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Abstract To support large-scale integration of wind power into electric energy sys-
tems, state-of-the-art wind speed forecasting methods should be able to provide accu-
rate and adequate information to enable efficient, reliable, and cost-effective schedul-
ing of wind power. Here, we incorporate space-time wind forecasts into electric power
system scheduling. First, we propose a modified regime-switching, space-time wind
speed forecasting model that allows the forecast regimes to vary with the dominant
wind direction and with the seasons, hence avoiding a subjective choice of regimes.
Then, results from the wind forecasts are incorporated into a power system economic
dispatch model, the cost of which is used as a loss measure of the quality of the forecast
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models. This, in turn, leads to cost-effective scheduling of system-wide wind genera-
tion. Potential economic benefits arise from the system-wide generation of cost savings
and from the ancillary service cost savings. We illustrate the economic benefits using
a test system in the northwest region of the United States. Compared with persistence
and autoregressive models, our model suggests that cost savings from integration of
wind power could be on the scale of tens of millions of dollars annually in regions
with high wind penetration, such as Texas and the Pacific northwest.

Keywords Correlation · Cost savings · Power system economic dispatch ·
Space-time statistical model · Wind energy · Wind speed forecasting

Mathematics Subject Classification (2000) Primary 62J05; Secondary 62P30

1 Introduction

1.1 Wind energy

Renewable energy, particularly wind energy, is rapidly being integrated into electric
power systems throughout the world. In Denmark, wind has become one of the largest
sources of electricity, supplying 26 % of electricity demand in 2011. In Spain, 15.9 %
of electricity consumption was generated by wind in 2011, along with 15.6 and 10.6 %
in Portugal and Germany, respectively, according to the European Wind Energy Asso-
ciation (EWEA 2012). The United States (US) Department of Energy (DOE) published
a report in 2008 that described a model-based scenario in which wind energy would
provide 20 % of US electricity demand by 2030 (DOE 2008). China is pursuing a total
capacity of 150 Gigawatts (GW) from wind energy by 2020, 250 GW by 2030 and
450 GW by 2050 (CREIA (2010); see the review by Zhu and Genton (2012) for more
information about global wind energy).

Due to the high variability and limited predictability of wind, current power system
scheduling methods face challenges in integrating large-scale wind power. The basic
objective of power system scheduling is to maintain a supply and demand balance at
minimum cost, subject to transmission constraints and plausible contingencies. Prior
to the introduction of renewable energy sources, such as wind and solar, uncertainty in
power system scheduling primarily came from the demand side (Xie et al. 2011). Now,
with the introduction of intermittent wind generation, this uncertainty comes from both
supply and demand sides. Highly accurate wind power forecasts are therefore very
much needed. Several important pieces of work discuss the major technical challenges
in power system operations that integrate large-scale wind energy (Ackermann 2005;
Denny and O’Malley 2006; Makarov et al. 2009; Xie et al. 2011).

1.2 Wind speed forecasting

Accurate wind speed prediction is crucial in reducing the uncertainty from the supply
side in the power system scheduling. Compared with long-term prediction, short-term
forecasting (e.g., hours ahead to minutes ahead) is more accurate and reliable. It is
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Improved power system dispatch 3

also essential to effective power system operations. Hours-ahead wind forecasting
provides good timing guide for quick-start power to operate and bridge the gap in
energy imbalances on time. Genton and Hering (2007) suggested that wind power
forecasts by converting wind speed forecasts based on a power curve is one of the
common ways for wind power prediction because unpredicted operating conditions
(e.g., curtailment) may affect the quality of direct power prediction. Wind farms also
usually have different wind turbine models and designs, hence wind speed forecasting
is more adaptive to convert to power production forecasts based on their own power
curves provided by their manufactories. Moreover, forecasting based on wind power
directly is available only when there is historical wind power data collected from wind
farms. Our method is also helpful when the goal is to evaluate the potential wind power
production at certain locations before building wind farms there. Therefore, in this
paper, we focus on short-term wind speed forecasting with speed/power conversion.
Note that more complicated speed/power conversion [e.g., conditional dynamic power
curves proposed by Jeon and Taylor (2012)] can further improve the quality of the
forecast effectively. The model proposed herein could be adapted to such advanced
speed/power conversion technology.

Extensive research has been devoted to wind power forecasting problems. Giebel
et al. (2011), Kariniotakis et al. (2004), Monteiro et al. (2009) and Zhu and Gen-
ton (2012) reviewed approaches to wind power forecasting, including physical meth-
ods, statistical models and combined physical-statistical systems. In short-term wind
speed forecasting, statistical models have been found to be quite competitive com-
pared with other approaches. Moreover, statistical models that incorporate spatial
information are more accurate than the conventional time series models [see Zhu and
Genton (2012) for a review]. Gneiting et al. (2006) proposed a regime-switching space-
time diurnal (RSTD) model to forecast 2-h-ahead wind speed at Vansycle, Oregon.
Their model outperformed persistence forecasts and autoregressive forecasts by 29
and 13 %, respectively, in terms of the root mean squared error (RMSE) in July 2003,
for instance. However, the RSTD model relies on local geographic features. To remove
these constraints, Hering and Genton (2010) generalized the RSTD model by treating
wind direction as a circular variable and including it in their model. They coined it
a trigonometric direction diurnal (TDD) model. The TDD model obtained similar or
better forecasting results than did the RSTD model without requiring prior geographic
information. Tastu et al. (2011) analyzed and modeled short-term wind power fore-
cast errors using spatio-temporal methods, such as regime-switching models based
on wind direction and conditional parametric models with regime-switching, sub-
stantially reducing variance in the forecast errors. Pinson and Madsen (2012) applied
adaptive Markov-switching autoregressive models to offshore wind power forecast-
ing problems in which the regime sequence is not directly observable, but follows a
first-order Markov chain. Here, we propose a new modification of the RSTD model
to allay its limitations.

Model evaluation is also an important step in making a final decision on which model
should be implemented. Usually, a loss function is predefined and the model that can
generate forecasts with the smallest loss is considered to be the most advanced; see
Gneiting (2011). Squared and absolute errors are two commonly used loss functions.
However, for wind forecasting problems, more realistic loss functions are needed since
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penalization on underestimates and forecasts of small true values are desired; see Zhu
and Genton (2012) for a more detailed discussion. Hering and Genton (2010) proposed
the power curve error as a loss function, which links prediction of wind speed to wind
power by a power curve and evaluates the loss based on the wind power with penalty
on underestimates. Zhu and Genton (2012) introduced the mean absolute percentage
error and the mean symmetric absolute percentage error as loss functions to penalize
both underestimates and forecasts of small true values. In this paper, we propose a
new idea for model evaluation based on the power system operating costs. Since the
ultimate goal is to reduce the cost of the whole power system, it is natural to look for
the forecasts generated from a model that produces the most cost savings.

In summary, the main contributions of this paper are the following:

1. A modified RSTD model for short-term wind speed forecasting is proposed. It
generalizes the RSTD model by allowing the forecast regimes to vary with the
dominant wind direction in each season instead of fixing the forecast regimes
based on prior geographic information. In the original application of the RSTD
model, it was straightforward to define west and east forecast regimes due to
prevailing westerly winds in the target area. However, for other settings where the
winds follow more complicated patterns, the number and position of the forecast
regimes are difficult to determine. In the modified model, the best position of the
forecast regimes is detected by rotating the dividing angles of the regimes until
the minimum mean absolute error (MAE) for each season is reached. We call this
new model RRSTD for rotating RSTD.

2. To evaluate the model, we formulate an economic dispatch model for power sys-
tems that incorporates space-time wind forecast information. Numerical simula-
tions are conducted in a representative test system derived in the northwest region
of the US, and the results demonstrate the economic benefits from improved wind
forecasts.

This paper is organized as follows. In Sect. 2, we first introduce our modified
space-time statistical model for short-term wind speed forecasting, the RRSTD model,
and then we describe persistence and autoregressive models as references for later
comparisons. In Sect. 3, the newly proposed RRSTD model is then applied to a spatio-
temporal wind data set from the northwest region of the US. Its prediction MAE
values for each month are compared with reference models. In Sect. 4, we propose
an economic dispatch model that incorporates available short-term, space-time wind
power forecasts. An illustrative power system economic dispatch example for the
Pacific northwest is presented, which quantifies the potential savings in both generation
costs and ancillary services in the proposed dispatch model. Concluding remarks are
provided in Sect. 5.

2 The rotating RSTD model

In this section, we describe the RRSTD model in detail while the RSTD model is
included as a special case. As a modification, the RRSTD model keeps the basic
characteristics of the RSTD, but overcomes some of its limitations to have more
general applicability. Two reference models are also briefly introduced.
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Improved power system dispatch 5

2.1 RRSTD model description

Let ys,t and θs,t respectively be wind speed and direction at site s and time t , where
s = 1, . . . , S, t = 1, . . . , T , and θs,t ∈ [0◦, 360◦) with 0◦, 90◦, 180◦, 270◦ indicating
southerly, easterly, northerly and westerly winds, respectively. The objective is to
predict ys,t+k , the k-step-ahead wind speed at site s, where k = 1, 2, . . .. When k = 1,
for example, depending on the resolution of the wind data, it is a 1-h-ahead forecasting
for hourly wind data, and 10-min-ahead forecasting for 10-min wind data. To simplify,
we present the RRSTD model in the setting of forecasting wind speed k-step-ahead
at a site s1, say.

Rather than only providing a deterministic point forecast of ys,t+k , a predictive
distribution is considered to capture the probabilistic information in wind speed. Since
wind speed is non-negative and has large values with low probabilities (right-skew
distributed), it is assumed that Ys1,t+k follows a truncated normal distribution with
center and scale parameters μs1,t+k and σs1,t+k : Ys1,t+k ∼ N+(μs1,t+k, σs1,t+k). To
predict ys1,t+k precisely, the key lies in appropriately modeling μs1,t+k and σs1,t+k .
This distribution is used quite commonly in probabilistic wind forecasting models;
see Gneiting et al. (2006) and Zhu and Genton (2012) for more discussion.

Generally, seasonal and diurnal patterns are observed in winds. As in the RSTD
model, we fit the diurnal pattern with two pairs of harmonics as

Ds1,h = d0+d1 sin

(
2πh

24

)
+ d2 cos

(
2πh

24

)
+ d3 sin

(
4πh

24

)
+d4 cos

(
4πh

24

)
,

(1)

where h indicates the hour of a day, h = 1, 2, . . . , 24, and the coefficients are estimated
by the least squares method. Then, the center parameter is modeled as μs1,t+k =
Ds1,t+k +μr

s1,t+k , where μr
s1,t+k is the residual wind speed after removing the diurnal

pattern.
The residual, μr

s1,t+k , is modeled by a linear combination of historical wind speed
residuals, up to p-step lags, of itself as well as its neighbors (to take the spatio-temporal
correlations in wind into account), allowing the coefficients to vary with the dominant
wind direction and season by defining the variable forecast regimes as

μr
s1,t+k = α0 +

S∑
s=1

p∑
j=0

αs, j

(
θs∗,t , θ

∗
m(t+k)

)
μr

s,t− j , (2)

where α0 and αs, j (·, ·), s = 1, . . . , S and j = 0, . . . , p are coefficients, and θ∗
m(t+k) ⊆

[0◦, 360◦) defines the forecast regimes based on the prevailing wind direction in the
season (here month), m(t + k), to which time t + k belongs. Here, θs∗,t is the current
wind direction at site s∗ used to indicate the direction of the nearby future wind.
The site s∗ ∈ {1, . . . , S} is located upstream of the wind and indicates the wind
source.

The meaning of the above model is that, for a certain season, if the future wind
direction at the target site, which is estimated by θs∗,t , falls into a predefined forecast
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Fig. 1 Regime dividing plots for θ∗
m(t+k)

= {26◦, 206◦}Aug (left) and θ∗
m(t+k)

= {60◦, 196◦, 295◦}Aug

(right). The dashed line connects the south (0◦) and the north (180◦), with the westerly wind to the left and
the easterly wind to the right. Separate models of μr

s,t+k are built for each regime

regime, a particular space-time linear model will be applied to estimate μr
s1,t+k , and

the forecast regimes will be based on the dominant wind in that season. For example,
if θ∗

m(t+k) = {26◦, 206◦}Aug and s∗ = s2, then, in August, the RRSTD model fits two
separate models for the center parameters μr

s1,t+k : model 1, when the current wind
direction at site s2 is between 26◦ and 206◦, or θs2,t ∈ [26◦, 206◦); model 2, when
θs2,t ∈ [206◦, 360◦) ∪ [0◦, 26◦); see Fig. 1 (left panel). The dimension of θ∗

m(t+k)

indicates the number of regimes that are defined. For θ∗
m(t+k) = {60◦, 196◦, 295◦}Aug

and s∗ = s2, three separate models are built for the three forecast regimes divided by
these angles; see Fig. 1 (right panel).

The scale parameter σs1,t+k is modeled as

σs1,t+k = b0 + b1vs1,t , (3)

where b0, b1 > 0 and vs1,t is the volatility value: vs1,t = { 1
2S

∑S
s=1

∑1
i=0(μ

r
s,t−i −

μr
s,t−i−1)

2}1/2; see Gneiting et al. (2006) for more information.
A key point of the RRSTD model is how to decide the number and the position of

the regimes. For locations that have significant prevailing wind, this can be determined
practically (see Sect. 3.2). The RSTD model is a special case of the RRSTD model with
θ∗ = {0◦, 180◦}, motivated by the westerly prevailing wind in the northwest region
of the US. For other situations, we propose that θ∗

m(t+k) be chosen by minimizing the
prediction MAE for each season/month after determining the number of regimes. The
predictors in (2) are selected by the Bayesian Information Criterion as in Hering and
Genton (2010). The coefficients in (2) along with b0, b1 in (3) are estimated by means
of the continuous ranked probability score method (see Gneiting and Raftery (2007)
for more details).

With the estimated predictive distribution, N+(μs1,t+k, σs1,t+k), we take the median
of the truncated normal distribution as the wind speed forecast k-step-ahead at s1,
defined as
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Improved power system dispatch 7

z+
0.5 = μs1,t+k + σs1,t+k · �−1

{
1/2 + �

(−μs1,t+k

σs1,t+k

)/
2

}
,

where �(·) is the cumulative distribution function of a standard normal distribution.
The median of the predictive distribution is used as the forecast, because we are using
MAE as one of the options to evaluate the performance of the models. As a commonly
used metric in model evaluation, MAE fits the context of power system economic
analysis appropriately. In the existing industrial practice, what matters to the power
system operation is the wind generation deviation. A large deviation can cause extra
costs and efforts due to re-dispatch, spinning reserve, and even loss of load. Therefore,
we select MAE for performance evaluation of the models although other metrics could
be used as well (e.g., RMSE).

2.2 Reference models

To evaluate the performance of the RRSTD model, we compare its forecasts to other
models, including the persistence (PSS) and autoregressive (AR) models. The main
ideas of the two reference models are introduced briefly:

• PSS assumes that the future wind speed is the same as the current one, or ŷs1,t+k =
ys1,t .

• An AR(p) model estimates μr
s1,t+k in (2) as a linear combination of the previ-

ous p wind speed residuals from the same location only, or μr
s1,t+k = α0 +∑p

j=0 α jμ
r
s1,t− j . For the scale parameter, a GARCH(1,1) model is used instead

of (3); see Gneiting et al. (2006).

Due to the high variations in wind, PSS works better for very short-term forecast-
ing, such as 10-min-ahead predictions. The AR(p) model can capture the temporal
correlation in wind patterns and usually outperforms PSS in short-term wind speed
forecasting problems.

3 Numerical experiments

3.1 Wind data

The data considered here are 10-min wind speed (m/s) and direction (degrees) records
from three meteorological towers located at Vansycle (Oregon), Kennewick (Wash-
ington), and Goodnoe Hills (Washington) in the Columbia River Basin, which is in
northwest US. Missing data were imputed by linear interpolation. Detailed information
about the data and the three sites can be found in Gneiting et al. (2006).

The training and testing data sets were divided as follows:

• Training set: data from 1 August to 30 November 2002. With the training data,
for each month, the regime dividing angles, θ∗, and the wind source indicator,
s∗, in (2) are learned by minimizing the prediction MAE values. Then, in each
forecasting regime, linear models for the center parameter are obtained.
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8 X. Zhu et al.

• Testing set: data from 25 February to 30 November 2003. The trained models are
evaluated during this period. The parameters in the models are estimated from data
that are up to 45 days earlier, as suggested by Gneiting et al. (2006).

3.2 Exploratory data analysis

An exploratory data analysis was conducted on the relationship between wind speed
and wind direction with the aim to determine the number of forecast regimes and how
to divide the regimes in the RRSTD model. The wind roses in Fig. 2 give a view of how
wind speed and wind direction are distributed each month from August to November
2002 at Vansycle (left column), Kennewick (middle column), and Goodnoe Hills (right
column). In a wind rose, each petal indicates the frequency of winds blowing from a
particular direction, and the color bands in each petal show the range of wind speeds.

As we can see from the wind roses, the wind patterns in this area are quite signif-
icant. High frequencies and wide speed ranges are found in the northwest, north and
west direction at Vansycle, Kennewick and Goodnoe Hills, respectively, over the four
months, followed by winds from the opposite directions. These are consistent with the
geographic features in this area, namely, that these three locations are along the south,
southwest, and north bank of the Columbia River, which runs from east to west along
the boundary between Washington and Oregon, with high terrain in both the north and
south restricting the air flow.

Based on these wind patterns, using two forecasting regimes is reasonable. In our
experiment, we used two equally divided regimes resulting in a two-regime RRSTD
model. More complex RRSTD models with two regimes of different sizes or with
multiple (more than two) forecasting regimes could be considered as well. Our explo-
ration of those alternate models revealed insignificant improvements for this particular
data set.

3.3 Training data results

The two-regime RRSTD model for each month was trained based on the training data
set at all three locations for 1-h-ahead wind speed forecasting. The gains from using
the RRSTD model instead of the RSTD are shown in the MAE values in each month
in Fig. 3.

Let yV,t , yK ,t , yG,t , θV,t , θK ,t , and θG,t denote the wind speed and direction at
Vansycle, Kennewick and Goodnoe Hills. The goal here is to predict yV,t+6, yK ,t+6
and yG,t+6 (1-h-ahead is equal to 6-steps-ahead in 10-min data). The objective of
the training procedure is to find the two-regime dividing angle, θ∗

m(t+6), the wind
source indicator, s∗, and the predictors for each forecast regime in (2) with minimum
prediction MAE value. To do this, a dense number of possible two-regime forecasting
designs are tested. Specifically, for a possible dividing angle, θ ∈ {1◦, 2◦, . . . , 180◦},
a wind source indicator, s∗, is detected with the method used in Gneiting et al. (2006);
then, a separate forecasting model is built for each forecasting regime, resulting in
prediction MAE values as displayed in Fig. 3 at Vansycle. The blue dashed line in
Fig. 3 gives the best two-regime dividing angle, θ∗, with the smallest MAE value.
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Fig. 2 Wind roses of data from August to November 2002 at Vansycle (left column), Kennewick (middle
column) and Goodnoe Hills (right column). The vertical dotted lines give the west-east forecast regimes of
the RRSTD (i.e., RSTD) model, while the blue dashed lines and solid lines give the two forecast regimes
of the two-regime RRSTD models with the minimum prediction MAE values for each month for 1-h-ahead
and 2-h-ahead forecasting, respectively

The RSTD model is a special case of the RRSTD model when the regime dividing
angle, θ , is equal to 0◦ or 180◦. As shown in Fig. 3, the minimum MAE value occurs
neither at θ = 0◦, nor at θ = 180◦, while the RRSTD model achieves the smallest MAE
value at θ = 8◦, 9◦, 175◦ and 29◦ for August, September, October, and November,
respectively, at Vansycle. The blue solid lines in Fig. 2 give the best two regimes of the
two-regime RRSTD models based on the MAE values for each month for 2-h-ahead
forecasting. We see that although the westerly wind dominates this area, a simple west-
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Fig. 3 Plots of 1-h-ahead prediction MAE results based on the two-regime RRSTD model with the dividing
angle, θ , from 0◦ to 180◦ for each month at Vansycle in 2002. The blue dashed line indicates the position
of the best two-regime dividing angle, or θ∗, that has the smallest MAE value

east forecast regime is not the best and adjustment is needed for different seasons to
achieve more accurate forecasts. The RRSTD model is able to adjust the forecasting
regimes to the wind roses shown in Fig. 2 based on wind direction and season. Similar
training results are found for the other two locations.

3.4 Testing data results

The trained two-regime RRSTD model for each month is applied to forecast 1-h-ahead
wind speed in the same month in the testing data set at all three locations, and the
prediction MAE values are compared with the two reference models (see Table 1).
Due to data limitations, the model for August is implemented to forecast wind speed in
May, June and July in the testing data, and a 45-day training period is used to estimate
the coefficients in (2). The results show that the RRSTD model outperforms the PSS
and AR models as expected. The latter is fitted with a maximum order of nine based
on the Akaike Information Criterion (AIC).

Overall, the RRSTD model outperforms PSS, reducing the MAE value by 8.1 %,
and by 6.6 % compared with the AR model at Vansycle. We also conducted 2-h-ahead
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Table 1 MAE values of forecasts in the 2003 testing data set based on the two-regime RRSTD models for
1-h-ahead forecasting at Vansycle, Kennewick and Goodnoe Hills, compared with the PSS and AR models

Testing MAE

Sites Models May Jun Jul Aug Sep Oct Nov Overall

Vansycle PSS 1.27 1.18 1.27 1.23 1.19 1.31 1.23 1.24
AR 1.25 1.16 1.19 1.21 1.19 1.31 1.23 1.22
RRSTD 1.16 1.06 1.10 1.12 1.11 1.25 1.17 1.14

Kennewick PSS 1.43 1.28 1.39 1.34 1.26 1.44 1.35 1.36
AR 1.46 1.27 1.36 1.33 1.25 1.44 1.33 1.35
RRSTD 1.40 1.23 1.33 1.30 1.23 1.44 1.35 1.33

Goodnoe Hills PSS 1.17 1.14 1.12 1.15 1.18 1.33 1.28 1.20
AR 1.13 1.09 1.03 1.12 1.17 1.30 1.26 1.16
RRSTD 1.11 1.08 1.02 1.09 1.12 1.29 1.22 1.13

The smallest MAE values are in bold

forecasting experiments and experiments with the RSTD and TDD models, and similar
results overall were obtained. Wind roses from May to November 2003 at Vansycle
are depicted in Fig. 4. In fact, with only 4 months of training data, the forecasting
ability of the RRSTD model is challenged by the assumption that monthly patterns
remain similar in the training and testing data, while at least several years of wind data
would be needed to model monthly patterns. We believe that the performance of the
RRSTD model would be better if more data were available.

4 Integrating wind power into a power system

In this section, we incorporate space-time wind forecasts into electric power system
scheduling. We compare the system-wide generation cost savings, as well as the ancil-
lary service cost savings, using the RRSTD, AR, PSS forecasting models. First, a test
system based on the Bonneville Power Administration (BPA) system, which covers the
area where the wind data were collected, is introduced and studied for power system
operation with space-time wind forecasts. Second, we formulate the power system dis-
patch problem that incorporates advanced spatio-temporal correlated wind forecasts.
Finally, a numerical experiment is conducted and analyzed, and the performances of
the different forecasting models are compared.

4.1 Power system specification in the BPA region

A power system economic dispatch model is used by system operators in scheduling
power generation. This model determines the power generators’ outputs to maintain
a balance between supply and demand, as well as to minimize total system operating
costs while satisfying security constraints. In this subsection, a detailed power system
dispatch procedure is introduced based on the BPA system, which covers the areas of
Vansycle, Kennewick and Goodnoe Hills.

Established in 1937, BPA is a non-profit agency located in the Pacific north-
west. About one-third of the electric power used in the northwest comes from BPA,
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Fig. 4 Wind roses from May to November 2003 at Vansycle. The vertical dotted lines give the west-east
forecast regimes of the RRSTD (i.e., RSTD) model, while the blue dashed lines give the two forecast regimes
of the two-regime RRSTD models with minimum prediction MAE values for each month for 1-h-ahead
forecasting

which operates and maintains about 75 % of the high-voltage transmission network
(15,212 circuit miles) in its service territory (BPA 2010), which includes Idaho, Ore-
gon, Washington, western Montana and small parts of eastern Montana, California,
Nevada, Utah and Wyoming (Fig. 5).

The major missions of BPA in operating electric energy are to: (1) act as an adequate,
efficient, economical and reliable power supply; and to (2) maintain a transmission
system capable of integrating different power resources, providing electricity to its
customers through inter-regional interconnections and maintaining electrical reliabil-
ity and stability.

To balance demands for power, the output of every generator in the system has to be
scheduled over different time frameworks (i.e., day-ahead, hour-ahead, and 5- to 10-
min-ahead). The BPA scheduling procedure (Makarov et al. 2008) is shown in Fig. 6.
In the power generation scheduling process, the system operator at BPA schedules
generators to meet the expected demand over several time scales. All the scheduled
power generation must be within the output capacity, as well as within the ramping
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Fig. 5 BPA’s transmission system including Idaho, Oregon, Washington, Montana and Wyoming (BPA
2010)

Fig. 6 BPA’s scheduling procedure (Makarov et al. 2008)

capacity, which refers to the maximum change in power generation output between two
consecutive time intervals. For example, a natural gas generator’s ramping capacity
can be 15 % of its maximum output in 10 min.

Given that it takes several hours to start up or shut down many large generators
(e.g., nuclear, coal), a day-ahead schedule (or pre-schedule) process is required to
plan the generators’ operations over the next 24 h. Based on day-ahead forecasts,
the pre-schedule is completed before 2:00 pm the day before the day-of-delivery (or
the day on which the real-time operation takes place). However, the day-ahead load
forecast and day-ahead wind forecast have relatively low accuracies, therefore a real-
time schedule that is 1-h ahead in BPA is required to discern a mismatch between the
near-term forecast and the day-ahead forecast. The real-time schedule is established on
the hour-ahead forecast, which has to be completed 20 min before the hour-of-delivery
(the hour when the real-time operation takes place).

Within each hour, the available wind generation, as well as the electricity demand,
still varies from second to second. Such an imbalance between total supply and total
demand will cause degradation of the frequency of the electricity, which has very
stringent requirements for the safety of many appliances. In order to maintain the
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system’s electrical frequency at 60 Hz, automatic feedback control loops are installed
at many generators’ speed governors, which is referred to as the automatic generation
control mechanism and is very similar in principle to the cruise control in automobiles.

4.2 Power system dispatch with space-time wind forecasts

Motivated by the development of wind energy, there is now a large body of lit-
erature on understanding the impact of wind power on electricity grid operations.
Watson et al. (1994) first introduced the numerical weather prediction (NWP) model
for power system scheduling and evaluated its benefits (on-line reserve planning) to
the England and Wales National Grid. Later, autoregressive moving average (ARMA)
models were used for wind forecasting and incorporated into power dispatch models
(Tuohy et al. 2009; Soder 2004). Developed from conventional criteria, probabilis-
tic optimal dispatch methods were proposed to quantify the spinning/non-spinning
reserve requirements for integrating wind (Bouffard and Galiana 2008; Doherty and
O’Malley 2005). The spinning reserve is the extra generating capacity from units that
are already turned on and are capable of increasing the power output when needed. The
non-spinning reserve is the extra generating capacity that is not currently connected to
the system, but can be brought online after a short delay. In recent years, many efforts
have focused on enhanced day-ahead power system operation using NWP models
(Constantinescu et al. 2011; Pappala et al. 2009). To handle potential risks posed by
wind generation, advanced dispatch methods such as robust optimization (Zhao and
Zeng 2010) and stochastic optimization (Constantinescu et al. 2011; Wang et al. 2008;
Wu et al. 2007; Meibom et al. 2011; Papavasiliou et al. 2011) based unit commitment
(UC)/economic dispatch (ED) models were proposed and studied. Unit commitment
makes the start-up/shut-down decisions of generators toward the least-cost dispatch
of available generation resources to meet the electrical load. Economic dispatch pro-
vides the generation output dispatch decisions which specify the output level of each
generator toward a minimized total operating cost to balance the load.

Although there have been many different proposals on what should be an optimal
dispatch method in future power systems, actual practice during real-time operations
is still a single-stage security-constrained economic dispatch (SCED). Our aim is
to assess the economic value brought by the RRSTD model using a well-accepted
industry model in real-time power system operations. In other words, the power system
dispatch model is assumed to be a single-stage SCED. Consequently, we neglect
the time step index for decision variables and parameters in the formulation. The
mathematical formulation of the single-stage SCED is described as follows with the
notation listed in Table 2:

min
PGi ,PWi ,PRi

:
∑
i∈G

CGi (PGi ) +
∑
i∈W

CWi (PWi ) +
∑
i∈G

CRi (PRi ), (4)

subject to:

∑
i∈G

PGi +
∑
i∈W

PWi =
∑
i∈D

PDi , (5)
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Table 2 Notation for the power
system dispatch model

G Set of conventional power plants

D Set of inelastic loads

W Set of wind farms

CGi Generation cost function of power plant i

CWi Generation cost function of wind farm i

CRi Reserve cost function of power plant i

PGi Scheduled generation of power plant i

PWi Scheduled generation of wind farm i

PDi Forecasted load level of bus i

PRi Scheduled reserve capacity of power plant i

F Vector of branch flows

Fmax Vector of capacity limits of transmission lines

�T Energy Market scheduling interval

P R
i Ramping constraints of power plants i

Pmin
Gi

Lower operating limit of power plant i

Pmax
Gi

Higher operating limit of power plant i

Pmin
Wi

Lower operating limit of wind farm i

Pmax
Wi

Higher operating limit of wind farm i

P̂Wi Forecasted wind availability for wind farm i

∑
i∈G

PRi ≥ RD + RW , (6)

|F| � Fmax, (7)

|PGi − P0
Gi

| � P R
i �T, i ∈ G ∪ W , (8)

Pmin
Gi

� PGi � Pmax
Gi

, (9)

0 � PRi � Pmax
Gi

, (10)

Pmin
Gi

� PGi + PRi � Pmax
Gi

, (11)

Pmin
Wi

� PWi � Pmax
Wi

, (12)

PWi � P̂Wi . (13)

In the proposed formulation, the objective function (4) is to minimize the power
system’s operating costs, which include costs of power generation and costs of pro-
viding reserve and regulation services. The decision variables include: the dispatched
generation output for each generator, PGi ; the dispatched generation output for each
wind farm, PWi ; the dispatched generation output for regulation and reserve capac-
ity, PRi . Constraints on this problem include system and individual unit operating
constraints posed by security and reliability. The energy balance Eq. (5) requires
that the total power generation always satisfies the total demand in the steady state.
The system’s reserve and regulation requirements (6) are determined by the relia-
bility requirement component of the load, RD , and the reliability requirement com-
ponent of wind generation, RW . The load component is a linear function of actual
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Table 3 BPA’s integrated
resources (BPA 2010)

Type Sustained capacity (MW) Percentage

Hydro 27,142 59.5

Coal 5,866 12.9

Combustion turbines 5,526 12.1

Co-generation 2,938 6.4

Nuclear 1,150 2.5

Imports 2,094 4.6

Non-utility 630 1.4

Other resources 258 0.6

system-wide load levels for each interval as practiced by major independent system
operators (ERCOT 2010). The reserve requirement related to wind generation, RW ,
is a linear function of the MAE of the wind generation forecast error. The trans-
mission line capacity limitations (7) contribute to network transmission congestion.
The ramping constraints of generators are described by (8). The upper bounds and
lower bounds of conventional generators’ outputs are provided by (9). The avail-
able reserve and regulation capacity constraints are given by (10). The wind compo-
nent is given by the deviation between the actual wind generation production poten-
tial and the wind generation forecast. This approach to quantifying system reserve
requirements approximates the empirically based approach to quantifying reserve
requirements and serves as a lower bound for the reliability requirement due to wind
forecast uncertainty. The capacity constraints of each generator for providing both
energy and reserve services are in (11). The upper and lower bounds of wind farms’
power output are described by (12). The wind forecast for each wind farm is pro-
vided by (13). This is determined by a space-time forecast model, for instance the
RRSTD.

4.3 A realistic illustrative example

In this subsection, numerical simulations are performed in a test BPA system. We adopt
the current real-time operational practice in the power industry, which is a single-stage,
security-constrained economic dispatch model. The wind speed forecasts in Sect. 3
are converted into wind power forecasts with a 2.5 MW Nordex power curve for each
wind turbine and scaled up to wind farms based on the BPA system setup. According
to the economic dispatch results, different wind forecasting models are compared in
terms of potential savings in both generation cost and ancillary services.

Vansycle, Kennewick and Goodnoe Hills are located in the Columbia River Basin.
The electric power grid of this area is operated by BPA. Our simulation system is
revised from the IEEE Reliability Test System (RTS-24) (Grigg et al. 1999). The
generators are categorized as different technology-based power resources, such as
hydro, coal, nuclear, natural gas and wind power. The generator capacity portfolio
(installed capacity percentage of different technologies) is configured according to
the generation portfolio of the practical BPA system (BPA 2010) (see Table 3). The
network typology of the simulation system is presented in Fig. 7.
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Fig. 8 The wind generation potential of Vansycle, Kennewick and Goodnoe Hills on 15 August 2003. The
horizontal axis indicates different time steps with 10 min per interval, and the vertical axis indicates the
wind production potential or available wind generation in MW

The load profile used in the simulation is scaled from the historical load profile of
the BPA system (BPA 2007). Fourteen typical days in 7 months of different seasons
are selected for simulation. The duration of a simulation is a typical power system
operation period of 24 h (T = 144). The different wind forecast methods described in
Sect. 2 are implemented in the simulation. The operating interval, �T , of generation
scheduling is 10 min. Wind profiles during the selected 14 days are collected from the
BPA system and scaled to the simulation system. For example, the wind generation
potentials at the three locations (n = 3) on 15 August 2003 are presented in Fig. 8.
Wind generation over the maximum generation capability of the wind turbines has to
be curtailed for security purposes. The wind component for the reserve requirement
is estimated by the MAE of the wind forecast errors. Because over-scheduling (the
scheduled wind generation is higher than the actual production capability) requires
deployment of additional reserve capacity, under-forecast errors are not considered
in the MAE calculations. A coefficient of 1.2 is multiplied to the MAE value as a
reliability margin.

Generator parameters are configured according to Gu and Xie (2010). In the sim-
ulation, the minimum output levels of conventional generators, Pmin

Gi
, and wind gen-

erators, Pmin
Wi

, are assumed to be zero. The total installed generation capacity is 4,000
MW. Of this total, the capacity of wind generation is 290 MW, which is about 7.3 %
(representative of a realistic BPA scenario). Table 4 lists the bus number (the num-
ber of the electrical node where the generator is located), type (what technology is
used), capacity (Cap.: the total power capacity of the generator, in MW), marginal cost
(M.C.: the marginal generation cost, which indicates the cost increment due to a power
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Table 4 Each generator’s configuration including capacity, marginal cost, and ramping rates

No. Bus Type Cap. (MW) M.C. ($/MWh) RP. (p.u.)

1 1 Hydro 400 6 0.08

2 2 Coal 200 37 0.0081

3 7 Coal 350 35 0.0085

4 13 Wind (GH) 100 3 0.1

5 14 Nuclear 110 21 0.004

6 15 Hydro 700 5 0.074

7 16 Hydro 650 3.7 0.059

8 18 Natural gas 500 79 0.051

9 21 Hydro 800 3.5 0.081

10 22 Wind (KW) 110 2 0.05

11 23 Wind (VS) 80 1 0.094

Table 5 Economic performance (in $) of wind forecast methods for several days in 2003

Date� 1-May 8-May 4-Jun 13-Jun 17-Jul 26-Jul 15-Aug

OB 813,729 783,258 824,637 678,908 832,347 729,972 724,894

PSS 891,771 895,812 887,321 874,657 884,629 920,145 892,553

AR 881,738 904,242 891,661 869,866 882,116 908,830 886,935

RRSTD 870,860 902,351 881,143 866,084 872,777 907,764 866,633

Date� 28-Aug 1-Sep 15-Sep 3-Oct 31-Oct 17-Nov 20-Nov

OB 822,347 831,509 785,226 834,096 787,220 630,076 694,971

PSS 869,431 879,336 977,584 864,966 906,577 748,126 924,221

AR 878,986 883,951 961,685 863,474 905,447 733,469 914,903

RRSTD 865,374 872,161 961,574 864,207 913,095 751,672 901,549

The smallest cost is in bold

generation increase, in $/MWh), and ramping rate (RP.: the capability of a generator
to change its output per minute in normalized per unit value) of each generator.

4.4 Analysis of economic dispatch results

We present in Table 5 the performance of the economic dispatch model under different
wind forecast models. The wind observation (OB), i.e., the true value, has the lowest
system operating cost for all 14 days. Among different methods, the total operating
costs from using PSS are relatively higher over the 14 days. The AR model, which
considers only temporal wind correlations, results in a relatively modest cost-saving
performance. The RRSTD model performs better than either PSS or AR models.

For most of the days, the RRSTD has a relatively higher cost savings than the other
approaches. Among the 14 days, 15 August 2003 is selected for a detailed study as
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Table 6 System operating results (in $) on 15 August 2003

OB PSS AR RRSTD

Total Cost 724,894 892,553 886,935 866,633

Energy Market Cost 494,017 519,049 520,625 517,246

Regulation Cost 171,619 237,180 237,801 231,367

Reserve Cost 59,257 112,748 111,124 103,982

Deviation Penalty 0 23,576 17,385 14,038

Cost Reduced (%) 18.78 0.00 0.63 2.90

The smallest cost is in bold

Table 7 Wind location benefits analysis (in $) on 15 August 2003

Location Operating cost savings Deviation penalty savings Total cost savings

GH 956 3,289 4,245

KW 431 3,904 4,335

VS 1,197 2,345 3,542

reported in the remainder of this section. The operating results for this day are presented
in Table 6. The row “Energy Market Cost” refers to the generation cost from all the
generator units in the perspective of the system operator. The rows “Regulation Cost”
and “Reserve Cost” give the total costs of providing regulation services and reserve
services of all the units. The row “Cost Reduced” refers to the cost savings (in %)
from using other forecasting models than the PSS model.

According to the simulation results, the RRSTD model increases the actual wind
resource utilization, and reduces the system-wide generation cost, the system’s ancil-
lary services (including regulation and reserve services) costs, the wind generation
deviation penalty and the total system operating costs.

It can be observed in Table 6 that the system-wide operating cost using the RRSTD
model is 2.90 % lower than that using the PSS model. One of the advantages of the
RRSTD is the reduction in wind generation deviation. As shown in Table 6, the wind
generation deviation penalty is reduced by almost 60 % when the RRSTD model
is used compared with the PSS model and by 24 % compared with the AR model.
The reduction in wind generation deviation is because space-time wind forecasts can
increase the wind forecast accuracy (with lower MAE) and reduce the overestimation
of available wind generation. In addition, the results of the RRSTD model reveal
the advantage in the operating cost of ancillary services. For instance, the total costs
of regulation and reserve services are reduced by 2.90 % when using the RRSTD
model. Table 7 presents the economic benefits for each individual wind location. As
we can see, using the RRSTD model, the operating cost can be reduced by up to 9 %
and the generation deviation penalty can be reduced by up to 40 %. Given the same
wind pressure and system load patterns, the space-time wind forecast model yields
higher wind resources utilization and a higher wind generation ratio than the other
models. This is because the increased accuracy of the space-time wind forecast model
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Fig. 9 Histograms of relative cost savings in percentage based on wind power forecasts from the AR and
RRSTD models, compared with the costs based on forecasts from PSS

decreases the wind generation that would be wasted by underestimation of available
wind generation potentials.

In addition, a simulation study is carried out to quantify the uncertainty on the 2.90 %
cost saving on 15 August 2003. For every 10 min, 400 realizations are generated from
the wind speed-predictive distribution for the AR and RRSTD models, respectively,
and the median of the realizations is treated as the point forecast. This procedure is
carried out 100 times. Hence, 100 wind speed forecasts are simulated for that day
for every 10 min based on the AR and RRSTD models, respectively. Then the wind
speed forecasts are converted to wind power with the 2.5 MW Nordex power curve
and put into the power system dispatch model. Figure 9 displays the histograms of cost
reductions of the system operations with the simulated wind power forecasts from AR
and RRSTD, relative to the cost based on the forecasts from PSS. The 95 % confidence
interval of relative cost savings for using forecasts from the AR instead of those from
PSS is [0.61, 0.66 %] and it is [2.84, 2.95 %] for RRSTD. The concentrated histograms
and narrow confidence intervals demonstrate that the variability of the cost reduction is
small. Therefore, it is reliable to conclude that because of the improvement on the wind
speed forecasting accuracy using the RRSTD model, the cost is reduced by around
2.90 % instead of using forecasts from PSS, while it is only 0.63 % with the AR model,
on 15 August 2003. It should be noted that in this paper, we did not consider the impact
of transmission congestion and contingency on the economic benefits analysis.

In Fig. 10 (top panel), the actual wind generation output at Kennewick is presented.
The OB curve depicts the case when there is no wind forecast error, which gives the
highest wind generation as well as the best economic dispatch performance. The wind
generation profile using the PSS model has the lowest utilization of wind resources,
while the wind generation profile of the AR model has the second lowest utilization
result. By using the RRSTD model, more wind generation can be integrated into the
power system. This is because the underestimation of available wind generation can
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Fig. 10 Actual wind generation at Kennewick (top panel), total system reserve service requirement (middle
panel), and total system regulation service requirement (bottom panel) on 15 August 2003, for different
forecasting approaches including OB, PSS, AR, and RRSTD models
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be avoided during the dispatch process because of the highly accurate wind forecasts
by RRSTD and the potential for wind resources not being utilized is reduced.

The system’s overall reserve requirement takes into account the uncertainty of
both wind generation (mainly forecast errors) and load (demand forecast errors). The
selected reserve capacity is used to compensate the energy imbalance within time
frameworks of 30 min to 2 h. In Fig. 10 (middle panel), the total system reserve
requirement for each model is compared. This panel shows that using the RRSTD
model the overall reserve requirement can be reduced due to the improved forecast
accuracy.

Regulating energy imbalances in the system keeps the system frequency within a
secure range. Unlike reserve services, the capacity for regulation is used to smooth
short-term (1–10 min) frequency fluctuations and energy imbalances. Figure 10 (bot-
tom panel) shows that the RRSTD model decreases the requirement for regulation
capacity, and therefore reduces the corresponding regulation cost.

Because of the reduction in both the total power generation cost and the ancillary
services costs using the RRSTD model, the total operating cost is reduced by 2.90 %
compared with the results from the PSS model. Given that the market for electricity
is significant (multi-billions of dollars in regions like Texas and about 240 million for
BPA), a 2.90 % savings in operating costs means tens of millions of dollars in cost
savings due to improved wind forecasts.

5 Conclusion

Although wind power is increasingly important to the electricity supply market, the
inclusion of wind power is a challenge to power system operations because of the high
variations and limited predictability of wind. Advanced technologies that forecast
wind accurately and loss functions that can evaluate forecasts more realistically are
needed.

We introduced a new space-time model, the RRSTD model, to solve short-term wind
speed forecasting problems. This model generalizes the RSTD model by allowing the
forecast regimes to vary with the dominant wind direction and with the season without
requiring much prior geographic information. Its forecasts are better than results from
the PSS and AR models. We add that the RRSTD model has the potential to improve
forecasts further if more information on monthly wind patterns are available.

Moreover, we proposed a new, realistic method to evaluate forecasts based on power
system operating costs through a power system dispatch. To this end, we formulated
an economic dispatch model that takes into account the space-time wind forecast
information modeled by the RRSTD. Our space-time wind forecasting model reduces
the cost of ancillary services, including regulation and reserve costs. These costs were
reduced by 2.90 % in a realistic illustrative example. Although the data set used in
this study is fairly small and comes from a very specific microclimate, we believe that
it illustrates the potential gains of combining accurate space-time wind forecasts that
incorporate spatial correlation of wind patterns with electric power system scheduling.
Similar conclusions have been obtained by Xie et al. (2014) with wind data from West
Texas, whose geographical wind pattern is totally different from the Columbia River
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Basin. As more wind data sets become available for research purposes, we welcome
further studies and extensions of the methodologies developed in this paper.

In this paper, for the RRSTD model, we only considered the simplest case of two
equally divided regimes based on the local wind patterns. More complex RRSTD
models with more than two forecasting regimes or unequally divided regimes could
be implemented in more complicated situations. Furthermore, there are other ways to
perform the regime selection, such as using a Bayesian model selection framework, or
an empirical analysis of out-of-sample data. In addition, an open challenge for further
investigation is to develop an economic dispatch model that makes use of the full
spatio-temporal predictive distribution that wind forecasting models can provide.
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