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Short-Term Spatio-Temporal Wind Power Forecast in
Robust Look-ahead Power System Dispatch
Le Xie, Member, IEEE, Yingzhong Gu, Student Member, IEEE, Xinxin Zhu, and Marc G. Genton

Abstract—We propose a novel statistical wind power forecast
framework, which leverages the spatio-temporal correlation in
wind speed and direction data among geographically dispersed
wind farms. Critical assessment of the performance of spatio-tem-
poral wind power forecast is performed using realistic wind farm
data from West Texas. It is shown that spatio-temporal wind
forecast models are numerically efficient approaches to improving
forecast quality. By reducing uncertainties in near-term wind
power forecasts, the overall cost benefits on system dispatch
can be quantified. We integrate the improved forecast with an
advanced robust look-ahead dispatch framework. This integrated
forecast and economic dispatch framework is tested in a modified
IEEE RTS 24-bus system. Numerical simulation suggests that the
overall generation cost can be reduced by up to 6% using a robust
look-ahead dispatch coupled with spatio-temporal wind forecast
as compared with persistent wind forecast models.

Index Terms—Data-driven forecast, look-ahead dispatch,
spatio-temporal statistics, wind generation.

I. NOMENCLATURE

The notations are summarized in Table I.

II. INTRODUCTION

U NCERTAINTIES and variabilities in renewable genera-
tion, such as wind energy, pose significant operational

challenges to power system operators [1]–[5]. While conven-
tional wisdom suggests that more spatially dispersed wind farms
could be aggregated and “smooth out” total wind generation
at any given time, the reality is that wind generation tends to
be strongly correlated in many geographical regions [6], [7].
As many regions/states are moving toward renewable portfolio
standards (RPS) in the coming decade, the role of accurate
wind prediction is becoming increasingly important for many
regional transmission organizations (RTOs) [8].
The major uncertainty in conventional power grid operation

comes from the demand side [9]–[11]. Nowadays, in power sys-
tems with high presence of intermittent generation, the main
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TABLE I
NOTATIONS

source of uncertainty comes from both demand and supply sides
[1]. State-of-the-art load forecasts could achieve high accuracy
in the day-ahead stage [12]. Compared with load forecasting,
accurate forecast of wind generation still remains an open chal-
lenge. There exists a large body of literature onwind power fore-
casting, and state-of-the-art day-ahead wind forecast based on
numerical weather prediction (NWP) models has enabled rela-
tively accurate wind forecast with approximately 15%-20% of
wind speed forecast mean absolute error (MAE) [13]–[16]. As
the operating time moves closer to the near term (e.g., hour-
ahead or 15 minute-ahead), at a high spatial resolution, the com-
putation complexity (in terms of simulation time and memory
requirements) often renders NWP models intractable [16].
In sharp contrast, data-driven statistical model is thought to

be the most competitive method for near-term wind forecasting
problems being able to capture the rapidly changing dynamics
of the atmosphere and with nice model interpretation [17]. Sta-
tistical forecasting models could potentially provide accurate
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and efficient wind forecasts with MAE reduced to the range of
around 5% or less [13]. A good set of references can be found
in [18]. Our proposed spatio-temporal wind forecast model is
directly targeted at computationally efficient near-term wind
forecasts.
Starting from our preliminary work [19], [20], the main ob-

jective of this paper is to exploit a novel short-term spatio-tem-
poral wind forecast model and quantify the dispatch benefits
from improved short-term wind forecast. Wind generation is
driven by wind patterns, which tend to follow certain geograph-
ical spatial correlations. For large-region wind farms, the wind
generation forecast of the wind could significantly benefit from
upstream wind power generation. Enabled by technological ad-
vances in sensing, communication, and computation, spatially
correlated wind data could be leveraged for accurate system-
wide short-term wind forecasts. This is potentially applicable to
large-scale wind farms. The performance of such wind forecast
model is critically assessed.
In order to fully exploit the advantage of spatio-temporal

wind forecast, advanced power system scheduling is needed.
In recent years, there are many valuable pieces of work along
this direction. Currently, two major schools of methodologies
exist: 1) based on stochastic optimization and 2) robust opti-
mization. A security-constrained unit commitment algorithm is
formulated by J. Wang et al., which considers the intermittency
and volatility of wind power generation [21]. A two-stage sto-
chastic programming model for reserves commitment in power
systemswith high penetration of wind generation is proposed by
A. Papavasiliou et al. [22]. A stochastic optimization model is
developed by P. Meibom et al. to study the operational impacts
of high wind generation in Europe [23], [24]. An adaptive robust
optimization is proposed by D. Bertsimas et al. to solve secu-
rity constrained unit commitment problems [25]. A robust unit
commitment model is presented by Y. Guan et al. to schedule
wind power and pumped hydro storage [26].
The advantage of the stochastic programming approach is to

fully utilize the distribution of the uncertainty set to achieve op-
timal expected benefits. Compared with the stochastic approach,
a robust optimization, focusing on optimal benefits under worst
scenarios, has advantages in computation efficiency and low
requirement for knowledge of full distribution [27], [28]. The
spatio-temporal forecast presented in this paper is aiming at
short-term power system application such as near-term (hour-
ahead) or real-time economic dispatch which have high require-
ment of computation efficiency. Therefore, we propose and for-
mulate a robust optimization based look-ahead economic dis-
patch model to quantify the economic benefits of improved fore-
cast under uncertainties. The suggested contributions of this
paper are:
1) We propose to use two spatio-temporal correlated forecast
models for short-term wind generation in power system
operations, the TDD (trigonometric direction diurnal) and
the TDDGW (TDD with geostrophic wind information)
models. Both forecasting models take into account local
and nearby wind farms’ historical wind information. Ad-
ditionally, based on atmospheric dynamic principles, the
latter incorporates geostrophic wind information and has
better forecasts than the former one. Both methods are

tested with realistic wind data obtained in Texas, and they
demonstrate improved forecast accuracy.

2) We incorporate our spatio-temporal wind forecast into
a robust look-ahead economic dispatch framework.
Numerical study in a revised IEEE RTS 24-bus test
system shows improved benefits compared with conven-
tional static dispatch with time-persistent wind forecast
models.

The rest of this paper is organized as follows. In Section III we
provide an overview of statistical wind forecast models, which
is followed by the introduction of the proposed spatio-tem-
poral wind forecast models. In Section IV we compare the
performance of spatio-temporal wind forecasts using realistic
wind farm data obtained from West Texas. Section V presents
the day-ahead reliability unit commitment model as well as
a robust look-ahead economic dispatch formulation by in-
corporating available wind forecast. Numerical illustrations
of the economic benefits of incorporating spatio-temporal
wind forecast with robust look-ahead dispatch are presented
in Section VI. Conclusions and future work are presented in
Section VII.

III. STATISTICAL WIND FORECASTING

In this section, we provide an overview and critical assess-
ment of several statistical approaches to short-term wind fore-
casting. Whereas NWP models play the key role in day-ahead
to several hour-ahead wind forecasting, the computational
burden and forecasting accuracy of NWP are still challenging
in near-term forecasts (minutes-ahead to hour-ahead). As an
alternative, data-driven statistical wind forecasting has gained
increasing attention for near-term forecasts. Extensive research
has been devoted to wind power forecasting problems [18],
[29]–[31]. In short-term wind speed forecasting, statistical
models that incorporate spatial information are the most com-
petitive methods [17], [18]. A regime-switching space-time
model [32] improved forecasts by 29% and 13% compared
with persistence forecasts and autoregressive in terms of root
mean squared error (RMSE). It was generalized by the TDD
model [33] by treating wind direction as a circular variable
and including it in the model. Regime-switching models based
on wind direction and conditional parametric models with
regime-switching substantially reduced variance in the forecast
errors [34]. Adaptive Markov-switching autoregressive models
[35] were developed for offshore wind power forecasting prob-
lems in which the regime sequence is not directly observable
but follows a first-order Markov chain.
For wind speed forecasting problems, more realistic metrics

that have penalization on underestimates and forecasts for small
true values are desired for model evaluation [18] instead of
RMSE and mean absolute errors (MAE). Power curve error [33]
was proposed as a loss function, which links prediction of wind
speed to wind power by a power curve and evaluates the loss
based on the wind power with penalty on underestimates. The
pros and cons of the mean absolute percentage error and the
mean symmetric absolute percentage error as loss functions to
penalize both underestimates and forecasts for small true values
were also discussed [18].
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Fig. 1. Map of the four locations in West Texas.

TABLE II
SITE INFORMATION

Fig. 2. Wind roses of the four locations in West Texas.

A. Wind Data Source in West Texas

The wind data we use here are the 5-minute averages of
3-second measurements of wind speed and direction collected
by monitors placed at 10 meters above the ground from four
sites in West Texas labeled ROAR, SPUR, PICT, and JAYT.
Their locations are indicated by the red crosses in Fig. 1, and
more specific geographic information is listed in Table II. The
period of the wind data covers three years from January 1,
2008 to December 31, 2010. (The data sets are available at
http://www.mesonet.ttu.edu/wind.html).
Winds in this area aremainly from the south or north as shown

by the wind roses in Fig. 2, where the petals are the frequen-
cies of wind blowing from a particular direction, and the col-
ored bands are the ranges of wind speed. Given the flatness in
this area, the spatial correlation in wind can be captured when a
southerly wind is blowing: wind at ROAR will mostly be just a
shift from wind at SPUR. This means that to forecast the future

wind speed at ROAR, it is definitely helpful to use the current
and just past wind information at SPUR. Similarly, when the
wind is blowing from the south or southeast, wind information
at JAYT and PICT help in predicting the wind speed at ROAR.
A good forecasting model should take into account both spatial
and temporal correlations in wind.

B. Space-Time Statistical Forecasting Models

Weused four statistical models, PSS, AR, TDD and TDDGW,
to forecast short-term wind speed at each of the four sites. In the
first two models, only the temporal correlation in wind is con-
sidered, while the TDD and TDDGW models utilize wind in-
formation from the other three locations so that both spatial and
temporal correlations in wind are taken into account. Moreover,
the TDDGW model incorporates geostrophic information into
the TDD model.
To make it simple, we describe the four models in the setting

of forecasting wind speed at ROAR. Let , , , and
denote the wind speed at time at ROAR, SPUR, JAYT,

and PICT, respectively, and , , , and denote the
wind direction at time . The goal is to estimate , or the
-step-ahead wind speed at ROAR, denoted as , where
each step is 5 minutes.
1) Persistent Forecasting: In the PSS model, it is assumed

that the future wind speed is the same as the current one. For
example, if is the wind speed at time at ROAR, then the
-step future wind speed is predicted as , or .
PSS works very well for very short-term forecasting, such as
10-minute-ahead. The PSS model is usually treated as a refer-
ence and an advanced forecasting model is thought to be good
if it outperforms PSS.
2) Autoregressive Models: AR models predict the future

wind speed as a linear combination of past wind speeds. In our
case, we apply AR to model the center parameter, , in
(2) (defined in the next part) as follows:

(1)

The AR model assumes that future wind speed is related to his-
torical wind information only at the same location, without con-
sidering the spatial correlation. Bayesian Information Criteria is
used to select the order .
3) Spatio-Temporal Trigonometric Direction Diurnal

Model: The TDD model is an advanced space-time statis-
tical forecasting model. It generalizes the Regime-Switching
Space-Time model [32] by including wind direction in the
model. As a probabilistic forecasting model, the TDD model
estimates a predictive distribution for wind speed at time ,
thus providing more information about the uncertainty in
wind. More recently, the TDDGW model, which incorporates
geostrophic wind information into the TDD model, was pro-
posed [36] and more accurate forecasts are obtained than from
the TDD model.
In the TDD model, it is assumed that follows a trun-

cated normal distribution on the nonnegative real domain, that
is, (this can be detected by the
density plots in Fig. 3), with center parameter and scale



514 IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 1, JANUARY 2014

Fig. 3. Wind speed density at ROAR 2008–2009.

parameter . The key to achieve accurate forecasts lies in
modeling these two parameters appropriately.
The center parameter, , is modeled as

where is made of trigonometric functions to fit the di-
urnal pattern of the wind speed. Specifically,

where ; see Fig. 4. Fig. 4 is the functional box-
plot [37] of daily wind speed from 2008–2009 with the solid
white line as the mean wind speed over 24 hours, the solid black
line as the median, and the dashed green line as the fitted daily
pattern.
The residual series after removing the diurnal pattern, ,

is modeled as a linear function of current and past (up to time
lag ) wind speed residuals and trigonometric functions of wind
direction residuals at ROAR, as well as SPUR, JAYT, and PICT
as follows:

(2)

The scale parameter, , is modeled as

(3)

Fig. 4. Functional boxplot [37] of daily wind speed at ROAR 2008–2009.

Fig. 5. The pressure gradient, Coriolis, and friction forces influence the move-
ment of air parcels. Geostrophic wind (left) and real wind (right).

where , and is the volatility value:

The coefficients in (2) along with , in (3) are estimated by
the continuous ranked probability score method (see [38] for
more details). Predictors in (2) are selected with the Bayesian
Information Criteria (see [33]).
As we know, pressure and temperature also have significant

effects on wind speed. If this information could be taken into
account in wind forecasting problems, more accurate forecasts
would be expected. However, it was found that adding surface
pressure and temperature directly into the center parameter
model in (2) brings no improvement to the forecasting accu-
racy. This is the motivation of the TDDGW model. It takes
geostrophic wind, which extracts information on pressure and
temperature, into the TDD model as a predictor.
Geostrophic wind is the theoretical wind that results from

an exact balance between the pressure gradient force (hori-
zontal components) and the Coriolis force if there were no
friction above the friction layer, and this balance is called the
geostrophic balance. It is parallel to straight isobars. Fig. 5
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illustrates the difference between geostrophic wind (left) and
real wind or surface wind (right).
The approximation of geostrophic wind is based on Newton’s

Second Law. It involves calculation of geopotential heights by
referring to 850 hPa based on pressure, temperature and eleva-
tion, and fitting a plan of the geopotential height gradient in the
region. Due to the space limitation, we refer readers to [36] for
more detailed information.
The TDDGW model incorporates geostrophic wind into the

TDD model, as shown in (4). This model not only includes im-
portant information on pressure and temperature, but it also has
a clear and meaningful physical interpretation. Moreover, the
TDDGWmodel keeps the advantage of the TDDmodel, namely
to account for the spatio-temporal correlation in wind:

(4)

where are the residuals of the geostrophic wind after
removing the diurnal pattern and the are the coefficients.
Since geostrophic wind is above the friction layer, it covers a
large area. That means locations within the small area of our
interests have very similar geostrophic values. We therefore use
the geostrophic wind variable as a common predictor as shown
in (4). The median of the truncated normal distribution is used
as a point forecast:

where is the cumulative distribution function of a standard
normal distribution.

IV. FORECASTING RESULTS AND COMPARISON

In this section, the aforementioned four forecasting models
are implemented to forecast 10-minute-ahead, 20-minute-ahead
and up to 1-hour-ahead wind speed at the four locations in
West Texas on one day each month except May 2010 (the days
are chosen randomly).In the AR, TDD and TDDGW models,
a 45-day sliding window of observations prior to the forecast
is used to estimate coefficients in the models in which the
variables are selected using the data from 2008 and 2009. For
the diurnal pattern, the averages of 45 days’ hourly wind speeds
are used.
To evaluate the performance of the four forecasting models,

mean absolute errors (MAE), defined below, are calculated from
the forecasts on the 11 days and listed in Table III:

where for 11 days.

TABLE III
MAE VALUES OF THE 10-MINUTE-AHEAD, 20-MINUTE-AHEAD AND UP TO
1-HOUR-AHEAD FORECASTS ON 11 DAYS IN 2010 FROM THE PSS, AR, TDD
AND TDDGW MODELS AT THE FOUR LOCATIONS (SMALLEST IN BOLD)

From Table III, we can see that MAE values increase by
column, which means that the forecast accuracy reduces when
the forecasting horizon, , gets larger. Among the four models,
the AR, TDD, and TDDGW models have smaller MAE values
than the PSS and the space-time models, TDD and TDDGW, are
more advanced than the PSS and AR models with smaller MAE
values. As expected, by incorporating the geostrophic wind in-
formation, the TDDGW model increases its predictive accu-
racy. Its MAE values are reduced further compared with the
TDD model, especially for 40-min-ahead or longer time lead
forecasting. Relative to the MAE value of PSS, the TDDGW
model obtains 15.7% reduction at JAYT for 1-hour-ahead fore-
casting, while it is 12.4% for the TDD model. This means that,
by incorporating geostrophic wind information into the TDD
model, we can further reduce the forecasting error up to 3.3%,
based on the relative MAE value to PSS. The computational
time for hour-ahead forecast using a laptop PC for one step
of the TDDGW model is approximately 1.5 minutes, and the
computational time for one step of TDD is approximately 1
minute. In contrast, recent literature suggests that it is currently
impossible to compute the NWP models for hour-ahead sched-
uling purposes [16]. Therefore, data-driven statistical wind fore-
cast models provide computationally feasible solutions for near-
term operations for system operators. In the next two sections,
the economic benefits of improved forecast are quantified in
look-ahead dispatch models.

V. POWER SYSTEM DISPATCH MODEL

With the spatio-temporal wind forecast models, we present in
this section a critical assessment of the economic performance
for power system operations. The power system scheduling
framework formulated in this paper is designed with two layers:
1) Day-ahead reliability unit commitment (RUC) [39], [40] and
2) robust look-ahead real-time (every 5 minutes) scheduling.

A. Day-Ahead Reliability Unit Commitment

The structure of the two-layer dispatch model is described
in Fig. 6. The models of day-ahead reliability unit commitment
(RUC) and real-time scheduling are presented below.
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Fig. 6. Two-layer dispatch model.

The day-ahead reliability unit commitment ensures the relia-
bility of the physical power system after clearing the day-ahead
market. It takes place 24 hours prior to the real-time operation,
as shown in Fig. 6. Energy balancing and ancillary services (re-
serve services) are co-optimized with start-up/shut-down deci-
sions. The model is formalized as follows:

(5)

s.t.

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

In the proposed formulation, the objective function (5) is to
minimize the power system operating costs including genera-
tion cost, reserve cost and start-up/shut-down cost of units. This
scheduling problem is subject to various security constraints.
Equation (6) are the energy balancing (7) is the system reserve
requirement, which is often assessed according to system reli-
ability requirement. Equation (8) are the transmission capacity
constraints. Equation (9) are the ramping constraints of all gen-
eration units. Equation (10) are the generators’ capacity limits
for generator units. Equation (11) are the combined capacity
constraints of generator units for providing energy and reserve
services. Equation (12) and (13) are start-up/shut-down indi-
cator constraints. Equation (14) are the capacity limits of wind

farms. In this paper, wind resources are assumed not to partic-
ipate into ancillary services market providing reserve services.
Equation (15) is the wind forecast for each wind farm at time ,
the details of which are explained in Section III. Equation (16)
gives the binary constraints to integer decision variables.

B. Robust Look-Ahead Economic Dispatch

Following the day-ahead scheduling from the previous sub-
section, we assume that system operators conduct a real-time
dispatch every 5 minutes. We formulate this dispatch model as
a multi-stage robust look-ahead economic dispatch to utilize
the information of advanced spatio-temporal forecast. The ro-
bust look-ahead dispatch minimizes system operation cost over
a horizon of multiple steps (e.g., one hour) for worst cases under
predefined uncertainty set. As other look-ahead economic dis-
patch, only the dispatch decisions of the first step are executed.
The updated information, such as wind forecast, load forecast
and system conditions will be fed into the dispatch model for
future decision-making. The robust look-ahead economic dis-
patch is formulated as

(17)
s.t.

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

The objective function (17) is to minimize the total operating
cost for energy balancing. In real-time scheduling, various secu-
rity constraints are considered. Energy balancing constraints are
provided in (18). Transmission capacity constraints are given in
(19). Ramping constraints of generators are presented in (20).
We introduce short-term dispatchable (STDC) capacity to make
sure the system has enough ramping capability to handle the un-
certainty [41]. Equations (21) and (22) are the upward/down-
ward STDC balancing equations. The STDC are constrained
by the ramping capability of each unit as presented in (28) and
(29). Capacity constraints of conventional generators and wind
farms are described in (25) and (26), respectively. Equation (23)
and (24) are combined capacity constraints between generation
capacity and STDC. The dispatch points of wind generation
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should be no larger than the forecasted wind production poten-
tials, as is shown in (27).
The uncertainty set is given by (30).

u u

u

u
u

u

(30)

Here is the vector of wind production potential forecasts
fed into the dispatch model as presented in (27). is the
vector of expectations of wind forecast for each location at each
time step. and u defines the upper bounds and lower

bounds of wind forecast deviation from the expectation.
is defined as the budget of uncertainty for wind forecast, which
takes the value between 0 and , where is the number
of wind sources modeled in the system. If the budget is set to
be 0, the problem formulation turns out to be deterministic. As

grows, the uncertainty set enlarges, which indicates the
system operation is toward more risk-averse, and the system is
protected against higher degree of uncertain conditions.
Similarly, for the load forecast uncertainty, is the vector

of load forecasts fed into the dispatch model. is the vector
of expectations of load forecast for each bus at each time step.

and u defines the upper bounds and lower bounds of load

forecast deviation from the expectation. is defined as the
budget of uncertainty for load forecast, which takes the value
between 0 and .

VI. NUMERICAL EXPERIMENT

In this section, we conduct a numerical experiment on a
24-bus system to critically assess the operational economic
benefits from improved short-term forecasts.

A. Simulation Platform Setup

The numerical example is modified from the IEEE Reliability
Test System (RTS-24) [42]. The simulation duration is 24 hours.
The operation interval in real-time scheduling is five minutes.
The look-ahead horizon in real-time scheduling is 1 hour. Load
profiles for 48 hours are collected from the ERCOTSystem [43].
Loads are scaled and factored out according to the portion of
different buses. Wind forecasts are generated by various models
discussed in Section III with forecast horizon which ranges from
10 minutes to 60 minutes. Then the wind power forecasts are
converted from the wind speed forecasts based on the Nordex
2.5 MW power curve.
The generator parameters are scaled according to [44]. The

generator capacity portfolio (the installed capacity percentage
of different technologies) is configured and scaled from the real

TABLE IV
GENERATOR PARAMETERS

TABLE V
SAMPLE DAYS IN SIMULATION STUDY

ERCOT system [44]. The ramping rates and marginal costs are
applied as shown in Table IV.
In the numerical studies, simulations of twelve sample days1

are conducted. The twelve days are randomly selected as repre-
sentative days for each month in 2010, as shown in Table V.

B. Results and Analysis

In this section, the simulation results of the numerical experi-
ments are presented. The distribution of the forecast errors of the
wind generation reveals the accuracy of the forecast approach.
The distribution of its errors for the perfect forecast (PF) with
100% accuracy is a concentrated spike at the zero origin of the
x-axis. The better the forecast accuracy the closer the distribu-
tion pattern is to the central spike. A forecast model with poor
accuracy has its errors distributed widely. The probability den-
sity distributions of the wind generation forecast errors (for a
200 MW wind farm) using the PSS, AR, TDD and TDDGW
models under various simulation days are presented in Fig. 8.
As we can observe, the distribution of the forecast errors of the
PSS model is relatively spread out. The distribution of forecast
errors of the TDDmodel is concentrated and has a higher central
spike than do the AR and PSS models. The central spike of the
TDDGW is higher than that of any other models. The shape of
the forecast error distribution of the TDDGW model is closest
to that of the perfect forecast. This is also verified by the wind
speed forecast MAE presented in Table III.
By incorporating different forecast models into the power

system economic dispatch, the economic performance differs.
The economic performance results of Case A are presented in
Fig. 9, which includes the total operating cost of each simula-
tion day. The costs of the perfect forecast, PSS, AR TDD and

1Day 5 for TDDGW model is not available due to the inaccessibility of mea-
surement data. Therefore, for the averaged MAE comparison of wind speed
forecasts, only 11 days are considered. For the independent studies of economic
benefits in power system operation, Day 5 for models other than TDDGW are
presented.
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Fig. 7. The IEEE RTS-24 system (modified).

Fig. 8. Distribution of forecast errors under different forecast models.

Fig. 9. Total operating cost using different forecast models.

TDDGW models are represented by the blue bar, the red bar,
the green bar, the purple bar and the cyan bar, respectively. As
we can see, for most of the cases, the spatio-temporal forecasts
(TDD and TDDGW) have lower operating costs than do the PSS
and AR models.
Taking the PSS model as a benchmark, the reduction in op-

erating cost by percentage using various forecast models is pre-
sented in Fig. 10. As we can see, the TDD and TDDGWmodels,

Fig. 10. Operating cost reduction using different forecast models.

which consider spatio-temporal wind correlation, outperform
the AR model and the PSS model in most of the cases. By incor-
porating the effect of geostrophic wind, the TDDGWmodel can
have a lower system operating cost than the TDD model. For
most of the days, the AR model performs better than the PSS
model. However, it is observed that for some days (Day 5), the
AR model does not produce as good a forecast as does the PSS
model. That is the limitation of wind forecast based on purely
historical data. In contrast, by incorporating spatial correlations,
the TDD model can produce more accurate forecasts than can
the PSS model and enable lower system operating costs.

VII. CONCLUSIONS

Spatio-temporal wind forecast models (TDD and TDDGW
models) are used and critically evaluated in this paper. It is
shown that by incorporating spatial correlations of neighboring
wind farms, the forecast quality in the near-term (hours-ahead)
could be improved. The TDD and TDDGW models are in-
corporated into a robust look-ahead economic dispatch and a
day-ahead reliability unit commitment. Compared with conven-
tional temporal-only statistical wind forecast models, such as
the PSS models, the spatio-temporal models consider both the
local and geographical wind correlations. By leveraging both
temporal and spatial wind historical data, more accurate wind
forecasts can be obtained. The potential economic benefits of
advanced wind forecast are illustrated using a modified IEEE
RTS 24 bus system. It is observed that the spatio-temporal
model can increase wind resources utilization, and reduce
system costs against uncertainty. Such data-driven statistical
methods for short-term wind forecast are also applicable in
other similar regions with high wind penetration.
Future work will investigate the applicability of the proposed

dispatch model to large-scale wind farms, such as offshore wind
farms. Given the more consistent wind pattern over larger ge-
ographical areas, the potential benefits of the proposed method
could be higher. Another important avenue for future research
is to analyze the tradeoff between communication/computation
burdens and the improved economic benefits by incorporating
more spatially correlated wind data into power system dispatch
models.
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