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Abstract We propose notions of simplicial band depth for multivariate functional
data that extend the univariate functional band depth. The proposed simplicial band
depths provide simple and natural criteria to measure the centrality of a trajectory
within a sample of curves. Based on these depths, a sample of multivariate curves can
be ordered from the center outward and order statistics can be defined. Properties of the
proposed depths, such as invariance and consistency, can be established. A simulation
study shows the robustness of this new definition of depth and the advantages of
using a multivariate depth versus the marginal depths for detecting outliers. Real data
examples from growth curves and signature data are used to illustrate the performance
and usefulness of the proposed depths.
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322 S. López-Pintado et al.

1 Introduction

The complexity and abundance of data in emerging research fields require the improve-
ment of statistical methodologies for analyzing complex data. In functional data analy-
sis, each observation is a function, xi (t), i = 1, . . . , n, t ∈ I, where I is an interval
in R. There are several motivations for studying functional data (see, e.g., Ramsay
and Silverman 2005; Ferraty and Vieu 2006). In many research areas (e.g., medicine,
biology, economics, or engineering), the data-generating process is naturally a sto-
chastic function. Although the generating process can be a continuous function, the
data are observed discretely in practice. Considering the data as functions most accu-
rately represents the true structure of the data. In addition, if the grid on which curves
are observed differs across subjects, a multivariate approach that implicitly assumes a
common grid would not be valid, and it is therefore necessary to smooth the data and
treat them as continuous functions defined on a common interval. Since the dimension
of the observations is often significantly higher than the number of curves observed,
even if the data are observed at the same time points, a standard multivariate analysis
might not be computationally feasible due to the curse of dimensionality.

Often, the data recorded in studies are variables measured over time that can be con-
sidered as functional data. Classical statistical methods such as principal components
analysis and regression models have recently started to be adapted to functional data.
However, there are still numerous fundamental problems remaining to be investigated.
In many applications, several correlated functions, say p, are observed for each sam-
ple subject. Examples include multiple lead recordings from the electrocardiogram of
a patient, and weight and height paths over time for each individual. In this setting
where the data are functions taking values in a multivariate space, X : I −→ R

p,
outliers are very difficult to detect but can affect the statistical results in many dif-
ferent ways. Furthermore, a multivariate outlier clearly need not be an outlier from a
marginal point of view, and vice versa. The statistical analysis of multivariate curves
can be significantly improved using robust estimators.

In this paper, we develop new methods for ordering multivariate functional data and
for detecting outliers. A natural tool to analyze these functional data aspects is the idea
of statistical depth. The notion of depth has already been used for ordering univariate
functional data and it provides a measure of the “centrality” or the “outlyingness”
of an observation with respect to a given data set or a population distribution (e.g.,
Fraiman and Muniz 2001; López-Pintado and Romo 2007, 2009; López-Pintado and
Jörnsten 2007; Cuevas et al. 2007; Sun and Genton 2011, 2012a,b; Gervini 2012). We
propose here an extension of the (univariate) functional band depth in López-Pintado
and Romo (2009) to multivariate functional data (or trajectories). Based on this new
depth, a sample of multivariate curves (or trajectories) can be ordered from the center
outward and order statistics can be defined. This ordering will be a building block for
extending robust statistical methods to multivariate functional data.

This paper has emerged while analyzing the early-life human growth curves using
data from the 1988 National Maternal and Infant Health Survey (NMIHS) and its
1991 Longitudinal Follow-up. These data include heights and weights of boys over
time as represented in Fig. 1. A preprocessing smoothing step described in López-
Pintado and Wei (2011) was used to infer these smooth growth curves from discrete
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Fig. 1 A three-dimensional plot of human growth curves. A representative curve is plotted in dashed black
line

observations. We propose ways for ordering these multivariate curves (height and
weight paths) and for detecting outliers. An individual might not have an unusual
height or weight curve if we study these curves independently, but if we consider the
height and weight curves together as a multivariate function they could show an unusual
behavior.

The paper is organized as follows. In Sect. 2, the new simplicial band depth and its
modified version are defined. The properties of these depths, such as consistency, are
also introduced and discussed. Section 3 shows the performance of the multivariate
functional depth based on simulated multivariate curves from different contaminated
models. In Sect. 4, real data examples are studied. The paper ends with a discussion
in Sect. 5. Proofs of theoretical results are relegated to the Appendix.

2 Simplicial band depth

2.1 Definitions

Let X : I −→ R
p be a stochastic function taking values in the space C(I, R

p) of real
continuous functions defined from a compact interval I to R

p and with probability
distribution PX. The simplicial band depth (SBD) for a given function x is defined as

SBD(x, PX) = P{x(t) ∈ simplex{X1(t), . . . , Xp+1(t)}, ∀t ∈ I}, (1)

where simplex{X1(t), . . . , Xp+1(t)} is a random simplex in R
p defined by X1(t), . . . ,

Xp+1(t), which are independent copies of X evaluated at t . Intuitively, SBD measures
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324 S. López-Pintado et al.

Fig. 2 A triangular tube determined by three black bivariate curves is shown. The curve represented in
red (r) is completely contained in this triangular tube, while the curve represented in blue (b) is completely
outside the tube

the probability that the trajectory of the function x is inside a random region in R
p+1

determined by random simplices at each time t .
Let I {A} denote the indicator function that takes the value 1 if the event A is satisfied

and zero otherwise. The sample simplicial band depth, SBDn , of a given function x
with respect to a sample x1, . . . , xn is:

SBDn(x) = 1
( n

p+1

)
∑

1≤i1<···<i p+1≤n

I {x(t) ∈ simplex{xi1(t), . . . , xi p+1(t)}, ∀t ∈ I}.

SBDn therefore counts the proportion of regions determined by the connected sim-
plices (convex hulls) over time that contain x. This provides a criterion to order the
sample of multivariate curves from the center outward. In particular, for p = 2, the
simplicial region is a three-dimensional (3D) tube formed by connected triangles. In
this case, SBDn(x) measures the proportion of triangular tubes determined by three
curves from the sample that contain the curve x. In Fig. 2, we show the triangular
region determined by three bivariate curves based on a toy example. This region is
constructed by connecting the simplices (triangles) determined by three given curves
over time. The curve represented in red (r) is completely contained in this triangular
tube and the curve in blue (b) is completely outside.

This notion of depth is quite strict, and it is often difficult for a curve to be completely
contained in a triangular tube. We relax the strict containment requirement and define
a modified version of the SBD at x as

MSBD(x, PX) = E(λ[t ∈ I, s.t. x(t) ∈ simplex{X1(t), . . . , Xp+1(t)}]), (2)
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where λ is the Lebesgue measure on I divided by the length of the interval I. For sim-
plicity, we assume that the length of the interval is one. Intuitively, this depth measures
for how long the trajectory of x(t) is contained in the simplicial region determined
by X1(t), . . . , Xp+1(t). More concretely, it measures on average, the proportion of
time t that the curve x(t) is in the simplicial region. If x(t) is completely inside the
simplicial band, then SBD(x, PX) = MSBD(x, PX) = 1.

Recall that given a multivariate vector y in R
p and a multivariate distribution PY,

the standard simplicial depth of y with respect to the distribution PY, SD(y; PY), is
defined as

SD(y; PY) = P{y ∈ simplex{Y1, . . . , Yp+1}}, (3)

where Y1, . . . , Yp+1 are p + 1 independent copies of Y (see Liu 1990). By Fubini’s
theorem one can interchange the integrals in MSBD and express

MSBD(x, PX) =
∫

I
SD(x(t); PX(t))dt, (4)

where SD(x(t); PX(t)) is the standard multivariate simplicial depth of x at time t . Note
that alternative notions of depth for multivariate functional data could be defined by
just using other multivariate depths at each time t . This could be considered for future
work and it is mentioned in the discussion of the paper.

The sample modified simplicial band depth, MSBDn(x), with respect to a sample
x1, . . . , xn is:

MSBDn(x)= 1
( n

p+1

)
∑

1≤i1<···<i p+1≤n

λ{t ∈ I, s.t. x(t)∈simplex{xi1(t), . . . , xi p+1(t)}},

or equivalently, using the alternative definition in (4),

MSBDn(x) =
∫

I
SDn(x(t))dt, (5)

where SDn(y) is the sample standard multivariate simplicial depth, with respect to a
sample y1, . . . , yn and can be expressed as

SDn(y) = 1
( n

p+1

)
∑

1≤i1<···<i p+1≤n

I {y ∈ simplex{yi1 , . . . , yi p+1}}. (6)

Note that for the case of p = 2, MSBDn measures, on average, the proportion of
times t where the curve x is inside a triangular tube determined by three curves from
the sample. If p = 1, then definitions in Eqs. (1) and (2) reduce to the notions of
band depth and modified band depth introduced by López-Pintado and Romo (2009)
for univariate functional data. Computations of SBDn and MSBDn can be based on
the fast algorithm for computing band depth of Sun et al. (2012) combined with fast
algorithms to compute simplicial depth (see, e.g., Rousseeuw and Ruts 1996; Cheng
and Ouyang 2001).

123



326 S. López-Pintado et al.

2.2 Properties

In this section, we describe some properties satisfied by SBD and MSBD. They can
be derived from the band depth, modified band depth and simplicial depth properties
in López-Pintado and Romo (2009) and Liu (1990), respectively. The proofs of the
properties are given in the Appendix.

We state some assumptions needed for the properties. Let X : I −→ R
p be a

stochastic function taking values in the space C(I, R
p) of continuous functions, and

with probability distribution PX. Also assume that I is a compact interval, that the
probability PX is absolutely continuous and PX(t) has a unique deepest point at each
t . In other words, there is one unique point that maximizes the multivariate simplicial
depth, SD(x(t); PX(t)), at each time t .

Theorem 1 Under the previous assumptions we can state the following properties for
SBD:

1. The simplicial band depth is invariant under the following transformations:
(a) Let T(x) be the combined function defined as T(x(t)) = A(t)x(t) + b(t), where

t ∈ I and A(t) is a p × p invertible matrix with Ai j (t) a continuous function
in t with t ∈ I and b(t) ∈ C(I, R

p). For simplicity, we call these assumptions
“standard assumptions for the linear transformation” for later use in the paper.
Then,

SBD(T(x), PT(X)) = SBD(x, PX).

(b) Let g be a one-to-one transformation of the interval I. Then,

SBD(x(g), PX(g)) = SBD(x, PX).

2. Vanishing at infinity: SBD(x, PX) converges to zero when the supremum norm of
the components of the multivariate process x tends to infinity:

sup
mink=1,...,p‖xk‖∞≥M

SBD(x, PX) −→ 0, when M → ∞,

where ‖xk‖∞ is the supremum norm of the kth component of x.

Theorem 2 Under the assumptions stated at the beginning of this section, MSBD
satisfies the following properties:

1. Invariance of MSBD: Let T(x) be the combined function defined as T(x(t)) =
A(t)x(t) + b(t). Under the standard assumptions for the linear transformation in
Theorem 1, we can show that:

MSBD(T(x), PT(X)) = MSBD(x, PX).

2. Monotonicity with respect to the deepest point: For any c ∈ [0, 1] we have that

MSBD(x, PX) ≤ MSBD(y + c(x − y), PX),

where y is the deepest point based on MSBD(x, PX).
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3. Maximality at the center:

MSBD(z, PX) = sup
x∈C(I,Rp)

MSBD(x, PX),

for any distribution PX with unique center function of symmetry z.
4. Vanishing at infinity: MSBD(x, PX) converges to zero when the norm of the multi-

variate process at each component xk , with 1 ≤ k ≤ p tends to infinity for almost
all time points in I. Specifically, for any sequence of functions xn from C(I, R

p)

then limn→∞ MSBD(xn, PX) = 0 if limn→∞ |xn,k(t)| = ∞ for almost all time
points t in I, where 1 ≤ k ≤ p and xn,k is the kth component of the multivariate
function xn.

2.3 Finite-dimensional case

In practice, the full curves are not observed. Instead curves are evaluated at a finite set
of time points, t1, t2, . . . , tk in I. Under this assumption one can still define MSBD as in
(2) considering a finite measure that counts the proportion of time points satisfying the
corresponding condition. In this setting, X = {X(t1), X(t2), . . . , X(tk)} is a random
vector in (Rp)k and at each given time point X(t) is a p−dimensional random vector
with a given distribution function PX(t). In particular, the finite dimensional definitions
of MSBD and MSBDn are

MSBD(x, PX) = E

⎛

⎝1

k

∑

1≤ j≤k

I
[
x(t j ) ∈ simplex{X1(t j ), . . . , Xp+1(t j )}

]
⎞

⎠

= 1

k

∑

1≤ j≤k

P(x(t j ) ∈ simplex{X1(t j ), . . . , Xp+1(t j )}),

MSBDn(x) = 1
( n

p+1

)
∑

1≤i1<···<i p+1≤n,

∑

1≤ j≤k

1

k
I
[
x(t j )

∈ simplex{xi1(t j ), . . . , xi p+1(t j )}
]
.

Theorem 3 (Consistency of MSBDn): In this finite-dimensional setting and under
the assumptions stated at the beginning of this section, the sample MSBDn converges
uniformly almost surely to the population MSBD as n → ∞:

sup
x∈(Rp)k

|MSBDn(x) − MSBD(x, PX)| a.s.−→ 0.

3 Monte Carlo simulation study

Since the order of the multivariate functional data is determined by depth measure,
different data depths usually lead to different robust estimators of the distribution
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function that can be used to construct outlier detection rules (Sun and Genton 2011,
2012a). Hence, the assessment of outlier detection provides a way to compare different
notions of data depth. In this section, we perform a simulation study comparing the
performance of the MSBD to the marginal modified band depth (MBD), and to an alter-
native notion of multivariate depth, called weighted modified band depth (WMBD),
that has been recently proposed by Ieva and Paganoni (2013). The WMBD consists of
taking a weighted average of the marginal modified band depths of each component
of the multivariate function. We consider three different settings of the weights that
are required to be pre-specified in Ieva and Paganoni (2013). The reason for choosing
MSBD instead of SBD is that the depth values induced by SBD are very likely to have
ties in practice, and effective tie breaking techniques are needed in order to produce a
meaningful ranking.

For data generation, we consider bivariate curves, Xi (t) = (X1i (t), X2i (t))T , i =
1, . . . , n, generated from different models introducing outliers to X1(t) and X2(t).
The simulation designs are similar to those in López-Pintado and Romo (2009) and
Sun and Genton (2011), but aimed at generating bivariate functional data. Model 1 is
a basic one without contamination. Models 2, 3 and 4 have magnitude outliers, i.e.,
curves that are shifted away from the bulk of the data. Model details are described as
follows:

1. Model 1 is Xi (t) = Zi (t), t ∈ [0, 1], where Zi (t) is a stochastic bivariate Gaussian
process with zero mean and a bivariate Matérn cross-covariance function (Gneiting
et al. 2010; Apanasovich et al. 2012):

Ci j (s, t) = σi j M(|s − t |; νi j , αi j ), i, j = 1, 2,

where M(h; ν, α) = σ 2

2ν−1�(ν)
(αh)νKν(αh), h = |s − t | ∈ [0, 1], is a Matérn class

(Matérn 1960; Stein 1999), Kν is a modified Bessel function of the second kind,
σ 2 is the marginal variance, ν > 0 is a smoothness parameter, and α > 0 is a scale
parameter;

2. Model 2 includes contamination for X1(t) and X2(t): Xi (t) = ci K Zi (t), where ci

is 1 with probability q and 1/K with probability 1 − q, K is a contamination size
constant;

3. Model 3 is partially contaminated: Xi (t) = ci K Z1i (t), if t ≥ Ti and Xi (t) = Zi (t),
if t < Ti , where Ti is a random number generated from a uniform distribution on
[0, 1];

4. Model 4 is contaminated by peaks: Xi (t) = ci K Zi (t), if Ti ≤ t ≤ Ti + �, and
Xi (t) = Zi (t) otherwise, where Ti is a random number from a uniform distribution
in [0, 1 − �].
Following Sun and Genton (2011, 2012a), we use the empirical rule of a constant

factor F times the 50 % central region in the adjusted functional boxplot to detect
the outliers in X1(t), where the 50 % central region contains the 50 % observations
with the largest depth values. We first generate n = 100 curves evaluated at 50
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equally spaced time points with parameters q = 0.1, K = 12, � = 10/49. The
parameters in the bivariate Matérn model are σ11 = σ22 = 1, α11 = 0.02, α22 =
0.01, ν11 = 1.2, ν22 = 0.6, α12 = 0.016, ν12 = 1.0. At a given time t, X(t) follows
a bivariate normal distribution with correlation ρ = 0.1, 0.3, 0.6. Then we compute
depth values using bivariate MSBD, marginal MBD, and WMBD proposed in Ieva
and Paganoni (2013), where for the latter we consider three different sets of weights,
(0.25, 0.75), (0.5, 0.5) and (0.75, 0.25), and denote these depths as WMBD1, WMBD2
and WMBD3. For the MBD and WMBD, the outliers in X1(t) are detected by the
adjusted functional boxplot, where the 50 % central region of X1(t) is defined using
the ordering induced by the corresponding depth. For the bivariate MSBD, the 50 %
central region is in 3D and the constant factor F is defined as the orthogonal distance
to the 45◦ line.

As in Sun and Genton (2011), we assess outlier detection performance by exam-
ining the distribution of two quantities: p̂c, the percentage of correctly detected out-
liers (the number of correctly detected outliers divided by the total number of out-
lying curves), and p̂ f , the percentage of falsely detected outliers (the number of
falsely detected outliers divided by the total number of non-outlying curves). We
run 1,000 replications. For model 1, with no outliers, we estimate the percentage,
p̂0, of times that the different methods detect no outliers, and also the percent-
age p̂ f . For models 2, 3 and 4, we estimate the percentages p̂c and p̂ f . Table 1
shows the means and standard deviations of these quantities. Good outlier detec-
tion performance is given by high correct detection percentages, p̂0 and p̂c, and a
low false detection percentage, p̂ f . The factor F (shown in Table 1) in the adjusted
functional plot is chosen to make p̂0 = 99.3 % (Sun and Genton 2012a), for each
combination of the five depth notions and the three values of ρ. For the marginal
MBD, F remains the same while it varies with ρ for the MSBD and WMBD. The
selected F also depends on the weights of WMBD. Therefore, we compare the out-
lier detection performance for a given ρ. For all these cases, the bivariate MSBD
clearly outperforms the marginal MBD and the WMBD. In particular, for all meth-
ods but WMBD3 the percentage of falsely detected outliers ( p̂ f ) is close to zero.
The main difference in performance is in the percentage of correctly detected out-
liers ( p̂c) which is clearly higher using MSBD than any other method for all mod-
els. Intuitively, if the contamination leads to a different direction of the correla-
tion while the corresponding marginal contamination is not large enough to be
detected (see Sun and Genton 2011, 2012a), the bivariate MSBD should perform
better.

For the WMBD, the outlier detection performance depends on the weights which
need to be pre-specified. However, there is no justification for optimal weights making
this method impractical. In these simulations, the performance of WMBD is similar
to the marginal MBD and both are worse than the bivariate MSBD. Similar to the
usual bivariate case, bivariate functional outliers in bivariate functional data are not
necessarily marginal outliers. The outlier detection method based on the marginal MBD
ordering therefore fails to detect such type of outliers, and a multivariate functional
depth is recommended.
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Table 1 The mean and standard deviation (in parentheses) of the percentages p̂c and p̂ f for marginal MBD
and bivariate MSBD, and for WMBD with different weights, with ρ = 0.1, 0.3, 0.6, 1,000 replications,
n = 100 curves for models 1–4, and adjustment factor F

ρ Model 1 Model 2 Model 3 Model 4

F p̂ f p̂c p̂ f p̂c p̂ f p̂c p̂ f

0.1

MSBD 1.68 0.01 (0.08) 91.5 (9.4) 0.00 (0.06) 90.5 (12.3) 0.00 (0.07) 88.6 (15.8) 0.00 (0.07)

MBD 3.00 0.01 (0.03) 67.9 (15.9) 0.00 (0.03) 66.9 (15.6) 0.00 (0.00) 66.8 (15.6) 0.00 (0.00)

WMBD1 0.75 0.01 (0.10) 66.1 (18.3) 0.00 (0.05) 62.4 (21.5) 0.00 (0.03) 60.7 (22.5) 0.00 (0.03)

WMBD2 1.46 0.01 (0.10) 70.1 (15.6) 0.00 (0.06) 69.0 (15.5) 0.00 (0.05) 68.8 (15.8) 0.00 (0.05)

WMBD3 2.30 0.01 (0.10) 79.0 (14.0) 0.19 (0.51) 69.6 (15.0) 0.00 (0.06) 69.6 (15.1) 0.00 (0.06)

0.3

MSBD 1.97 0.01 (0.08) 90.8 (10.0) 0.00 (0.06) 89.6 (12.8) 0.00 (0.07) 87.6 (16.6) 0.01 (0.08)

MBD 3.00 0.01 (0.03) 67.9 (15.9) 0.00 (0.03) 66.9 (15.6) 0.00 (0.00) 66.8 (15.6) 0.00 (0.00)

WMBD1 0.74 0.01 (0.08) 67.2 (18.7) 0.01 (0.12) 64.2 (20.8) 0.00 (0.05) 63.0 (21.5) 0.00 (0.05)

WMBD2 1.50 0.01 (0.08) 70.3 (15.5) 0.01 (0.08) 69.0 (15.7) 0.00 (0.00) 68.9 (15.8) 0.00 (0.00)

WMBD3 2.37 0.01 (0.08) 78.7 (14.1) 0.16 (0.44) 69.0 (15.2) 0.00 (0.05) 69.0 (15.1) 0.00 (0.06)

0.6

MSBD 3.00 0.01 (0.08) 87.0 (11.4) 0.00 (0.07) 85.4 (14.8) 0.00 (0.06) 83.3 (18.7) 0.00 (0.06)

MBD 3.00 0.00 (0.03) 67.9 (15.9) 0.00 (0.03) 66.9 (15.6) 0.00 (0.00) 66.8 (15.6) 0.00 (0.00)

WMBD1 0.90 0.01 (0.13) 68.4 (18.7) 0.01 (0.12) 66.5 (19.4) 0.02 (0.16) 64.1 (21.4) 0.02 (0.17)

WMBD2 1.70 0.01 (0.08) 69.2 (15.5) 0.00 (0.04) 68.3 (15.5) 0.00 (0.03) 68.2 (15.7) 0.00 (0.03)

WMBD3 2.45 0.01 (0.10) 77.1 (14.4) 0.08 (0.32) 68.5 (15.4) 0.00 (0.05) 68.5 (15.3) 0.00 (0.05)

4 Data examples

4.1 Chinese script data

The first data set consists of repeated writings of Chinese words by the same person
(see Fig. 3). This data set was obtained from Ramsay et al. (2009) and had already
been preprocessed and registered. The Chinese script data can be seen as bivariate
functional data, where each script is a trajectory over time. In Fig. 3, we represent
the projection of the data in the X−Y axis, although these values are parametrized
by time, which is the third dimension. The multivariate simplicial band depth pro-
vides a ranking of these scripts from the center outward. Based on this ranking, the
median or most representative script within the sample can be defined and possible
outliers can be detected. In Fig. 3, we show the deepest trajectory (in black) and the
triangular tube determined by the three deepest curves. It can be seen that the deepest
signature is representative of the sample of scripts and can be used as a median tra-
jectory. The ordering provided by the simplicial band depth can be used as a building
block for generalizing different robust statistical methods to multivariate functional
data.
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Fig. 3 Chinese script replicated 100 times. The triangular tube determined by the three deepest curves is
shown. Black dots indicate observations along the deepest curve

4.2 Growth curves data

The data in this second example, as mentioned in the introduction, consist of the
height and weight over time for a sample of infants from birth to two years of age.
The data are sparse so a preprocessing step is needed to estimate the curves on a
common set of time points (see López-Pintado and Wei 2011). The study is motivated
by an early-life human growth project using data from the 1988 National Maternal
and Infant Health Survey (NMIHS) and its 1991 Longitudinal Follow-up. The study
included 2,555 boys and 2,510 girls born in the US in the calendar year of 1988.
Their heights and weights were taken sporadically only when they visited a hospital.
Consequently, their growth paths were observed on small, variable sets of sparse and
irregularly spaced time points. The study of growth patterns of infants has long been
an important research topic in epidemiology. The most informative growth pattern is
represented by the underlying height and weight processes as continuous functions
of age. The simplicial band depth provides a way of ordering these bivariate curves
from the sample, and a median growth curve can be defined. In addition, the notion of
depth can be used to detect outliers, which in this case correspond to unusual growth
patterns. In Fig. 4, the raw height and weight data are represented for a subset of 150
boys. Before computing the depths, the data were smoothed using the approach in
López-Pintado and Wei (2011).

In Fig. 5 these smoothed curves are represented in separate 2-dimensional plots. We
have compared the ordering provided by the marginal depths with the ordering given
by the multivariate simplicial band depth. The ordering of the height curves, X (t),
changes when using the multivariate simplicial band depth instead of the univariate
marginal depth since we are incorporating information about the boys’ weights, Y (t).
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Fig. 4 Sparse growth data. The height (left panel) and weight (right panel) over time for a sample of boys
are represented

In Fig. 5a, b, the deepest bivariate curve using the simplicial band depth, SBD, is
represented in solid (red) line and the deepest curves using the marginal univariate
band depths for height and weight are represented with a dashed (black) curve. The
marginal deepest curves correspond to two different boys although their growth curve
is close to the deepest one obtained using the multivariate depth. This implies that the
deepest bivariate height-weight curve shows similar behaviour to the deepest marginal
curves.

Another main application of simplicial band depth is the detection of multivariate
outliers that are not necessarily marginal outliers. To illustrate this, in the second row
of Fig. 5 we represent in a solid (red) line the smoothed height and weight curves
for a boy from the sample. This bivariate curve is the second percentile based on the
center-outward order provided by the multivariate simplicial band depth, whereas it
is the 25th and 29th percentile if we apply the marginal band depth to weight and
height, respectively. It can be seen that for this individual, the height growth curve
increases very steadily (especially after one year of age) whereas the weight curve
increases rapidly over time. Looking at the height and weight curves, we can see that
the child is initially at a very high percentile in height and a low percentile in weight.
As the child grows, the percentile in weight starts increasing while the percentile in
height decreases. This could be a sign of a weight problem and it is important to
detect this problem as early as possible. Marginally, these height and weight curves
are not considered outliers, but the bivariate growth curve shows an unusual pattern
when the curves are ordered according to the multivariate simplicial band depth. The
multivariate simplicial band depth can be useful for screening out these types of outliers
that can be indicative of a growth issue in a child.

We applied the functional boxplot ideas proposed by Sun and Genton (2011) to the
growth data. The functional boxplots are useful tools for visualizing central regions
and for detecting outliers. In Fig. 6, we represent the boxplots for the weight (top
row) and height (bottom row) curves based on marginal MBD (left column) and mul-
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(a) (b)

(c) (d)

Fig. 5 The height and weight curves are represented in the left and right panels, respectively. The deepest
bivariate curve using the order provided by the multivariate simplicial band depth (SBD) is represented in
a solid (red) line in (a) and (b). The deepest curves using marginal band depth (B D) for height and weight
independently are represented by dashed (black) curves. In the bottom row, the thicker solid (red) curves
in (c) and (d) correspond to the bivariate height-weight curve of an individual who is the second percentile
using SBD ordering. This child’s height curve is the 29th percentile based on marginal B D in height and
the 24th percentile for B D in weight

tivariate MSBD (right column). It can be seen that the 50 % central regions presented
as the middle boxes in the functional boxplots are wider when using the multivariate
MSBD. Since the 50 % central regions contain the same number of curves, the nar-
rower boxes indicate that some relatively deep curves of weight or height based on the
marginal MBD are ordered as more shallow ones based on the MSBD, possibly due
to their relatively different correlation patterns. Since the outlier detection depends
on the width of the box in a functional boxplot, it is not surprising that one outlier is
detected in the functional boxplot of the weight curves based on the marginal MBD
while no outliers are found based on the MSBD. More investigation on this potential
outlier is needed, including the height and weight measurements given the age, and
the growth patterns in both height and weight. Moreover, in this example, we focus
on visualization and comparisons using functional boxplots without any adjustment.
However, if outlier detection is of interest, the adjusted functional boxplot (Sun and
Genton 2012a) should be considered.
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(a) (b)

(c) (d)

Fig. 6 The functional boxplots for the weight curves using the marginal modified band depth (MBD)
and multivariate modified simplicial band depth (MSBD) are represented in (a) and (b), respectively. The
functional boxplots for the height curves based on the marginal modified band depth (MBD) and the
multivariate modified simplicial band depth (MSBD) are represented in (c) and (d), respectively

5 Discussion

The analysis of functional data is a developing field in statistics that has emerged in
the last decade along with the dramatic growth of large and complex data sets. In many
applications, the basic underlying observation is a multivariate function. Height and
weight measurements of a child over time, and different leads in the electrocardiogram
of a patient, are examples. New challenges arise when the functions are multivariate. In
this paper, we have extended the notion of band and modified band depths for univariate
functional data to multivariate functional data. This provides a robust ordering of
multivariate functions from the center outward, and robust statistics such as the median
or trimmed mean. It also provides a method for detecting outliers that are not easy
to screen out when analyzing complex data. As in the standard multivariate context,
a multivariate functional outlier is not necessarily an outlier in the marginal data.
Multivariate orderings are therefore needed to detect multivariate outliers.

Recall that using Fubini’s theorem the MSBD is equivalent to the integral over
time of the multivariate simplicial depth; see (4). Other notions of multivariate depth,
such as Tukey’s depth, could have been used instead of the simplicial depth to define
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alternative notions of multivariate functional depths. These multivariate depths are
computationally feasible in the bivariate functional data cases that we have consid-
ered in the paper. When the multivariate functional data takes values in spaces of
higher dimension other multivariate depths could be considered. For example, the
finite dimensional version of the band depth proposed in López-Pintado and Romo
(2009) could be used as the multivariate depth at each time since it can be computed
fast in any dimension. The theoretical properties of these alternative ways of defining
multivariate functional depths is an interesting topic for future research. An appealing
aspect of these methods is that they can be used to construct boxplots to visualize the
most representative and outlying curves in the sample using the ordering provided by
the multivariate depths. All of these tools can be extended to image data. The notion
of band depth has already been adapted to spatial data by Sun and Genton (2012a) and
generalized to volume depth for images and surfaces by Genton et al. (2014).

We could extend the ideas proposed in our paper to multivariate images, where
multiple correlated images are observed for each patient. In this case, the functions
from the sample are defined from a bivariate space (pixels) to a multivariate space. In
this setting, it will be important to have computationally efficient procedures to obtain
the simplicial band depth.

Appendix

Proof of Theorem 1

1(a). Let T(x) be the combined function defined as T(x(t)) = A(t)x(t)+b(t), where
t ∈ I. Assume it satisfies the standard assumptions for the linear transformation
presented in Theorem 1. By definition,

SBD(x, PX) = P{x(t) ∈ simplex{X1(t), . . . , Xp+1(t)},∀t ∈ I}.

It is trivial to check that for any fixed t ∈ I, we have that the curve
x(t) ∈ simplex{X1(t), . . . , Xp+1(t)} if and only if the curve A(t)x(t) + b(t) ∈
simplex{A(t)X1(t) + b(t), . . . , A(t)Xp+1(t) + b(t)} and therefore,

SBD(T(x), PT(X)) = SBD(x, PX).


�
1(b). Let g be a one-to-one transformation of the interval I. It is straightforward to

prove that for any fixed t ∈ I, x(g(t)) ∈ simplex{X1(g(t)), . . . , Xp+1(g(t))} if
and only if x(t) ∈ simplex{X1(t), . . . , Xp+1(t)} and therefore,

SBD(x(g), PX(g)) = SBD(x, PX).


�
2. SBD(x, PX) converges to zero when the supremum norm of the components of

the process x tend to infinity. Specifically,
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sup
mink=1,...,p‖xk‖∞≥M

SBD(x, PX) −→ 0, when M → ∞,

where xk is the kth component of the multivariate function x. We establish first
by contradiction the inclusion

{
(X1, . . . , Xp+1): x(t) ∈ simplex{X1(t), . . . , Xp+1(t)},∀t ∈ I}

⊂ p+1∪
r=1

p∪
k=1

{
(X1 , . . . , Xp+1) : ‖Xrk‖∞ ≥ ‖xk‖∞

}

where Xrk is the kth component of the multivariate function Xr . If x(t) ∈
simplex{X1(t), X2(t), . . . , Xp+1(t)} for all t ∈ I, then, for each k and t ∈ I,

min
r=1,...,p+1

{Xrk(t)} ≤ xk(t) ≤ max
r=1,...,p+1

{Xrk(t)} . (7)

Assume that
∥∥Xr,k

∥∥∞ < ‖xk‖∞ for each k = 1, . . . , p, and r = 1, . . . , p + 1;
this implies that, for each r and k, we have

max
t∈I

|Xrk(t)| < max
t∈I

|xk(t)| .

Let tk be the point where the maximum of xk(t) is achieved. Then, for all r =
1, . . . , p + 1, |Xrk(tk)| < |xk(tk)|, which contradicts (7). Therefore,

sup
mink=1,...,p‖xk‖∞≥M

SBD(x, PX)

≤ sup
mink=1,...,p‖xk‖∞≥M

P
(
x(t) ∈ simplex{X1(t), . . . , X j (t)},∀t ∈ I)

≤ sup
mink=1,...,p‖xk‖∞≥M

p+1∑

r=1

p∑

k=1

P
(∥∥Xrk

∥∥∞ ≥ ‖xk‖∞
)

≤
p+1∑

r=1

p∑

k=1

sup
mink=1,...,p‖xk‖∞≥M

P
(∥∥Xrk

∥∥∞ ≥ ‖xk‖∞
)

and this implies that supmink=1,...,p‖xk‖∞≥M SBD(x, PX) −→ 0, when M → ∞.


�
Proof of Theorem 2

1. Let T(x(t)) = A(t)x(t) + b(t) be a linear transformation satisfying the standard
assumptions in Theorem 1. By definition,

MSBD(x, PX) = E(λ[t ∈ I, s.t. x(t) ∈ simplex{X1(t), . . . , Xp+1(t)}]). (8)

It is trivial to check that for any fixed t ∈ I, we have that the curve
x(t) ∈ simplex{X1(t), . . . , Xp+1(t)} if and only if the curve A(t)x(t) + b(t) ∈
simplex{A(t)X1(t) + b(t), . . . , A(t)Xp+1(t) + b(t)} and therefore,
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MSBD(T(x), PT(X)) = MSBD(x, PX).


�
2. The monotonicity property follows directly from expression (4) and the monotonic-

ity property satisfied by the simplicial depth SD defined in Eq. (3). 
�
3. If PX has unique center of symmetry y ∈ C(I, R

p), in the sense that PX−y = Py−X,
then for every t ∈ I, y(t) is the center of symmetry for PX(t). Therefore, using the
alternative expression of MSBD in (4), and since SD is maximized at the center,
the proof is concluded. 
�

4. The vanishing at infinity property follows directly from expression (4) and the
vanishing at infinity properties of SD. 
�

Proof of Theorem 3 By interchanging the two sums in the definition of MSBDn , one
can write

MSBDn(x) = 1

k

∑

1≤ j≤k

1
( n

p+1

)
∑

1≤i1<···<i p+1≤n,

I [x(t j ) ∈ simplex{xi1(t j ), . . . , xi p+1(t j )}],

which is equivalent to

MSBDn(x) = 1

k

∑

1≤ j≤k

SDn(x(t j )),

where SDn(x(t j )) is the sample simplicial depth of x(t j ) as defined in Eq. (6).
Also, note that one can write MSBD(x, PX) = 1

k

∑
1≤ j≤kSD(x(t j ), PX(t j )), where

SD(x(t j ), PX(t j )) is the population simplicial depth of x(t j ) as defined in Eq. (3).
Therefore,

sup
x∈(Rp)k

|MSBDn(x) − MSBD(x, PX)|

= sup
x∈(Rp)k

∣∣∣
∣∣∣

1

k

∑

1≤ j≤k

(
SDn(x(t j )) − SD(x(t j ), PX(t j ))

)
∣∣∣
∣∣∣
.

By the uniform consistency of the sample simplicial depth proven in Liu (1990) we can
conclude that the sample MSBDn converges uniformly almost surely to the population
MSBD as n → ∞:

sup
x∈(Rp)k

|MSBDn(x) − MSBD(x, PX)| a.s.−→ 0.


�
References

Apanasovich TV, Genton MG, Sun Y (2012) A valid Matérn class of cross-covariance functions for multi-
variate random fields with any number of components. J Am Stat Assoc 107:180–193

123



338 S. López-Pintado et al.

Cheng A, Ouyang M (2001) On algorithms for simplicial depth. In: Proceeding 13th Canadian conference
on computational geometry, vol 1, pp 53–56

Cuevas A, Febrero M, Fraiman R (2007) Robust estimation and classification for functional data via
projection-based depth notions. Comput Stat 22:481–496

Ferraty F, Vieu P (2006) Nonparametric Functional Data Analysis. Springer, New York
Fraiman R, Muniz G (2001) Trimmed means for functional data. Test 10:419–440
Genton MG, Johnson C, Potter K, Stenchikov G, Sun Y (2014) Surface boxplots. Stat 3:1–11
Gervini D (2012) Outlier detection and trimmed estimation for general functional data. Statistica Sinica

22:1639–1660
Gneiting T, Kleiber W, Schlather M (2010) Matérn cross-covariance functions for multivariate random

fields. J Am Stat Assoc 105:1167–1177
Ieva F, Paganoni M (2013) Depth measures for multivariate functional data. Commun Stat 42(7):1265–1276
Liu RY (1990) On a notion of data depth based upon random simplices. Ann Stat 18:405–414
López-Pintado S, Jörnsten R (2007) Functional data analysis via extensions of the band depth, IMS lecture

Notes-Monograph Series. Inst Math Stat 54:103–120
López-Pintado S, Romo J (2007) Depth-based inference for functional data. Comput Stat Data Anal

51:4957–4968
López-Pintado S, Romo J (2009) On the concept of depth for functional data. J Am Stat Assoc 104(486):

718–734
López-Pintado S, Wei Y (2011) Depth for sparse functional data. In: Ferraty F (ed) Recent advances in

functional data analysis and related topics. Springer, Berlin, pp 209–212
Matérn B (1960) Spatial variation. Springer, New York
Ramsay JO, Hooker G, Graves S (2009) Functional data analysis with R and MATLAB. Springer,

New York
Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York
Rousseeuw PJ, Ruts I (1996) Bivariate location depth. Appl Stat 45:516–526
Stein ML (1999) Interpolation of spatial data: some theory for Kriging. Springer, Berlin
Sun Y, Genton MG (2011) Functional boxplots. J Comput Grap Stat 20:313–334
Sun Y, Genton MG (2012a) Adjusted functional boxplots for spatio-temporal data visualization and outlier

detection. Environmetrics 23:54–64
Sun Y, Genton MG (2012b) Functional median polish. J Agric Biol Environ Stat 17:354–376
Sun Y, Genton MG, Nychka D (2012) Exact fast computation of band depth for large functional datasets:

how quickly can one million curves be ranked? Stat 1:68–74

123


	Simplicial band depth for multivariate functional data
	Abstract
	1 Introduction
	2 Simplicial band depth
	2.1 Definitions
	2.2 Properties
	2.3 Finite-dimensional case

	3 Monte Carlo simulation study
	4 Data examples
	4.1 Chinese script data
	4.2 Growth curves data

	5 Discussion
	Appendix
	References


