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A Monte Carlo-Adjusted Goodness-of-Fit Test
for Parametric Models Describing Spatial

Point Patterns
Ngoc Anh DAO and Marc G. GENTON

Assessing the goodness-of-fit (GOF) for intricate parametric spatial point process
models is important for many application fields. When the probability density of the
statistic of the GOF test is intractable, a commonly used procedure is the Monte Carlo
GOF test. Additionally, if the data comprise a single dataset, a popular version of the test
plugs a parameter estimate in the hypothesized parametric model to generate data for
the Monte Carlo GOF test. In this case, the test is invalid because the resulting empirical
level does not reach the nominal level. In this article, we propose a method consisting
of nested Monte Carlo simulations which has the following advantages: the bias of
the resulting empirical level of the test is eliminated, hence the empirical levels can
always reach the nominal level, and information about inhomogeneity of the data can
be provided. We theoretically justify our testing procedure using Taylor expansions and
demonstrate that it is correctly sized through various simulation studies. In our first data
application, we discover, in agreement with Illian et al., that Phlebocarya filifolia plants
near Perth, Australia, can follow a homogeneous Poisson clustered process that provides
insight into the propagation mechanism of these plants. In our second data application,
we find, in contrast to Diggle, that a pairwise interaction model provides a good fit to the
micro-anatomy data of amacrine cells designed for analyzing the developmental growth
of immature retina cells in rabbits. This article has supplementary material online.

Key Words: Adjusted level; Distribution of p-values; Level bias; Nested Monte Carlo
simulation; Spatial point process.

1. INTRODUCTION

Spatial point processes have received sustained attention in recent years in many disci-
plines such as ecology, biology, medicine, and material science, to name a few. For example,
using spatial point processes, ecologists model the propagation mechanism of forests, bi-
ologists model the developmental growth of immature cells, and pharmacologists model
the spatial structure of active agents of some drugs coupled to antigen sites (Illian et al.
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498 N. A. DAO AND M. G. GENTON

2008). Inevitably, a goodness-of-fit (GOF) test is needed to assess the fit of these models.
Up to now, GOF tests were primarily available for assessing the fits of simple Poisson pro-
cesses. A large number of testing methods for assessing homogeneous Poisson processes,
otherwise known as complete spatial randomness (CSR), are referenced and described in
Cressie (1993, sec. 8) and Diggle (2003, sec. 2). Notable examples include a test based on
the approximate distribution of the mean of the nearest neighbor distances (Donnelly 1978)
and quadrat count tests (Diggle 2003, sec. 2.5). For sparsely sampled point patterns, Besag
and Gleaves (1973) and Hines and Hines (1979) developed distance-based tests, whereas
Assunção (1994) and Assunção and Reis (2000) developed an angle-based test. When the
fitted model is an inhomogeneous Poisson process, Guan (2008) derived a GOF test with a
statistic based on a discrepancy measure function that is constructed from residuals obtained
from the fitted model. The test statistic has a limiting standard normal distribution, so the
test can be performed by comparing the test statistic with available critical values. While
the aforementioned methods are suitable for Poisson spatial point processes, they do not
extend trivially to the fits of more complicated processes. An exploratory analysis of such
data involves a diagnostic assessment of the residuals that can be handled by the graphical
methods of Baddeley et al. (2005) and Baddeley, Møller, and Pakes (2008). This diagnostic
approach, however, does not serve as a formal GOF test. A possible complement is the
Monte Carlo GOF test (Ripley 1988; Diggle 2003), which is valid when, for example, the
data consist of multiple spatial point patterns (SPPs). Analogous to training and validation
datasets in regression analysis, one can obtain the parameter estimate for the null model
from one, or from some, pattern(s) and apply the GOF test to the remaining patterns. This
traditional Monte Carlo GOF test and its graphical version, the envelope test, are described
in Section 2.2.

When the data consist of a single SPP, the parameter estimate has to come from the only
pattern available, which suggests the concept of the plug-in Monte Carlo GOF test (PGOF),
which is widely applied in the literature. However, in the general statistical context, Robins,
Van der Vaart, and Ventura (2000) noted that the p-value resulting from the PGOF test does
not necessarily follow the standard uniform distribution, not even in the asymptotic sense. In
particular, in the context of spatial point processes, Diggle (2003, sec. 6.2) noted that “Such
tests are strictly invalid, and probably conservative, if parameters have been estimated from
the data. To some extent, this problem can be alleviated if we use a GOF statistic that is only
loosely related to the estimation procedure.” Similarly, in the general statistical context,
Bayarri and Berger (2000) suggested that if the distribution of the GOF test statistic is condi-
tioned upon a sufficient statistic, then this distribution does not depend on the true parameter
and therefore the p-value calculated with respect to this conditional distribution has a stan-
dard uniform distribution. However, in the context of spatial point processes, except for the
homogeneous Poisson process, one cannot find closed forms for sufficient statistics. Hence,
the approach motivated by Bayarri and Berger (2000) cannot be applied. Diggle (2003,
p. 10) also noted that “An inherent weakness of the Monte Carlo approach is its restriction
to simple hypotheses[. . .]. Composite hypotheses can be tested if pseudo-random sampling
is made conditional on the observed values of sufficient statistics for any unknown parame-
ters, but this is seldom practicable. Note that a goodness-of-fit test which ignores the effects
of estimating parameters will tend to be conservative.” Diggle (2003, p. 10) noted further
that this particular conservativeness does not arise with tests of CSR for mapped data,
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Figure 1. Distributions of the estimated p-values p̂’s resulting from PGOF tests. The Strauss processes (left), CSR
(center), and the Thomas processes (right) are defined in Section 3.1. The nearest neighbor distance distribution
function, G-function, defined in Section 2.2, is used to compute the test statistic for the PGOF tests. The horizontal
solid lines stand for the probability density function of the standard uniform distribution.

because the observed number of events, N, is sufficient for the intensity, λ, and, conditional
on N, CSR is a simple hypothesis. But ignoring the effect of estimating parameters does
affect the assessment of GOF for more general stochastic models. Figure 1 shows how far
off the empirical level can be from the nominal level, α = 0.05. The histograms show from
left to right the distributions of the estimated p-values from the PGOF test assessing the fits
of Strauss, CSR, and Thomas processes, which are described in Section 3.1. CSR is a simple
hypothesis; hence, the distribution of the estimated p-values is standard uniform. However,
by letting X denote the process underlying the observed SPP defined in Section 2.1, the
Strauss process (H0 : X ∼fβ,γ ,R , where f denotes the probability density function) and
the Thomas process (H0 : K(X) = Kκ,σ,µ, where K denotes the K-function) are composite
hypotheses because there is no knowledge about the existence or the form of sufficient statis-
tics. The distributions of the estimated p-values are not standard uniform. The PGOF test
is too conservative for these two processes. It is important to correct for the bias of its em-
pirical level because if the Type II error rate were prespecified, the PGOF test would suffer
from power loss as noted by Marriott (1979): the Monte Carlo test gives a “blurred” critical
region, which is not of the usual form. A conventional significance test would reject H0 if
the statistic lays in some well-defined critical region. However, for the Monte Carlo test,
there is a range of values of the statistic over which there is a varying probability of rejecting
H0. This blurring of the critical region leads to a loss of power. This weakness of the PGOF
test still remains when using the envelope test (Ripley 1977). If the Monte Carlo simulation
is not made conditional on an observed value of a sufficient statistic, there is an undesirably
high probability that the upper and lower envelopes of the null model would contain the
empirical summary or second-order characteristic function of the observed SPP, which does
not underlie the null model. To overcome the weaknesses with respect to the conservative-
ness and power loss of PGOF tests, we propose a test that adjusts for the bias of the empirical
level through nested Monte Carlo simulations to reach the nominal level correctly.

The remainder of this article is organized as follows. Section 2 describes the methodology
of the proposed GOF procedure. Extensive simulation studies demonstrate in Section 3 that
our method gives more accurate empirical levels than those provided by the existing PGOF
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500 N. A. DAO AND M. G. GENTON

test. Section 4 provides two data applications, one to a forest dataset to study the propagation
mechanism of Phlebocarya filifolia plants, and the other to micro-anatomy data to learn
about the developmental growth of immature retina cells in rabbits. Finally, Section 5
discusses two computational techniques that make the computations more efficient.

2. MONTE CARLO GOODNESS-OF-FIT TESTS

2.1 DEFINITIONS

Hereafter, we adopt the notation given in Baddeley et al. (2005, sec. 5). An SPP
is a dataset, X = {x1, . . . , xN }, where the xi’s are unordered locations observed in a
bounded region, W, of R2. We let fθ denote the parametric model (a parametric spatial
point process) fitted to X, where θ is an arbitrary finite-dimensional vector of param-
eters. We assume that fθ (X) is a probability density function with respect to the unit
rate Poisson process on the window W, such that fθ satisfies the positivity condition:
if fθ (X) > 0 and Y ⊂X, then fθ (Y ) > 0 for any finite point patterns, X, Y ⊂W . Under
this setup, we are interested in testing the null hypothesis:

H0 : X ∼fθ , (1)

where X is the spatial point process from which the observed SPP, X, is generated. The
common p-value for the hypothesis above is p = 1 −Pr{t(X) < t(X)} for some test statis-
tic, t(·), that is, this definition of the p-value is based on the assumption that a small value
of t(X) supports the null hypothesis, H0. If the probability density of t(·) is tractable, then
a Monte Carlo GOF test is not necessary because the computation of the p-value is with re-
spect to the probability density of t(·), and the distribution of the p-value is exactly standard
uniform for a known θ , and approximately standard uniform for an unknown θ under some
conditions (Bayarri and Berger 2000). When, however, the probability density of t(·) is
analytically unavailable, a Monte Carlo GOF test is an alternative to the classical methods
to estimate the p-value to assess the fit.

2.2 A TRADITIONAL MONTE CARLO GOODNESS-OF-FIT TEST

As a basis for assessing (1), we first briefly describe the test from Diggle (2003, sec. 6),
who proposed a test statistic, u, and the pseudostatistics, ui , using the summary characteristic
G-function, which will be described after introducing the estimated p-value in (5):

u =
∫ ∞

0
{Ĝ(h) −G(h)}2dh; ui =

∫ ∞

0
{Ĝi(h) −Gi(h)}2dh, i = 1, . . . , n, (2)

where Ĝ(h) is the empirical G-function of the observed SPP, X, Ĝi(h) is the empirical
G-function of the simulated SPP, Xi , i = 1, . . . , n, under (1) with θ = θ̂ for some θ̂ not
necessarily from the data, and n is the number of Monte Carlo simulations. Also,

G(h) = 1
n

n∑

i=1

Ĝi(h); Gi(h) = 1
n

⎧
⎨

⎩Ĝ(h) +
n∑

l=1,l̸=i

Ĝl(h)

⎫
⎬

⎭, i = 1, . . . , n. (3)
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dist(Ĝ2B, G2B)

compute u2B =

X2B
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Figure 2. The test statistic, u, and its estimated p-value, p̂, in (5) are computed using the Monte Carlo simulations
represented in the “Plug-in” part. dist(s, t) =

∫ ∞
0 {s(h) −t(h)}2dh is the squared L2-norm of the difference

between the functions s and t. The PGOF test rejects H0 if p̂ ≤ α, where α is the nominal level. The AGOF test
would reject H0 if p̂ ≤ α̂∗, where α̂∗ is the estimated adjusted level, which is computed in the “Adjusted” step.
The Monte Carlo simulation is applied to each Xi , i = 1, . . . , n, to obtain the estimated p-values p̂1, p̂2, . . . , p̂n,
to solve for α̂∗ in (11).

For a graphical depiction of the Monte Carlo GOF test under the plug-in fashion, see the
“Plug-in” part in Figure 2. The p-value for the Monte Carlo GOF test in (1) is

p = 1 −Pr(Uθ̂ < u), (4)

where Uθ̂ is the random variable taking ui , i = 1, . . . , n, as realizations. Practically, this
p-value can be estimated from

p̂ = 1 −1 +
∑n

i=1 I (ui < u)
n + 1

, (5)
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502 N. A. DAO AND M. G. GENTON

where I (·) is the indicator function. The PGOF test would reject H0 if p̂ ≤ α. Let P̂ denote
the random variable corresponding to p̂. Its distribution as noted in Section 1 is not standard
uniform, except for X underlying a CSR.

Analogously, u, ui , i = 1, . . . , n, and p̂ can also be computed using the other summary
characteristic, the F-function, the second-order characteristic, K-, or the inhomogeneous
K-function, for instance. The terminology of the summary characteristic and that of the
second-order characteristic function are adopted from Illian et al. (2008). The G-function,
also known as the nearest neighbor distance distribution function, is the distribution
function of the distance from an arbitrary event in X to the nearest other event in X,
and the F-function, otherwise known as the empty space function, is the distribution
function of the distance from an arbitrary point in the chosen window, W, to the
nearest event in X. Both are estimated empirically using Ĝ(h) =

∑N
i=1 I (hi ≤ h)/N and

F̂ (h) =
∑m

i=1 I (h∗
i ≤ h)/m, where h > 0, N ≡ N (X) is the number of events in X,

hi denotes the distance from the ith event in X to the nearest other event in X, and h∗
i is

the distance from the ith point of a sample of m selected points in W to the nearest of N
events in X. The theoretical K-function of a stationary spatial point process is defined as
K(h) = λ−1E (the number of extra events within distance h of a randomly chosen event),
where h ≥ 0 and λ is the intensity of the process (Bartlett 1964; Ripley 1977). Ripley’s
estimator of the K-function is, for instance, in Cressie (1993, p. 640). The inhomogeneous
K-function as the K-function for nonstationary processes is introduced by Baddeley,
Møller, and Waagepetersen (2000).

The envelope test is a graphical view of the Monte Carlo GOF test. Using the G-
function, for instance, it declares a model as a good fit if the upper envelope U (h) and
the lower envelope L(h) envelop the Ĝ-function of the observed SPP X, where U (h) =
maxi=1,...,n Ĝi(h), L(h) = mini=1,...,n Ĝi(h), with typically n = 100.

To overcome the weaknesses with respect to the conservativeness and the power loss of
PGOF tests, we propose a test that adjusts for the bias of its empirical level through nested
Monte Carlo simulations to reach the nominal level correctly.

2.3 THE MONTE CARLO-ADJUSTED GOODNESS-OF-FIT TEST

The motivation for our proposed test arises as follows. To make the PGOF test correctly
sized, that is, its empirical level, α̂, reaches the nominal level, α, our goal is to find α̂∗ such
that

Pr{P̂ < α̂∗} = α, (6)

where α̂∗ is an estimate of α∗, which is referred to as the adjusted level. Usually α∗ is
unknown, and α∗ = α only in case of CSR. The decision rule of rejecting H0 if p̂ ≤ α̂∗ yields
a correctly sized test because Pr{Reject (1) at level α̂∗| (1) is true} = α by (6).

Our proposed Monte Carlo-adjusted GOF (AGOF) test consists of three steps. The first
step is to determine p̂. For that u, u1, . . . , un are computed, based, for instance, on the
G-function, as given in (2) with

G(h) = 1
n −1

n∑

j=2

Ĝj (h); Gi(h) = 1
n −1

n∑

j=1,j ̸=i

Ĝj (h), i = 1, . . . , n. (7)
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Figure 3. Empirical level curves resulting from the traditional Monte Carlo GOF tests in Section 2.2, represented
by the dashed lines going through circles labeled as “Diggle,” and their modified version through (7), represented
by the solid lines going through squares labeled as “Modif,” are shown; the dotted line is the reference 45◦ line.
The tests use n = 50 based on M = 3000 generated patterns of Thomas and Strauss processes.

The above G(h) and Gi(h), i = 1, . . . , n, deliberately do not include Ĝ(h) like in (3).
Thus, the Gi(h)’s are not contaminated with the observed information through Ĝ(h) but are
computed purely based on patterns generated under H0. Also, we choose the above G(h) =∑n

j=2 Ĝj (h)/(n −1) as opposed to
∑n

j=1 Ĝi(h)/n because the Gi(h)’s are normalized
with the constant (n −1). Simulations using Strauss and Thomas processes with n = 50 in
Figure 3 demonstrate that, except for one case, the empirical levels resulting from the
modification in (7) are higher than those resulting from the traditional GOF test as proposed
in (3). Only for the case of the Thomas process using the GOF-G test, the empirical levels
resulting from (7) are not higher than that from (3). Overall, this modification makes the
traditional GOF test become slightly more sensitive, which can be advantageous for small
n. Eventually, the advantage of this modification will diminish as n increases, in particular
for n ≥ 100.

The second step is to find α̂∗. To achieve that, we have to reconstruct the distribution of
P̂ via pseudorandom sampling using a Monte Carlo technique. We claim that the following
procedure can provide the pseudovalues, p̂1, . . . , p̂n for P̂ . They are estimates of the
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504 N. A. DAO AND M. G. GENTON

unknown plug-in p-values, p1, . . . , pn, of the following hypotheses

Hi,0 : Xi ∼fθ , (8)

with Xi , i = 1, . . . , n, as the underlying spatial point processes corresponding to the simu-
lated Xi , i = 1, . . . , n, under (1). In Figure 2, the AGOF test is illustrated as the extension of
the PGOF test: we apply the PGOF test to each Xi , that is, we simulate Xi,j , j = 2, . . . , n,
under (8) with θ = θ̃i , where θ̃i is the parameter estimate obtained from Xi , which is also
Xi,1 in our notation. To compute p̂1, . . . , p̂n, we define

ui,j =
∫ ∞

0
{Ĝi,j (h) −Gi,j (h)}2dh, i, j = 1, . . . , n,

where

Gi,1(h) = 1
n −2

n∑

j=3

Ĝi,j (h); Gi,j (h) = 1
n −2

n∑

l=2,l̸=j

Ĝi,l(h), j = 2, . . . , n.

Then, the plug-in p-value,

pi = 1 −Pr(Uθ̃i
< ui,1), (9)

for (8) with Uθ̃i
as the random variable corresponding to ui,2, . . . , ui,n can be estimated by

p̂i = 1 −
1 +

∑n
j=2 I (ui,j ≤ ui,1)

n
. (10)

We claim that the distribution of P̂ is herewith reconstructed via the pseudovalues,
p̂1, . . . , p̂n. Now, we find α̂∗ such that

n∑

i=1

I {p̂i < α̂∗} = αn. (11)

Via the quantile function, α̂∗ can be obtained from the α-quantile of p̂1, . . . , p̂n. The third,
and also the last, step is making the conclusion about the fit, that is, reject H0 if p̂ ≤ α̂∗.
The validity of the AGOF test follows with the proof and pseudocode given in the online
supplementary material.

Proposition 1. Let P̂ denote the random variable corresponding to the estimated plug-in
p-value, p̂, resulting from (5), and let α̂∗ be that found in (11). Then, we have (6). In particu-
lar when the null model is true, the probability of rejecting the null model to the significance
level of α̂∗ is α, that is, Pr {P̂ < α̂∗} = Pr {Reject H0 at level α̂∗| H0 is true} = α.

Remark 1. The “traditional” Monte Carlo GOF test means that the Monte Carlo GOF
test is applied to: (i) data consisting of at least two datasets; or (ii) data consisting of a single
dataset with the parameter estimate depending only “loosely” on the estimation procedure.
The PGOF test is the Monte Carlo GOF test with a plug-in, that is, when the test is applied
to the data consisting of a single dataset, and the parameter estimate can depend on the
estimation procedure. The AGOF test is the Monte Carlo-adjusted GOF test, which is an
extension of the PGOF test.
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A MONTE CARLO-ADJUSTED GOODNESS-OF-FIT TEST 505

3. SIMULATION STUDIES

From a process of interest, we generate M = 3000 patterns to compute the size of a
PGOF or AGOF test. As in Section 2, n gives the number of Monte Carlo simulations within
a single Monte Carlo GOF test. M, however, sets the number of replications of the Monte
Carlo GOF tests. We use various processes to represent four main types of patterns, which
are random (independent), inhibitory (regular), clustered (aggregated), and inhomogeneous.
To compare fairly our simulation results with those in Guan (2008), Illian et al. (2008),
and Diggle (2003), we generate processes with patterns having a comparable number of
events as described below. However, other simulations confirm that the performance of
the PGOF and AGOF tests are not sensitive to the choice of specific parameter values.
Computational work is done using the spatstat package (Baddeley and Turner 2005)
in R (R Development Core Team 2012).

3.1 GENERATING PATTERNS

In our simulation studies, the observation window of all point patterns is the unit square.
In the first three types of patterns, the average number of events of each pattern is 100. First,
for the random pattern, we choose the CSR process with intensity λ = 100. Second, for the
inhibitory pattern, we choose a Strauss process with (β, γ , R) = (200, 0.25, 0.05), where
β is the chemical activity parameter, γ is the interaction parameter, and R is the interaction
radius, and the probability density function f (X) = νβnγ s , with ν as the normalizing
constant and s as the number of distinct unordered pairs of events closer than R units apart
(Møller and Waagepetersen 2003). Third, for the clustered pattern, we consider a Thomas
process as representative of this group. Here, a CSR with intensity κ is generated to obtain
the so-called “parent” points. Each parent point is replaced by a random cluster of “children”
points that are Poisson distributed with intensity µ. The positions of the children points
are distributed about the parent location according to a bivariate Gaussian distribution with
covariance σ 2I2, where I2 is the 2 × 2 identity matrix (Møller and Waagepetersen 2003).
Here the likelihood is intractable, but the theoretical K-function is available, K(h) =
πh2 + κ−1[1 −exp{−h2/(4σ 2)}]. For our purposes, we chose a Thomas process with
(κ, σ, µ) = (20, 0.05, 5). Finally, for the inhomogeneous Poisson processes, we adopt the
models in the simulation studies in Guan (2008). That is, we consider the following intensity
functions:

λ(x) = exp(β0 + β1x), (12)

λ(x) = exp{β0 + β1 sin(2πx)}, (13)

where β0 is the normalizing constant and β1 specifies the inhomogeneity in the data.
For each intensity function, we consider the cases β1 = −1 and β1 = −2. The bigger
the absolute value of β1, the more inhomogeneous the pattern. Here, β0 is manipulated to
obtain µ = 100 and µ = 400 number of events for each combination of β1 and the intensity
functions. We refer to the process with the intensity function (12) as linear and (13) as sine
models.
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506 N. A. DAO AND M. G. GENTON

3.2 PARAMETER ESTIMATION AND PERFORMANCE OF GOF TESTS

We use various methods to obtain the estimates. For the CSR, the number of events is the
estimate of the intensity parameter. For the Strauss process, we use the maximum profile
pseudolikelihood (MPPL) estimator (Baddeley and Turner 2000) to obtain the estimate of
R via profilepl and the maximum pseudolikelihood (MPL) estimators (Besag 1978;
Berman and Turner 1992; Baddeley and Turner 2000) to obtain the estimates of β and
γ via ppm. For the Thomas process, we use a minimum contrast method using the K-
function (MCM-K) (Diggle 2003, sec. 6) via thomas.estK. For the inhomogeneous
Poisson processes, we obtain the maximum likelihood estimate for β0 and β1 via ppm.

In the following, GOF-G, -F, -K, or -K in tests denote GOF tests using a G-, F-, K-,
or K in-function to compute the test statistics. If the K-function is used in the estimation
procedure, Diggle (2003, sec. 6.2) recommended not using it again in computation of the
statistic and the pseudostatistics in (2) and (7). Hence, we have just GOF-G and -F tests
for the Thomas process, and also have the GOF-K test for the Strauss and CSR processes.
Additionally, for the inhomogeneous Poisson processes, we also employ the GOF-K in test,
where the K in-function denotes the inhomogeneous K-function, which does not assume
stationarity as the G-, F-, and K-functions do. With respect to the significance level, we
choose the common nominal levels α = 0.05, and α = 0.10, due to Guan (2008). A GOF test
is correctly sized if its empirical level, α̂, reaches the nominal level, α, correctly according
to the usual definition, that is, the interval (α̂ −2se, α̂ + 2se), where se =

√
α̂(1 −α̂)/M ,

contains α.
Table 1 presents two facts. First, the PGOF test is correctly sized only for the CSR.

In contrast, our proposed AGOF test is correctly sized for all processes, except for the

Table 1. For nominal level α, α̂PGOF and α̂AGOF are empirical levels from the PGOF and AGOF tests using
n = 100, M = 3000 replicates. α∗ =

∑M
k=1 α̂∗

k /M . Notations -G, -F, and -K label computations of the GOF test
statistics using the G-, F-, K-functions, respectively. The CSR, Strauss, and Thomas processes are defined in
Section 3.1. Estimated standard errors multiplied by 100 are in parentheses

α = 0.05 α = 0.10

Model No. of events Pattern α̂PGOF α∗ α̂AGOF α̂PGOF α∗ α̂AGOF

CSR-G 100 Random 0.053 0.049 0.054 0.096 0.106 0.105
(0.410) (0.414) (0.538) (0.560)

CSR-F Random 0.049 0.049 0.048 0.095 0.107 0.099
(0.396) (0.389) (0.536) (0.545 )

CSR-K Random 0.051 0.048 0.050 0.093 0.099 0.091
(0.401) (0.398) (0.529) (0.524 )

Strauss-G 100 Inhibitory 0.026 0.141 0.068 0.044 0.233 0.125
(0.292) (0.459) (0.374) (0.603)

Strauss-F Inhibitory 0.020 0.106 0.047 0.043 0.184 0.090
(0.226) (0.385) (0.371) (0.522)

Strauss-K Inhibitory 0.040 0.062 0.053 0.078 0.124 0.100
(0.356) (0.410) (0.488) (0.548)

Thomas-G 100 Clustered 0.008 0.153 0.050 0.027 0.241 0.107
(0.153) (0.374) (0.277) (0.517)

Thomas-F Clustered 0.037 0.073 0.055 0.074 0.140 0.100
(0.322) (0.388) (0.446) (0.512 )
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A MONTE CARLO-ADJUSTED GOODNESS-OF-FIT TEST 507

AGOF-G test applied in the Strauss case. Second, the estimated adjusted level, α̂∗, can
serve as an indication for some patterns, as opposed to randomness, in the data. The AGOF
test would provide α̂∗ strongly deviating from α if the SPP comes from a process that is
very different from CSR.

For CSR, as explained in Section 1, the AGOF test is not needed. Here, the PGOF
test coincides with the traditional Monte Carlo GOF test; thus, α∗ = α. Nevertheless, the
simulations in Table 1 validate the correctness of our method as α̂AGOF conforms with
α̂PGOF, α∗ =

∑M
k=1 α̂k/M , and α. For the Strauss process, the MPPL R̂ of the irregular

parameter, R, is a poor estimator, which strongly affects the estimation of the other two
regular parameters, β and γ , which can be obtained via MPL or approximate maximum
likelihood (AML) estimation (Huang and Ogata 1999). Due to the high computational
complexity of the latter method, we use the MPL estimators of β and γ . Simulations show
that γ̂ tends to be greater than the true γ = 0.25. In fact, the median of γ̂ is 0.277 and
the mean is 0.289. The difficulty in parameter estimation carries on in the estimation of
α∗. However, increasing n from 100 to 150 makes the conclusion of the AGOF test more
accurate. We also conjecture that using the AML instead of the MPL estimators of β and
γ would lead to a correctly sized AGOF-G test for the Strauss process.

Table 2 shows that the PGOF-G tests are correctly sized in two cases of the model
(12) when β1 = −1 with µ = 100 and µ = 400. This seems to contradict our observation
made in Section 1 and the finding in the previous paragraph that the PGOF test is correctly
sized only for CSR. Our other simulations show that if the pattern and its H0 are not too
inhomogeneous as in the case of (12) with β1 = −1, the PGOF test can, but does not
have to, be correctly sized as the G-function of a CSR and of those models can be similar.
However, the PGOF-F and -K in tests remain incorrectly sized. Table 2 shows that the
PGOF tests are overall incorrectly sized and their empirical levels deviate away from the
nominal levels in two situations: (i) when the inhomogeneity factor, |β1|, increases and
(ii) when the intensity function changes from linear, (12), to nonlinear, (13). In contrast, the
AGOF tests are correctly sized throughout. Overall, the AGOF tests clearly outperform the
PGOF tests and do not underperform the test by Guan (2008). Here, we did not implement
the test of Guan (2008), which was described in Section 1. The empirical levels, α̂Guan, are
extracted from t = 0.2 in Guan (2008, Tables 1 and 2).

3.3 EFFECTIVE SIMULATION SIZE AND COMPUTATIONAL TIME

Marriott (1979) proposed to consider m/n = α, where m is chosen in a way that if u is
among the m largest values of u1, . . . , un, H0 is rejected. Besag and Diggle (1977) suggested
that m = 5 might be a suitable value for the traditional Monte Carlo tests for spatial patterns.
Consequently, n = 100 should be used for α = 0.05 and n = 500 for α = 0.01. Hence, the
smaller the α, the bigger the n. Our simulation studies shown in Tables 1 and 2 are run using
n = 100 to compare fairly the performance of the PGOF and AGOF tests at the nominal level
α = 0.05. However, Table 3 shows that except for AGOF-G and -F tests for the Strauss
process, the AGOF tests need only n = 20 to be correctly sized at the α = 0.05 level,
and n = 100 to be correctly sized at the α = 0.01 level. That is, the effective simulation
size is reduced by a factor of 5 in the setting of the AGOF test, except for the AGOF-
G and -F tests for processes having parameters being estimated by the MPPL method,
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508 N. A. DAO AND M. G. GENTON

Table 2. For nominal level α, α̂PGOF and α̂AGOF are empirical levels from the PGOF and AGOF tests using
n = 100, M = 3000 replicates. α∗ =

∑M
k=1 α̂∗

k /M . Linear and sine models and β0 and β1 are defined in (12)
and (13) in Section 3.1. Notations -G, -F, and -K in label computations of the GOF test statistics using the G-,
F-functions, and the inhomogeneous K-function, respectively. From Guan (2008, Tables 1 and 2), t = 0.2, α̂Guan is
extracted. Estimated standard errors multiplied by 100 are in parentheses

α = 0.05 α = 0.10

Model No. of events β0 −β1 α̂PGOF α∗ α̂AGOF α̂PGOF α∗ α̂AGOF α̂Guan

Linear-G 100 5.06 1 0.048 0.054 0.052 0.095 0.107 0.104 0.096
(0.390) (0.404) (0.535) (0.557)

Linear-F 100 5.06 1 0.032 0.077 0.055 0.072 0.139 0.102 0.096
(0.323) (0.417) (0.473) (0.552)

Linear-K in 100 5.06 1 0.034 0.072 0.063 0.077 0.138 0.109 0.096
(0.331) (0.443) (0.486) (0.570)

Linear-G 100 5.45 2 0.039 0.062 0.052 0.075 0.124 0.099 0.130
(0.353) (0.405) (0.480) (0.546)

Linear-F 100 5.45 2 0.015 0.128 0.051 0.035 0.213 0.101 0.130
(0.112) (0.345) (0.155) (0.469)

Linear-K in 100 5.45 2 0.035 0.069 0.046 0.074 0.132 0.105 0.130
(0.333) (0.385) (0.478) (0.560)

Linear-G 400 6.45 1 0.051 0.049 0.052 0.094 0.107 0.099 0.094
(0.349) (0.357) (0.478) (0.497)

Linear-F 400 6.45 1 0.033 0.087 0.052 0.059 0.161 0.102 0.094
(0.327) (0.408) (0.431) (0.552)

Linear-K in 400 6.45 1 0.043 0.063 0.053 0.083 0.128 0.107 0.094
(0.359) (0.409) (0.502) (0.565)

Linear-G 400 6.85 2 0.041 0.061 0.052 0.083 0.124 0.108 0.098
(0.365) (0.405) (0.503) (0.567)

Linear-F 400 6.85 2 0.012 0.146 0.052 0.027 0.238 0.101 0.098
(0.201) (0.405) (0.297) (0.550)

Linear-K in 400 6.85 2 0.025 0.086 0.049 0.053 0.160 0.093 0.098
(0.283) (0.395) (0.408) (0.531)

Sine-G 100 4.37 1 0.026 0.081 0.044 0.054 0.149 0.090 0.100
(0.288) (0.374) (0.412) (0.523)

Sine-F 100 4.37 1 0.004 0.176 0.045 0.012 0.272 0.100 0.100
(0.115) (0.378) (0.204) (0.548)

Sine-K in 100 4.37 1 0.023 0.076 0.044 0.056 0.145 0.096 0.100
(0.275) (0.373) (0.420) (0.537)

Sine-G 100 3.80 2 0.019 0.096 0.046 0.048 0.169 0.093 0.108
(0.253) (0.382) (0.393) (0.532)

Sine-F 100 3.80 2 0.004 0.195 0.053 0.011 0.293 0.108 0.108
(0.115) (0.409) (0.193) (0.567)

Sine-K in 100 3.80 2 0.048 0.048 0.048 0.093 0.109 0.091 0.108
(0.393) (0.393) (0.532) (0.527)

Sine-G 400 5.80 1 0.029 0.076 0.049 0.058 0.142 0.094 0.082
(0.329) (0.412) (0.447) (0.558)

Sine-F 400 5.80 1 0.007 0.178 0.046 0.015 0.278 0.097 0.082
(0.162) (0.400) (0.237) (0.566)

Sine-K in 400 5.80 1 0.037 0.075 0.054 0.064 0.143 0.100 0.082
(0.361) (0.432) (0.465) (0.573)

Sine-G 400 5.15 2 0.028 0.093 0.057 0.063 0.166 0.106 0.114
(0.325) (0.452) (0.476) (0.602)

Sine-F 400 5.15 2 0.004 0.189 0.056 0.014 0.288 0.104 0.114
(0.125) (0.428) (0.230) (0.596)

Sine-K in 400 5.15 2 0.042 0.064 0.052 0.072 0.128 0.101 0.114
(0.394) (0.435) (0.506) (0.589)
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A MONTE CARLO-ADJUSTED GOODNESS-OF-FIT TEST 509

Table 3. The empirical levels α̂AGOF result from AGOF tests using n = 20, 50, 100 to assess the effective
simulation size n to nominal levels α = 0.01, 0.05, 0.10. Sine, Strauss, and Thomas processes are defined in
Section 3.1

α = 0.01 α = 0.05 α = 0.10

Model 20 50 100 20 50 100 20 50 100

CSR-G 0.049 0.024 0.012 0.049 0.057 0.054 0.110 0.111 0.105
CSR-F 0.054 0.025 0.008 0.054 0.058 0.048 0.112 0.111 0.099
CSR-K 0.056 0.023 0.009 0.056 0.058 0.049 0.109 0.111 0.091
Sine-G 0.054 0.024 0.011 0.054 0.051 0.051 0.105 0.105 0.095
Sine-F 0.051 0.022 0.010 0.051 0.050 0.052 0.101 0.100 0.100
Sine-K 0.048 0.020 0.011 0.048 0.051 0.049 0.100 0.105 0.094
Strauss-G 0.076 0.026 0.015 0.076 0.065 0.068 0.101 0.123 0.125
Strauss-F 0.069 0.036 0.010 0.069 0.079 0.047 0.133 0.133 0.090
Strauss-K 0.051 0.017 0.010 0.051 0.051 0.053 0.109 0.101 0.100
Thomas-G 0.053 0.024 0.012 0.053 0.046 0.050 0.099 0.100 0.092
Thomas-F 0.053 0.023 0.011 0.053 0.057 0.049 0.106 0.110 0.100

including Strauss processes. For CSR, while Table 3 shows that the AGOF tests just need
n = 20, other simulations show that the PGOF tests need n ≥ 100 to be correctly sized at
α = 0.05.

Table 4 shows our investigation of the computational time of the PGOF and AGOF tests.
The computation was done on compute nodes that have 8 CPU cores, 32 GB of RAM, and
the CPU processors clocked at 2.4 GHz or faster. For each of the CSR, sine, Strauss, and
Thomas processes defined in Section 3.1, M = 3000 patterns are generated to provide the
average computational time given in seconds. The time is to obtain p̂ from a PGOF test,
p̂ and α̂∗ from an AGOF test using G-, F-, K- or K in-, and pc- or pcin-functions altogether.
The pc-function denotes the pair correlation function pc(h) = K ′(h)/(2πh) (Illian, Møller,
and Waagepetersen 2009). The pcin-function results analogously from the K in-function.

Correctly sizing the AGOF test does come with a cost as the computational time is
always longer than that of the PGOF test. While the Monte Carlo simulations are of the
size n for the PGOF test, they are of the size n2 for the AGOF test as illustrated in Figure 2,
which also shows that the AGOF test is an extension of the PGOF test.

Table 4. For each of CSR, sine, Strauss, and Thomas processes defined in Section 3.1, M = 3000 patterns are
generated to provide the average computational time given in seconds. The time in seconds is to obtain results
from a GOF test using G-, F-, K- or K in-, and pc- or pcin-functions altogether

n = 20 n = 50 n = 100

Model PGOF AGOF PGOF AGOF PGOF AGOF

CSR 2 42 7 227 9 835
Sine 7 87 19 541 36 1897
Strauss 269 5138 642 31,907 1288 121,671
Thomas 2 52 5 313 9 1076
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Figure 4. Power curves of AGOF-G, -F and PGOF-G, -F tests, using n = 100, are evaluated based on M =
3000 simulated patterns of the sine model in (13) when wrongly fitting a Thomas process. The power curves of
the AGOF tests are the solid curves going through nine squares, and of the PGOF tests are the dashed curves
going through nine circles. β denotes the Type II error rate at 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40.

3.4 STATISTICAL POWER

In the following, we show that the power of the AGOF test is at least as good as the
power of the PGOF test via a simulation study. We simulate M = 3000 patterns under the
sine model in (13), and fit wrongly a Thomas process (null model) to each of the patterns. In
our opinion, this example is realistic because patterns underlying both (13) and a Thomas
process contain clusters. In a real scenario, there might be a pattern underlying (13) that
is incorrectly categorized as a Thomas process. After fitting a Thomas process to these
datasets, we obtained 3000 p̂’s from the PGOF-G and -F tests. The Type II error rate, β,
was set at 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40. The power was the rejection
rate based on α for the PGOF tests and based on α̂∗ for the AGOF tests. In Figure 4, the
power curve of the AGOF test is the solid curve going through nine squares and the one
of the PGOF test is the dashed curve going through nine circles. The power curve of the
AGOF test is clearly higher than the one of the PGOF at all given β.

Remark 2. Our simulations show that there can be contradictory conclusions for the
GOF-G, - F, -K, and -K in tests based on one spatial pattern although fitting the correct
model. Indeed, each of the G-, F-, K-, and K in-functions measures completely different
things. Thus, disagreement among the AGOF tests can occur, but their performances can
still be correctly sized.

4. DATA APPLICATIONS

4.1 PHLEBOCARYA FILIFOLIA PLANTS

Figure 5 (left) displays, in a 22 m × 22 m window, positions of 207 Phlebocarya filifolia
plants that are typically located in scattered positions throughout Western Australia. Illian
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A MONTE CARLO-ADJUSTED GOODNESS-OF-FIT TEST 511

Figure 5. Left: positions of 207 Phlebocarya filifolia plants in a 22 m × 22 m window at Cooljarlo near Perth,
Australia. Right: positions of 294 displaced amacrine cells in the retina of a rabbit. Solid and open circles represent
on and off cells, respectively. The observation window for the data is (0, 1.62) × (0, 1).

et al. (2008, Example 4.19) used this dataset as an example of an homogeneous clustered
pattern by demonstrating the occurrence of aggregation via a large value of the Clark–
Evans index and a small value of the mean-direction index. Illian et al. (2008, Example
7.2) concluded that the Matérn cluster process provides an acceptable fit via the envelope
test with a plug-in as the envelopes using the G- and F-functions with n = 100 envelop
the empirical G- and F-functions, respectively. We would like to reevaluate the GOF of a
process with an homogeneous clustered pattern with our AGOF-G and -F tests.

As clustering is not immediately obvious, we first used the PGOF test to assess the fit
of CSR to detect whether actual modeling is necessary. The PGOF-G, -F, and -K tests
yielded estimated p-values of 0, 0.515, and 0.01, respectively, suggesting that the fit of CSR
is disputable. Figure 6 shows the empirical G-, F-, and K-function (dash-dotted curves);
other references are the functions of a CSR (solid curve) representing a random pattern, of
a Thomas process (dashed curve) representing a clustered pattern, and of a Strauss process
(dotted curve) representing an inhibitory pattern. These processes have approximately 200
events. While the left column of plots shows these functions on their complete domains, the
right column shows these functions on a much smaller domain to scrutinize their behavior
for distances shorter than 0.01. While the empirical F-function aligning with the one of
the CSR can suggest random behavior in agreement with the conclusion of the PGOF-F
test, the empirical G-function lying above the one of the CSR indicates clustering, except
for distances shorter than 0.0044. The empirical K-function significantly signals slight
clustering as it lies completely above the one of the CSR, except for distances shorter
than 0.0047. At this distance, the behavior of this dataset and that of the reference pro-
cesses seem to be similar because the biggest discrepancy is less than 10−4. While the G-
and F-functions are believed to be “short-sighted” as they describe the distances to nearest
neighbors of reference events or points and say little or nothing about the spatial dependence
of the events beyond the nearest neighbor (Illian et al. 2008, sec. 4.3.1), the K-function
can be an effective summary of spatial dependence over a wide range of scales (Cressie
1993, sec. 8.4.3). Thus, we ascribe clustering to this dataset due to the plots of the K-
function. We consider a Matérn cluster process (Illian et al. 2008) and a Thomas process as
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Figure 6. Study of the summary characteristics based on the G- and F-functions and second-order characteristic
based on the K-function of the Phlebocarya filifolia plants. Left column: complete domain; right column: smaller
domain. The empirical K-function in dashed curve indicates slight clustering.

reasonable models because they are representatives of processes with homogeneous clus-
tered patterns.

Assuming that the pattern comes from a Matérn cluster process (Møller and
Waagepetersen 2003), an homogeneous Poisson point process with intensity κ is generated
to obtain the “parent” points. Each parent point is replaced by a random cluster of
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A MONTE CARLO-ADJUSTED GOODNESS-OF-FIT TEST 513

“children” points that are Poisson distributed with intensity µ. The positions of the children
points are placed independently and uniformly inside a disk of radius R centered at the
parent point. Neither likelihood nor pseudolikelihood is available, but the K-function
is K(h) = πh2 + s(h){h/(2R)}/κ , where s(h) = 2 + (1/π ){(8h2 −4) arccos(h) −
2 arcsin(h) + 4h

√
(1 −h2)3 −6h

√
1 −h2} for h ≤ 1, and s(h) = 1 for h > 1. The MCM-

K provides the estimate (κ̂, R̂, µ̂) = (132.996/{22 m × 22 m}, 3.482 m, 1.556). The
AGOF-G and -F tests give the p̂’s of 0.054, 0.634 and α̂∗’s of 0.123, 0.449, respectively.
The AGOF-G test does not support the fit as p̂ < α̂∗ (0.023 < 0.123). However, the AGOF-
F test supports the good fit of the Matérn cluster model because p̂ > α̂∗ (0.634 > 0.449).

Now, suppose the pattern comes from a Thomas process, where the MCM-K provides
the estimate (κ̂, σ̂ , µ̂) = (111.455/{22 m × 22 m}, 2.099 m, 1.857). The AGOF-G and -F
tests give p̂’s of 0.044, 0.761 and α̂∗’s of 0.115, 0.620, respectively. The AGOF-G test does
not support the fit as p̂ < α̂∗ (0.044 < 0.115). However, the AGOF-F supports the fit of
the Thomas process because p̂ > α̂∗ (0.761 > 0.620).

We think that the AGOF-G tests reject the fits of the Matérn cluster and the Thomas
processes because the G-function in Figure 6 indicates, on the most part, clustering, but
it suggests inhibition on distances, h, less than 0.0044. Thus, we suspect that a fit of any
clustered or inhibitory model would unlikely gain support by the AGOF-G test. Overall,
we would support either the fit of the Matérn cluster or the Thomas process because
the AGOF-F test in each case supports the fit and the plot of the empirical K-function
significantly indicates slight clustering. This finding is in agreement with the conclusion
made by Illian et al. (2008, Example 7.2). One might understand the propagation mechanism
of Phlebocarya filifolia plants better: there is indeed clustering, although just slightly. One
might also prefer a Thomas to a Matérn cluster process as the Thomas process models more
“children” points at closer distances to parent points; this characteristic might be more
natural for forest data.

4.2 AMACRINE CELLS

The data displayed in Figure 5 (right) show the bivariate pattern of amacrine cells within
the retina of a rabbit. Interest lies in distinguishing between two developmental hypotheses
in studying the retinas of rabbits. The observation window for the data is the rectangle
(0, 1.62) × (0, 1) according to Diggle (2003). The two types of cells are responses to a light
being switched on and off . The separate layer hypothesis is that the on and off cells are
initially formed in two separate layers that later fuse to form a mature retina. The single
layer hypothesis is that the two types of cells are initially undifferentiated in a single layer
and acquire their separate functions at a later stage. Via a Monte Carlo test of independence,
Diggle (2003) failed to reject the on and off cells being independent processes, supporting
the separate layer hypothesis (Diggle 2003, sec. 4.7). To answer whether they would fuse
to form a mature retina, one might consider fitting a statistical model to one and run a GOF
test on the other dataset.

Diggle (2003, sec. 4.7) showed that these processes have very similar second-order prop-
erties including inhibitory behaviors at small distances. Subsequently, a model is fitted to
the on cells only and the off cells are reserved for a GOF assessment. A pairwise interaction
point process, that is, a Markov point process, was chosen due to the inhibitory behavior
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514 N. A. DAO AND M. G. GENTON

at small distances, together with the absence of any obvious longer-range heterogeneity or
other form of aggregation. Ripley (1977) formalized the class of pairwise interaction pro-
cesses, f (X) = νβn

∏
i

∏
j ̸=i d{∥xi −xj∥}, where ν is the normalizing constant, β reflects

the intensity of the process, d(h) is nonnegative for all h > 0, and the product is over all
pairs of distinct points in the SPP, X. The parametric model with the interaction function
for amacrine cells is taken from Diggle and Gratton (1984):

d(h) =

⎧
⎪⎪⎨

⎪⎪⎩

0, h < δ,

{(h −δ)/(ρ −δ)}κ , δ ≤ h ≤ ρ,

1, h > ρ .

The distance from δ to ρ can be interpreted as an interaction distance. The parameters δ, ρ,
and κ are nonnegative, and δ < ρ. The strength of inhibition increases with κ . For κ = 0,
the model is a hard-core process with radius δ, whereas for κ = ∞ it has radius ρ.

Diggle (2003, sec. 7.2) obtained (δ̂, ρ̂, κ̂) = (0.020, 0.12, 4.90) from the on cells via
the MPL estimation. Then, to assess the GOF to the off cells, a traditional GOF-G test
and a traditional GOF-F test were employed. The p-values were reported to be 0.01 and
0.37, respectively. Since these two tests give opposite conclusions with respect to any com-
monly used nominal level, Diggle (2003) was then motivated to obtain different estimates
(δ̂, ρ̂, κ̂) = (0.016, 0.12, 1.96) via AML estimation. Diggle (2003, fig. 7.7) showed that
there is agreement between the F-function of the off cells and its corresponding envelopes.
However, the GOF-G test still shows a poor fit of the pairwise interaction point process to the
off cells. Diggle (2003) did not give a clear evaluation of the GOF for the amacrine cells data.

We fit the pairwise interaction process to the off cells dataset (training set) and obtained
estimates of δ, ρ via the MPPL, and of κ via the AML or the MPL estimation. Then we
ran AGOF-G, -F, and -K tests. If they concluded a good fit, these parameter estimates were
used for the PGOF-G, -F, -K tests applied to the on cells data (validation set).

Via MPPL and AML estimation, we obtained the estimates (0.015, 0.11, 3.435) from
the off cells dataset, and (0.026, 0.28, 1.083) from the on cells dataset for (δ, ρ, κ). Due
to a very high computational intensity, we used n = 50 for the AGOF-G, -F, and -K tests,
which provided p-values of 0.868, 0.647, 0.092 and α̂∗ = 0.022, 0, 0.091, respectively. All
AGOF tests indicated a good fit of the pairwise interaction process to the off cells dataset
because all p̂’s are greater than the corresponding α̂∗’s. Then we used the estimate of the
off cells dataset as the parameter for the pairwise interaction process to fit to the on cells
dataset. The PGOF-G, -F, and -K tests provided p-values of 0.200, 0.519, and 0.340, which
indicated a good fit because the p̂’s were greater than α = 0.05. The AGOF tests drew
the same conclusions as the PGOF tests as the p̂’s were greater than the corresponding
α̂∗ = 0.032, 0.061, 0.191.

Via MPPL and MPL estimation, we obtained the estimates (0.015, 0.11, 2.44) from
the off cells dataset, and (0.026, 0.28, 1.062) from the on cells dataset for (δ, ρ, κ). The
AGOF-G, -F, and -K tests provided p̂’s of 0.203, 0.011, 0.478 and α̂∗ = 0.015, 0.052,
0.052, respectively. Only the AGOF-G and AGOF-K tests indicated a good fit of the
pairwise interaction process to the off cells dataset because only their p̂’s were greater than
the corresponding α̂∗’s. We could have stopped here, but for curiosity we proceeded to run
PGOF tests using the estimate of the off cells dataset as the parameter for the pairwise
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A MONTE CARLO-ADJUSTED GOODNESS-OF-FIT TEST 515

interaction process to fit to the on cells dataset. The PGOF-G, -F, and -K tests provided
p-values of 0.685, 0.092, and 0.606, which indicated a good fit because the p̂’s were greater
than α = 0.05. The AGOF tests drew the same conclusions as the PGOF tests as the p̂’s
were greater than the corresponding α̂∗ = 0.050, 0.050, 0.174.

The conclusions of the AGOF-F tests for the fit of the off cells dataset differed, but the
conclusions of the PGOF and AGOF tests for the fit of the on cells dataset agreed. Since
the AML estimators had better statistical properties (Huang and Ogata 1999), we relied on
the finding using AML estimates and concluded that the separate layer hypothesis holds
(Diggle 2003, sec. 4.7), that is, these two independent processes later fuse to form a mature
retina.

5. DISCUSSION

This article discussed a method using nested Monte Carlo simulations to obtain the
estimated adjusted level, α̂∗, corresponding to a prespecified nominal level, α. We rejected
the null model if p̂ ≤ α̂∗, where p̂ is the estimated p-value. The nested Monte Carlo method
was, however, computationally intensive, and we now discuss two techniques to improve
the computational complexity, the first of which also estimates α∗ more efficiently.

The first technique uses the idea of interpolation. Due to the computational inten-
sity, we reduce the number of replications of Monte Carlo simulations, n, and com-
pensate that by estimating the new ui and ui,j with interpolation techniques, such as
kernel density estimation. From the Monte Carlo simulations in Section 2, we obtain
two sets, S = {u1, . . . , un} and S∗ = {ui,j , i, j = 1, . . . , n}. Via kernel density estima-
tion, we estimate the new ui’s augmenting S to Saug = {u1, u2, . . . , un, û1, û2, . . . , ûτ } to
obtain a better p̂. Analogously, we estimate uij ’s augmenting S∗ to S∗

aug = {u1,2, . . . ,

u1,n, û1,1, . . . , û1,τ ; u2,2, . . . , u2,n, û2,1, . . . , û2,τ ; . . . ; un,2, . . . , un,n, ûn,1, . . . , ûn,τ } to ob-
tain better p̂1, . . . , p̂n, which leads to estimating a better α̂∗. The reason is that α̂∗ is the
α-quantile of p̂1, . . . , p̂n as formalized in (11). Here, the quantities ûi’s and ûi,j ’s denote
the new estimated pseudostatistics, and τ−1 specifies the interpolation factor. Using Taylor
expansions, we can show that the new p̂ is similar to the one in Section 2 minus a term
of order, O(τ−1). Since τ−1 can be chosen arbitrarily small, this term is negligible and the
new p̂ possesses the same properties as discussed in Section 2. The simulation studies use
CSR, sine, Strauss, and Thomas processes defined in Section 3.1 and n = 20 and τ = 100.
Table 5 demonstrates that interpolation techniques can make the AGOF tests more accu-
rate as the mean squared errors are smaller in 15 out of 22 studied cases. The strength of
interpolation might be increased or optimized by a different choice of τ .

The second technique considers the characteristics of sequential Monte Carlo p-values.
Besag and Clifford (1991) introduced several ways of calculating exact Monte Carlo p-
values by sequential sampling. Instead of fixing the sample size, n, sampling is continued
until a prespecified number, H, of values larger than the value u of the test statistic, U, has
been observed. Let l be the value of the random sample size, L, at termination. Besag and
Clifford (1991) showed that a p-value equal to H/lhas properties similar to those obtained
by sampling with a fixed sample size, n. With this method, Monte Carlo simulations may
become less computationally intensive as they can terminate much earlier.
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516 N. A. DAO AND M. G. GENTON

Table 5. To nominal level α, the empirical level α̂ = α̂AGOF using τ = 100, n = 20, and M = 5000 is shown.
α∗ =

∑M
k=1 α̂∗

k /M . MSE is the mean squared error. The “Standard” columns display empirical levels from
the AGOF tests from Section 2.3. The “Interpolation” columns display empirical levels from the AGOF tests
incorporating interpolation as described in Section 5. Notations -G, -F, and -K label computations of the GOF
test statistics using the G-, F-, K-functions, respectively. The CSR, sine, Strauss, Thomas processes are defined
in Section 3.1

α = 0.05 α = 0.10

Standard Interpolation Standard Interpolation

α∗ α̂ MSE α∗ α̂ MSE α∗ α̂ MSE α∗ α̂ MSE

CSR-G 0.029 0.051 0.103 0.025 0.046 0.254 0.077 0.110 1.117 0.72 0.098 0.210
CSR-F 0.027 0.055 0.334 0.023 0.046 0.233 0.072 0.115 2.576 0.069 0.103 0.263
CSR-K 0.028 0.057 0.656 0.023 0.049 0.100 0.074 0.115 2.394 0.069 0.099 0.183
Sine-G 0.058 0.064 2.024 0.052 0.052 0.279 0.119 0.116 2.765 0.121 0.103 0.287
Sine-F 0.109 0.049 0.103 0.116 0.044 0.444 0.192 0.102 0.223 0.224 0.095 0.463
Sine-K 0.031 0.056 0.419 0.027 0.048 0.124 0.079 0.119 3.974 0.078 0.103 0.287
Strauss-G 0.088 0.076 7.005 0.086 0.066 2.683 0.169 0.134 12.066 0.182 0.122 5.323
Strauss-F 0.062 0.062 1.605 0.060 0.054 0.246 0.127 0.112 1.591 0.136 0.099 0.197
Strauss-K 0.036 0.053 0.217 0.031 0.043 0.519 0.088 0.107 0.626 0.086 0.092 0.839
Thomas-G 0.096 0.045 0.317 0.100 0.044 0.493 0.172 0.091 1.048 0.196 0.092 0.745
Thomas-F 0.046 0.051 0.107 0.044 0.043 0.545 0.106 0.105 0.399 0.115 0.094 0.485

SUPPLEMENTARY MATERIALS

Supplements: R-code for goodness-of-fit (GOF) tests described in the article (GOF.R).
Phlebocarya filifolia plants data: Positions of 207 plants described in the article (Phlebo-

carya.txt).
Amacrine cells: Positions of 294 on/off cells in the retina of a rabbit (amacrineson.txt and

amacrinesoff.txt).
Proof of Proposition 1 and pseudocode of the Monte Carlo-adjusted GOF test.
All files can be found in a single zip file (AGOF.zip).
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