping height c. We use

500 replications for graphical representations with

boxplots (Tukey 1970). The efficiencies d 5 0.99, 0.95,

0.9, 0.8, and 0.7, respectively, correspond to the clipping

heights c 5 4.25, 2.64, 2.19, 1.60, and 1.21 when we

Huberize the observations. The same efficiencies cor-

respond to the clipping heights c5 6.02, 4.80, 4.40, 3.71,

and 3.21 when we discard the observations. The radii r5
0.0001, 0.001, 0.003, 0.005, and 0.01 respectively corre-

spond to the clipping heights c 5 5.20, 4.24, 3.77, 3.48,

and 3.14 when we Huberize or discard the observations.

To see the impact of additive outliers, we suppose that

the additive outliers with jt5 8 are present in the data at

t5 31, 32, and 33. Figure 2 shows the boxplots of the bias

versus efficiency d. Figure 3 shows the boxplots of the

bias versus radius r. As the clipping value c decreases,

that is, as the efficiency decreases or as the radius in-

creases, the bias of the robust estimators shrinks,

whereas the error variance decreases to a point but then

increases again. The chosen clipping heights are in the

range where the error variance keeps increasing. The

bias of the Huberizing filter decreases to zero slower

than that of the discarding filter, but the error variance

increases slower than that of the discarding filter. The

bias starts to recover from t 5 34 when the outliers

disappear. Figure 4 shows the trajectories of the true

state, the traditional ensemble Kalman filter, and two

robust ensembleKalman filters with efficiencies d5 0.99

and 0.7. Both robust ensemble Kalman filters have

smaller jumps in the state estimation errors at the times

of the outliers than the traditional ensemble Kalman

filter has. At efficiency d 5 0.99, the discarding filter

FIG. 8. The average sample ensemble covariances between var-

iable 21 and other variables using 10 000 ensemble members from

t 5 101 to 300.
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removes the jump entirely, coinciding with a bias of

zero, but at efficiency d 5 0.7, its estimation is in-

accurate, coinciding with the big error variance shown in

Fig. 2. Figure 5 shows the trajectories of the true state,

the traditional ensemble Kalman filter, and the two ro-

bust ensemble Kalman filters with efficiencies d 5 0.99

and 0.7 and radii r 5 0.0001 and 0.01. For r 5 0.01, the

discarding filter is more precise than the Huberizing

filter at t5 31, 32, and 33, but it is more imprecise in the

absence of outliers from t 5 10 to 20. It agrees that the

larger the radius, the smaller bias and the larger error

variance shown in Fig. 3.

To examine the effect of innovations outliers, we

suppose that the innovation outliers with kt5 25 occur at

time t 5 31, 32, and 33. Figure 6 shows the boxplots of

the bias versus efficiency d. Figure 7 shows the boxplots

of the bias versus radius r. The bias stays at zero for all

filters because the innovations outliers are set to have

zero means. In terms of the error variance, the robust

ensemble Kalman filters have increasing error variance

as the efficiency d decreases or as the radius r increases.

At t 5 31, 32, and 33, the traditional ensemble Kalman

filter has the largest error variance. The efficiency d gives

a smaller error variance than the radius r gives because it

FIG. 9. Bias vs efficiency of the EnKF and two REnKFs for variable 11 of the Lorenz model for t 5 70–78. The additive outliers jt 5 10

occur at variables 11, 12, and 13 at times t 5 71, 72, and 73.
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has a larger clipping value compared to the radius and as

such does not clip much. TheHuberization is better than

getting rid of observations in terms of the error variance.

At times with no outliers, the robust ensemble Kalman

filter, however, has a larger error variance than the

traditional ensemble Kalman filter.

4. A multidimensional nonlinear system

a. The Lorenz model

We modify the 40-variable nonlinear dynamical sys-

tem of Lorenz and Emanuel (1998) by adding a random

model error term dwi. Then, themodel equation is given by

dxi 5 [(xi112 xi22)xi21 2 xi 1F]dt1 dwi,

i5 1, . . . , 40, (19)

where dwi is a scalar from a Gaussian distribution

with a zero mean and variance of 0.05, F 5 8, and the

boundary conditions are assumed to be periodic. We

use a fourth-order stochastic Runge–Kutta scheme with

a time step of 0.05 nondimensional units to integrate the

model. The background ensemble members are initial-

ized from random fields and integrated for 500 steps.

Each state variable is observed directly, and observations

having uncorrelated errors are assimilated at every time

step. The observation equation follows

FIG. 10. As in Fig. 9, but for bias vs radius rather than efficiencies.
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(yt,1, . . . , yt,40)
T d yt5 xt1 et, (20)

where et is zero-mean white noise with variance R 5
0.05 3 I40, and I40 is the identity matrix of size 40. The

model is integrated for 190 time steps, and the first 100

time steps are discarded. The 20-member ensembles are

used, and a localization constant of 15 and ensemble

inflation factor of 1.07 are used following Whitaker and

Hamill (2002). Experiments were conducted using the

EnKF and REnKF with perturbed observations.

b. Choice of the clipping height for the Lorenz model

We discuss how to choose the clipping height c and in-

vestigate the behavior of the robust ensembleKalman filter

for the Lorenz model. We use the average of the sample

background covariance matrix Pb
t from t 5 101 to 300 of

M5 10000 ensemble members to select a 40-dimensional

clipping height vector cbased on aMonteCarlo integration

method. Figure 8 illustrates the 21st column of the aver-

aged sample background covariance matrix. The sample

background covariance matrices were computed by run-

ning the model forward and assimilating the observations.

Since the dynamics of the model, distribution of the

observations, and observation error statistics are ho-

mogenous, all components of the clipping height vector

c have similar values. The radii r5 0.0001, 0.0005, 0.001,

0.01, and 0.05 respectively correspond to the clipping

heights 3.30, 2.89, 2.7, 2, and 1.44. The efficiencies d 5
0.9999, 0.999, 0.99, 0.985, and 0.98 respectively corre-

spond to the clipping heights 2.45, 1.62, 0.55, 0.32, and

0.16 when we Huberize observations, and they respec-

tively correspond to the clipping heights 3.8, 3, 1.8, 1.43,

and 1.06 when we discard observations. We use 200

replications for graphical representations with boxplots.

c. The effects of outliers

To see the effect of additive outliers in the Lorenz

model, we assume that additive outliers with jt 5 10

occur for neighboring variables 11, 12, and 13 at t 5 71,

72, and 73. Figure 9 shows the boxplots of the bias versus

efficiency in the presence of additive outliers with jt5 10

for the Lorenz model. Figure 10 shows the boxplots of

the bias versus radius in the presence of additive outliers

with jt 5 10. As the clipping value decreases, that is, as

the radius increases or as the efficiency decreases, the

bias for the robust filters gets closer to zero, similar to

the behavior observed in the one-dimensional linear

system. The discarding filter forces the bias to go to zero

faster than the Huberization filter. The error variance

decreases to a point but then it increases again as the

clipping value c decreases. The explanation for this

behavior is that a proper clipping height truncates

observations safely, but a too small clipping height clips

observations too much: in the expression

x̂at 5 xbt 1KtGc(yt 1 jt 2Htx
b
t ), (21)

the clipping function Gc cuts, in addition to jt, a signifi-

cant portion of yt2Htx
b
t . Such aggressive clipping can

lead to zero bias at the expense of a large error variance

of the state estimates. However, the rate of change of the

error variance is different for the two robust ensemble

Kalman filters. The discarding filter is more aggressive

FIG. 11. The true values, EnKF, and two REnKFs with efficiency

d 5 0.9999 and 0.98 for variable 11 of the Lorenz model. The ad-

ditive outliers with jt 5 10 occur at variables 11, 12, and 13 at times

t 5 71, 72, and 73.

FIG. 12. As in Fig.11, but for r 5 0.0001 and 0.05.
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and its error variance therefore increases faster than the

Huberization filter. The bias for all filters increases from

t5 71 to 73 because the outliers are carried over and not

perfectly removed. The bias starts to recover from t5 74

when outliers do not occur. Figure 11 shows the time

evolution of a component of the state vector for the true

state, traditional ensembleKalman filter, and two robust

ensemble Kalman filters with efficiencies d5 0.9999 and

0.98. Coinciding with the large error variance in the

boxplots, the estimation with efficiency 0.98 is imprecise

because the maximum relative efficiency that the robust

ensembleKalman filter can achieve for each observation

is 0.9747. Figure 12 shows the time evolution of a compo-

nent of the state vector for the true state, traditional en-

semble Kalman filter, and two robust ensemble Kalman

filters with radii r 5 0.0001 and 0.05. At the same radius,

0.05, the Huberization filter is more accurate than the

discarding filter.

To investigate the effect of innovations outliers, we

assume that the observation error comes from white

noise with extreme variance at variables 11, 12, and 13 at

t 5 71, 72, and 73. Figure 13 shows the boxplots of the

bias versus efficiency in the presence of innovations out-

liers with kt 5 100 in the Lorenz model. Figure 14 shows

FIG. 13. As in Fig. 9, but for innovations outliers with kt5 100 occur at variables 11, 12, and 13 at times t5 71, 72, and 73 with a probability

of contamination a 5 0.2.
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the boxplots of the bias versus radius in the presence of the

same innovations outliers. For r . 0 and d , 1, the bias

stays at zero but the error variance decreases to a certain

point and then increases again as the clipping height de-

creases, and at t 5 70 when no outliers occur, both robust

ensemble Kalman filters experience a loss of accuracy.

5. Discussion

We proposed a robust ensemble Kalman filter for the

robust estimation of the state of a spatiotemporal dy-

namical system in the presence of observational out-

liers. We applied this robust ensemble Kalman filter to

a one-dimensional linear system and a multidimensional

nonlinear system. Using this filtering technique, which is

based on the Huberization method, the negative effects

of the outliers on the state estimates can be greatly re-

duced. The clipping values were selected using the effi-

ciency and radius criteria. We compared the results of

the robust ensemble Kalman filter with those from the

classical ensemble Kalman filter. We also compared the

robust ensemble Kalman filter based on the Huberiza-

tion filter, which pulls the outliers back to c or 2c, and

the robust ensemble Kalman filter, which discards out-

liers. We found that compared to the conventional

EnKF, the robust ensemble Kalman filter reduced the

bias in the state estimates at the expense of increasing

the error variance. The increase of the error variance

FIG. 14. As in Fig. 13, but for bias vs radius.
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differed depending on the filtering method. The Hube-

rization filter was found to perform better than the dis-

carding filter for the examples given in the paper, which

may be because the model we used gives the true state.

The robust ensemble Kalman filter is efficient with

simple models, and we plan to test it in realistic ocean

and atmospheric systems.

Finding the proper clipping values for a data assimila-

tion system that assimilates many types of observations

using a complex model is expected to be a labor intensive

process. There is no reason to believe, however, that the

process would be more challenging or would require

more work than determining the parameters of the

quality-control procedures currently used in operational

numerical weather prediction. In fact, the parameters

used in the current operational systems should provide

invaluable information about the gross errors in the dif-

ferent types of observations, which could be used as

guidance for the selection of the clipping values.
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