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Abstract Satellite measurements have of late become an
important source of information for climate features such
as precipitation due to their near-global coverage. In this
article, we look at a precipitation dataset during a 3-hour
window over tropical South America that has information
from two satellites. We develop a flexible hierarchical model
to combine instantaneous rainrate measurements from those
satellites while accounting for their potential heterogeneity.
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Conceptually, we envision an underlying precipitation sur-
face that influences the observed rain as well as absence of
it. The surface is specified using a mean function centered
at a set of knot locations, to capture the local patterns in the
rainrate, combined with a residual Gaussian process to ac-
count for global correlation across sites. To improve over
the commonly used pre-fixed knot choices, an efficient re-
versible jump scheme is used to allow the number of such
knots as well as the order and support of associated poly-
nomial terms to be chosen adaptively. To facilitate compu-
tation over a large region, a reduced rank approximation for
the parent Gaussian process is employed.
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model · Precipitation modeling · Predictive process ·
Random knots · Reversible jump Markov chain Monte
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1 Introduction

Algorithms to estimate atmospheric parameters from satel-
lite measurements of upwelling radiation (Lethbridge 1967)
have become invaluable for investigating global weather
and climate. Satellites are routinely used to observe tem-
perature, humidity, clouds, precipitation, aerosols and at-
mospheric trace constituents. Applications of satellite data
include weather forecasting, climate studies, ozone deple-
tion, drought monitoring, crop forecasting and flood warn-
ing. Data obtained from satellites are attractive because of
their potential for near-global coverage and their ability to
generate measurements at high spatial and temporal reso-
lution compared to ground-based or airborne sources. Over
the ocean and in sparsely populated regions of the land sur-
face where few ground-based measurements exist, satellite
observations are essential (Simpson et al. 1988; Kidd 2001).
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Precipitation is critically important in terms of economic
and social impacts, but it is also one of the most difficult at-
mospheric phenomena to observe and model. The complex
physical processes and large variability of precipitation pose
significant scientific challenges in modeling the atmosphere.
Rain gauges are the most common technology for measur-
ing surface rainrates. Compared to parameters such as tem-
perature, rainfall has very short space and time correlation
length scales, so high resolution data are required to resolve
spatial and temporal variations (Austin and Houze 1972;
Rodríguez-Iturbe and Mejía 1974). With the exception of
a few small, dense research networks, the spacing between
rain gauges tends to be much larger than the typical spatial
scales of precipitation systems (Felgate and Read 1975). In
practical terms, gauge networks do not resolve the variabil-
ity of precipitation systems, particularly on smaller scales.
In addition, there is little rain gauge data over the oceans
and over large expanses of many continents. In contrast, due
to their near-global coverage, satellites have the potential to
provide precipitation estimates with high spatial resolution
where gauge observations or conventional earth-bound mon-
itoring systems are unavailable. The principal limitation of
observations from low-Earth-orbiting satellites is temporal
sampling. A single satellite will typically observe a given
location on the Earth’s surface only a few times per day. Al-
though satellites can provide global coverage, satellite sam-
pling and measurement errors can be substantial, so effective
methods are needed to validate and combine observations
into consistent and useful estimates. A detailed discussion
on sampling errors for satellite rainfall average can be found
in Bell et al. (1990, 2001), Bell and Kundu (1996) and Mc-
Connell and North (1987).

Over the last few decades many satellite-based precipi-
tation algorithms have been developed (Wilheit 1977; Xie
and Arkin 1998; Ba and Gruber 2001; Huffman et al. 2002;
Joyce et al. 2004; Negri et al. 2002; Sorooshian et al. 2000;
Vicente et al. 1998; Weng et al. 2003). Satellite methods can
be used to generate precipitation products at various spa-
tial and temporal resolutions. Precipitation estimation from
space is most often based on observations of infrared or mi-
crowave radiation. Infrared-based techniques can have rel-
atively high spatial and temporal resolution. Infrared radi-
ation cannot penetrate typical dense clouds, but it is pos-
sible to measure the altitude of cloud tops. Higher cloud
tops indicate deeper storms, which tend to produce larger
rainfall amounts. A statistical relationship between cloud-
top height and surface rain gauge data can be used to es-
timate surface rainrates from satellite observations. Hence,
the rainrate is related only indirectly to the observed quantity
(cloud top height); so uncertainties are larger. Microwave
radiation, on the other hand, can penetrate through clouds.
Consequently, microwave methods are more closely tied to
the relevant physical quantity (falling raindrops), but spatial

and temporal coverage are typically lower. Microwave meth-
ods address these problems by merging precipitation obser-
vations from multiple satellites to yield global precipitation
estimates at reasonably high spatial and temporal resolution
(e.g. 0.25◦ and a few hours) as in the Tropical Rainfall Mea-
suring Mission (TRMM) Multisatellite Precipitation Analy-
sis (TMPA) described by Huffman et al. (2007). The reso-
lution of the TMPA grid (0.25◦) is comparable to the reso-
lution of current microwave instruments. Currently merged
satellite estimates do not take into account the different sta-
tistical properties of the input data streams. These differ-
ences include variations in spatial and temporal resolution
and in error characteristics. Multiple observations are usu-
ally combined in the simplest possible way by averaging the
various instantaneous estimates to produce a “best estimate”
of the mean rainfall rate over the selected interval (Huff-
man et al. 2007). Because statistical properties of rainfall
are highly non-Gaussian and depend strongly on space and
time scale, this averaging can significantly impact higher
moments of the estimates (e.g. variances and covariances).

In this paper, our approach is to use a Bayesian hierar-
chical framework for combining the available observations
from multiple satellites within a space-time volume. This
enables us to develop the model in a way that can account for
some specific characteristics of a precipitation dataset. Gen-
erally, precipitation patterns are highly localized and have
fast time scales. As a result, at any given location, rainfall is
absent most of the time. Hence any rainfall data, aggregated
over a short time interval, is expected to have a high num-
ber of zeros. The use of mixture models with a degenerate
mass at zero is a common approach to model zero-inflated
data, e.g., a zero inflated Poisson (ZIP) model (Cohen 1991).
Agarwal et al. (2002) discussed the use of Bayesian meth-
ods to analyze spatially correlated zero-inflated count data
in the presence of covariate information. In the context of an
ecological dataset on presence of plant species, Chakraborty
et al. (2010) used a spatial probit model to address a large
number of absences. In the current work, we introduce a lo-
cally varying bias term for that. Atmospheric convection,
which drives the event of precipitation, involves turbulent
interactions across a wide range of scales and is governed
by fundamentally nonlinear equations of fluid dynamics. As
a consequence, the information on whether it is raining at a
given location or not is highly localized. The bias term we
introduce here addresses this nonlinearity and local varia-
tion, unlike the linearity assumption in Fuentes et al. (2008).
For geospatial datasets, an additive model with nonlinear
covariate-dependence was also discussed in Kammann and
Wand (2003).

For precipitation, when it rains, the probability distribu-
tion of instantaneous rainrate is non-Gaussian with long tail.
Hence, a lognormal model is often adopted for nonzero pre-
cipitation measurements, see Lee and Zawadzki (2005) and
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Fuentes et al. (2008). Alternative approaches also exist in
the literature such as the truncated power transformation of
Bardossy and Plate (1992) and the use of skew-elliptical dis-
tributions in Marchenko and Genton (2010). Our approach
is motivated by Fuentes et al. (2008), where a zero-inflated
log-Gaussian model has been used for rainfall, and, in a hier-
archical framework, the distribution of no rainfall events was
modeled to depend on the true rainfall intensity. However,
the modeling of the rainfall process in this article signifi-
cantly differs from the approach therein. To jointly model
true rainfall intensities at adjacent locations, Fuentes et al.
(2008) used a Gaussian Markov random field with correla-
tion parameters that do not change across locations. How-
ever, in general, the amount of rainfall over a few hours
is highly localized and nonstationary on a large domain.
A number of works have focussed on developing nonsta-
tionary spatial covariance functions. Spatial deformations
to model nonstationary spatial processes have been used by
Sampson and Guttorp (1992), Schmidt and O’Hagan (2003)
and Anderes and Stein (2008). On the other hand, kernel
convolution and its variants have been applied in several
papers to create nonstationary covariance functions as in
Higdon (1998), Fuentes (2002) and Paciorek and Schervish
(2006). Jun and Stein (2008) and Jun (2011) proposed a
method of modeling nonstationary covariance functions on
a sphere. Nonstationarity can also be introduced through co-
variates. Using spatially-varying regression coefficients for
a point-referenced data provides a scope of detecting sub-
regional variation in the response-predictor relationship, see
Gelfand et al. (2003). Specifically, in the context of analyz-
ing a zero-inflated dataset like ours, Finley et al. (2011) pro-
posed a hierarchical model where multivariate spatial pro-
cess priors were used for two different sets of regression
coefficients—one for controlling the abundance of zeros and
the other for the nonzero observations. Here, we also work
with a covariate-dependent nonstationary model but opt for
an adaptive specification, as in Friedman (1991) and Deni-
son et al. (1998). It depends on finding a set of knot loca-
tions in the predictor space and developing a local poly-
nomial for each one of them. This approach is relatively
simpler to interpret, estimate and, importantly, model non-
Gaussian patterns and input interactions in the response sur-
face. The flexibility of this specification lies in the fact that
the functions can be constructed adaptively, i.e., the order
and support of the local polynomials and even the number
of knots is decided by the pattern of the data during model-
fitting. When spatial covariates are available, the model can
select the important predictors and/or interactions, eliminat-
ing the need to pre-specify the form of dependence. To mod-
ify the number of polynomial terms in the function, an ef-
ficient reversible jump Markov chain Monte Carlo (RJM-
CMC, Richardson and Green 1997) sampler has been devel-
oped in Sect. 4. The residual was modeled with a Gaussian

process (GP) prior so as to reflect correlation across sites on
a global scale.

Although not directly relevant to the modeling and data
analysis in this article, we like to mention that there is a sig-
nificant collection of literature on modeling extreme precip-
itation events. Here the quantity of interest is the right-hand
tail of the rainfall distribution. The common approach is to
use extreme value theory to propose a probability distribu-
tion for exceedance (the event that rainfall crosses a thresh-
old value) rate at each site and relate the parameters of those
distributions using spatial process models. See Cooley et al.
(2007) and Sang and Gelfand (2009) for a hierarchical ap-
proach to this problem for rainfall data at point and grid-
level, respectively.

Another important feature of our problem is prediction
at thousands of unsampled sites. As Markov random field-
based models do not have predictive property, one needs to
include all such sites directly into the estimation, potentially
leading to a large number of spatial random effects and slow
convergence. With the spline-GP combination used in this
article, prediction can be done as a post-MCMC analysis.
One potential issue here is the sensitivity of GP computation
to the number of locations in the dataset. There are a num-
ber of approximation techniques in the literature, such as
process convolution (Higdon 2002), approximate likelihood
(Stein et al. 2004), fixed rank kriging (Cressie and Johannes-
son 2008), covariance tapering (Furrer et al. 2006; Kaufman
et al. 2008), predictive process (Banerjee et al. 2008) and
very recently a combined approach involving reduced rank
approximation and covariance tapering by Sang and Huang
(2012); see Sun et al. (2012) for a review of available meth-
ods. We employ the fixed knot-based predictive process ap-
proximation, discussed in brief in Sect. 4.1. Finally, as with
any Bayesian approach, information on uncertainty about
process parameters, in addition to their pointwise estimates
can be readily obtained which may be of significant interest
with rainfall being a highly variable event.

The article is organized as follows. Measurements of pre-
cipitation around the world with multiple satellites and sub-
sequent processing of the raw data are discussed in Sect. 2.
In Sect. 3, the formulation of a Bayesian hierarchical spa-
tial model for rainfall is introduced. Implementation details
including the choice of priors, large data computation and
sampling scheme are outlined in Sect. 4. The details of the
simulation study and the real data analysis are presented in
Sect. 5. Finally, Sect. 6 summarizes the present work and
points out further related research. In this article, the nota-
tions N(μ,σ 2) and LN(μ,σ 2) have been used for denoting
normal and lognormal probability densities with location μ

and scale σ , respectively. Φ is used for the standard normal
cumulative distribution function and Nd(μ,Σ) stands for
d-dimensional multivariate normal distribution with mean
vector μ and dispersion matrix Σ .
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Fig. 1 Observation swaths of different satellites in a typical 3-hour
observing period. The figure is from Huffman et al. (2007). Black
indicates no data. Colors indicate rainrate in mm/hr. Shades of gray in-
dicate observations of zero rain from the different satellites. The white

trajectory corresponds to the path of TMI. Observations are averaged
where overlaps occur. Reproduced by permission of the American Me-
teorological Society (Color figure online)

2 Collection of satellite measurements on precipitation

Precipitation observations from multiple satellites can be
merged to yield global precipitation estimates at reason-
ably high spatial and temporal resolution as is done with
the Tropical Rainfall Measuring Mission (TRMM) Multi-
satellite Precipitation Analysis (TMPA) described by Huff-
man et al. (2007). Data are collected by a variety of low
earth orbit satellites, including the TRMM Microwave Im-
ager (TMI) on the TRMM satellite, Special Sensor Mi-
crowave Imagers on the Defense Meteorological Satellite
Program satellites, the Advanced Microwave Scanning Ra-
diometer on the NASA Aqua satellite, and Advanced Mi-
crowave Sounding Units (AMSU) on National Oceanic and
Atmospheric Administration (NOAA) operational satellites.
These satellites vary with respect to altitude, orbital inclina-
tion, and equator crossing time. Data from multiple satellites
are aggregated in 3-hour windows, which are approximately
two complete orbits for low-Earth-orbiting satellites. The
3-hour time window is usual in precipitation study (Huffman
et al. 2007) as a compromise between two competing goals:
higher temporal resolution of the pattern of precipitation and
greater spatial coverage during each averaging window. Be-
cause of the constraints of orbital motion and instrument de-
sign, a single satellite provides limited coverage of the globe
within a 3-hour window. The current suite of operational and

research satellites can, together, provide nearly global cov-
erage in a 3-hour period. Longer sampling windows would
offer greater coverage but would have a lesser ability to re-
solve the diurnal cycle, which is an important component
of precipitation variation. Figure 1 shows the available data
for a typical 3-hour period. For example, the regional 3-hour
precipitation dataset we used for analysis in Sect. 5 has in-
formation from two satellites—TMI and AMSU-NOAA17.
Following the TMPA practice, we choose the TMI as the ref-
erence standard due to its higher spatial resolution (resulting
from relatively lower altitude) and ongoing calibration with
the TRMM Precipitation Radar.

A typical satellite microwave radiometer measures the
upwelling microwave radiation by using a rotating antenna
to scan in a conical pattern as the satellite moves above
the Earth’s surface. The spatial resolution of the measure-
ments depends on the altitude of the satellite, the size of
the microwave antenna (typically about 1 m), and the wave-
lengths used. Rainrates are estimated using physical algo-
rithms (Wilheit et al. 1977) based on reverse lookup tables
that are precomputed using radiative transfer models. For ef-
ficiency and convenience in processing the data, within each
3-hour window the rain estimates from the instantaneous
fields of view (pixels) of the satellite are first averaged onto
a 0.25◦ × 0.25◦ latitude-longitude grid. In the tropics these
boxes are nearly square and are approximately 28 × 28 km2.
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This resolution represents a reasonable compromise among
the differing spatial resolutions of the various instruments
and is suitable for prediction related to climatological or
agricultural studies. Rain measurements are reported as in-
stantaneous rainrates in mm/hr.

3 Hierarchical spatial model for rainrate

In this section we describe the proposed hierarchical model
for the multi-satellite precipitation data. Let D be the do-
main of observation, T be the time window of study, X(s) =
(x1(s), x2(s), . . . , xp(s))T be the p-dimensional vector of
covariates measured at location s and Ỹl(s) is the observed
rainrate during T from the l-th satellite at location s ∈ D

for l = 1,2, . . . ,L. However, at any given s, the rainrate
may not be available for some or all of the L satellites.
The observed rainrate data is modeled as a noisy version of
an underlying unobserved potential rainrate process as fol-
lows:

Ỹl(s) =

⎧
⎪⎨

⎪⎩

0 with probability π(s),

exp{c1l + c2lY (s) + εl(s)}
with probability 1 − π(s),

(1)

where π(s) is the probability of zero rainfall at grid cell s

and exp(Y (s)) represents the latent potential rainrate pro-
cess at location s. If it rains, then the rainrate observed
by satellite l, Ỹl(s), is a noisy measurement of that la-
tent process. The parameters c1l , c2l are the model’s addi-
tive and multiplicative bias adjustments specific to satel-
lite l. For identifiability purpose, we need to set c1l0 =
0, c2l0 = 1 for some l0 ∈ {1,2, . . . ,L}, so that any infer-
ence from the model can be interpreted with satellite l0 as
the reference. Generally, one chooses l0 to be the satel-
lite which is known to have maximum precision in mea-
surements. In applications, where rainfall data are avail-
able from multiple sources, the one expected to have the
highest accuracy can be used as the reference, e.g., rain-
gauge data in Fuentes et al. (2008). The zero-mean noise
εl(s) characterizes the variations due to measurement er-
ror and/or micro-scale spatial variations for the l-th satel-
lite.

We introduce the data augmentation approach (Tanner
and Wong 1987; Albert and Chib 1993) to relate the rain-
fall probability π(s) with the latent rainrate process Y(s) in
a flexible way. The spatial probit model for π(s) is as fol-
lows:

π(s) = 1 − Φ
{
μπ(s) + βπY (s)

}
. (2)

Conceptually, this amounts to modeling the zeros of rain-
rate measurements to correspond to the low values of the

latent process Y . The variable intercept μπ(·) can be re-
ferred to as “bias function” that accounts for the poten-
tial event of zero rainfall due to nonlinear interactions that
cannot be captured linearly through Y(s). If μπ(s) is a
constant over D, we have that E{log Ỹk(s)|Ỹk(s) > 0} and
Φ−1{π(s)} are linear functions of each other for any k, sim-
ilar to the assumption made in Fuentes et al. (2008). We in-
troduce L latent surfaces Z1(s),Z2(s), . . . ,ZL(s) such that

Zl(s)
i.i.d.∼ N(μπ(s) + βπY (s),1), 1 ≤ l ≤ L. Then we can

rewrite (1) as

Ỹl(s) =
{

0 if Zl(s) ≤ 0,

exp{c1l + c2lY (s) + εl(s)} if Zl(s) > 0.
(3)

Estimation of {Y(s) : s ∈ D} is of prime interest in this
problem. Y(s) captures rainfall patterns over D. Since rain-
fall over a small time window is a highly localized event,
the usual isotropic GP-based spatial models will not suffice
for Y . There are different approaches to introduce nonsta-
tionarity as outlined in Sect. 1. The approach we take here is
to specify the mean surface μy(·) using multivariate adap-
tive regression splines (MARS; Friedman 1991; Denison
et al. 1998). The idea is to model the function as a sum of
interactions of varying order from a basis set of local poly-
nomials as follows:

Y(s) = μy(s) + w(s),

μy(s) = my(s) +
ky∑

h=1

νy,hφy,h

(
X(s)

)
, (4)

φy,h(x) =
nh∏

r=1

[
uhr(xvhr

− thr )
]

+,

where my(·) represents a fixed trend function (e.g. just an
intercept or a linear or quadratic trend in components of s)
and (·)+ = max(·,0), nh is the degree of the interaction of
the basis function φy,h. The {uhr}, sign indicators, are ±1,
the vhr gives the index of the predictor variable which is be-
ing split at the value thr within its range. Thus, the func-
tion φy,h represents a pattern around the knot th = {thr :
r = 1,2, . . . , nh} (we refer to it as a sp-knot) and the set
{φy,h(·) : h = 1,2, . . . , ky} defines an adaptive partitioning
of the multidimensional space.

Specifying μy(·) with local interactions provides greater
flexibility to model surface patterns and variable relation-
ships. Most importantly, localized structures allow for non-
stationarity. The flexibility of MARS lies in the fact that the
interaction functions can be constructed adaptively, i.e., the
order of interaction, knot locations, signs and even the num-
ber of such terms ky is decided by the pattern of the data
during model-fitting, eliminating the need for any prior ad-
hoc or empirical judgement. In spite of having a flexible
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mean structure, MARS is relatively simple to fit which is
an obvious advantage against other choices of nonstation-
ary processes in the present application. For interpretabil-
ity and to avoid overfitting, interactions up to a certain or-
der are used and only up to a prefixed number of terms
may be allowed in the above sum. Any additional or higher
order global pattern is accounted for by assigning a zero-
mean GP prior to the residual process w(s). The covariance
function for w is assumed to be isotropic, i.e. for two lo-
cations s and s′, cov{w(s),w(s′)} = σ 2

y ρ{d(s, s′), κ} where
d(·, ·) is the great circle distance for latitude-longitude data.
ρ is the correlation function (validity of usual correlation
functions such as exponential and Matérn with respect to
geodetic distance is discussed in Banerjee (2005)), κ is
the parameter (vector) that controls the smoothness and
rate of decay. The above specification implies that, for a
set of n locations s = (s1, s2, . . . , sn), the vector Y(s) =
(Y (s1), Y (s2), . . . , Y (sn))

T is distributed as:

Y(s) ∼ Nn

(
μy(s),Σ(s;κ)

)
,

where Σ(i, i′) = σ 2
y ρ{d(si, si′), κ}. If a priori νy ∼ Nky ×

(0, cIky ) then marginalizing out νy , we have:

E
[
Y(s)

] = my(s),V
[
Y(s)

] = cP (s)P (s)T + Σ(s, κ),

where P(s) is a n × ky matrix with i-th column being
(φy,i(s1),φy,i(s2), . . . , φy,i (sn))

T . Let θh = {(vhr , thr , uhr ):
r = 1,2, . . . , nh} be the parameters in φy,h and f (s; θh) =
φy,h(s). Then at individual location level, we have:

var
[
Y(si)

] = c

ky∑

h=1

f 2(si; θh) + σ 2
y ,

cov
[
Y(si), Y (si′)

] = c

ky∑

h=1

f (si; θh)f (si′ ; θh)

+ σ 2
y ρ

{
d(si, si′), κ

}
.

(5)

This provides a very flexible model for the covariance spec-
ification of the Y process that is also easy to interpret. The
total covariance is decomposed into a locally varying (non-
stationary) component combined with a global pattern com-
ing from the GP. The vector θh controls the characteristics
of the pattern associated with the h-th sp-knot and f (s, θh)

represents its effect at location s. The resulting covariance
is the sum of such local effects. In practice, one starts with
a global covariance term only and then the model itself se-
lects the local effects as necessary. The parameter c repre-
sents prior confidence (uncertainty) in these effects. The bias
function, μπ(·) is also specified using MARS as above, with
a separate set of parameters.

It follows from (5) that MARS specification amounts to
building the covariance model of the output process with

locally-supported components. In spatial literature, common
approaches to incorporate nonstationarity by kernel mixing
of process variables offers essentially similar decomposition
of covariance; see Higdon et al. (1999), Fuentes (2002) and
Banerjee et al. (2004). However, MARS offers significantly
greater flexibility over those methods as the shape of such
effects around the knots can be decided independently of
each other without being controlled by that of any chosen
kernel function. Moreover, allowing each of these patterns
to have its own local support encourages sparsity and avoids
the complexity often associated with determining appropri-
ate kernel bandwidth parameter(s).

Another important advantage that this specification of-
fers is the ability to let the required number of such lo-
cal effects and the associated sp-knots be entirely decided
by the data, without compromising for the computational
complexity and interpretability. For any spatial model de-
pendent on a set of knots, selection of an appropriate num-
ber of knots and placing them optimally over space has al-
ways been a critical issue. With too few knots, there is al-
ways a possibility of overestimating the actual spatial range
and neglecting important local patterns. On the other hand,
using too many knots increases the computational demand
and may lead to poor predictive performance by accounting
for even the noises or negligible variations in the observed
data. Conditional on a fixed number of knots, Gelfand et al.
(2012) discussed an approach to place them optimally using
a minimum predictive variance criterion. A model-based ap-
proach for random knots was introduced in Guhaniyogi et al.
(2011). There, in a multi-stage structure, a point process
prior was assumed for the set of knots. The intensity of that
point process can either be a parametric multimodal surface
or a log-Gaussian process itself. However, when the number
of such knots is significant, efficiently updating them may
turn out to be challenging owing to a nonstandard posterior
distribution. Our specification allows for random knot selec-
tion by placing a prior on the set of observed points in the
space and then, during the MCMC scheme, varies the size as
well as the members of the collection of the sp-knots via ad-
dition, deletion or modification, only one at a time. Another
very important feature of our knot selection procedure is that
even though we are working in a p-dimensional predictor
space, a typical sp-knot can be a location in a lower dimen-
sional space. This can be particularly useful when the spatial
process under consideration has different degrees of smooth-
ness across coordinates. For example, an atmospheric pro-
cess may exhibit significant variations with change in lon-
gitude, but may remain relatively uniform with variations in
latitude (at a fixed longitude). In those situations, a more par-
simonious representation can be ensured with MARS by al-
lowing the data to position its sp-knots only over the range of
longitudes. Since most knot-based spatial methods have not
addressed this dimension-wise variation so far, it can pro-
vide a potentially interesting direction for future research in
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this field. For our multi-stage spatial model, the sampling
procedure is described in Sect. 4.

4 Details of estimation and inference

In this section, we focus on how to implement the model in
Sect. 3 on a (potentially massive) precipitation dataset. Since
GP computation is sensitive to the data size, we begin with
a suitable approximation method to make the model capable
of handling the computation. Subsequently we describe the
full hierarchical model used to fit the dataset and outline the
estimation procedure via MCMC. Finally, we mention some
of the quantities of interest which can be estimated by post-
processing the posterior samples.

4.1 Knot-based approximation for large dataset

When the number of locations inside D gets large (in
thousands), updating the latent spatial process parameters
inside an MCMC becomes complicated due to its high-
dimensional covariance matrix. We use a reduced rank rep-
resentation of the original process, the predictive process, as
developed in Banerjee et al. (2008). Below, we present the
idea in brief.

Consider realizations from a zero-mean, unit-scale GP
w(·) at a set of n locations s = (s1, s2, . . . , sn) ∈ D where
n is large. The method proceeds by first choosing m � n

locations s0 = (s0
1 , s0

2 , . . . , s0
m) in D, to be referred to as

pp-knots, and then replaces w(s) by an approximate pro-
cess w̃(s) = E[w(s)|w(s0)] = Lw(s0) where the matrix L

is calculated from the correlation function ρ of the origi-
nal process w. L depends on the correlation parameter(s)
of ρ. If m � n, we gain in terms of computation time us-
ing the Sherman-Woodbury-Morrison (S-W-M) type formu-
lae (Banerjee et al. 2008). However the accuracy of the ap-
proximation goes up with increasing m, so there has to be
a trade-off. We prefer to use this method, as it is derived
directly from the parent process without any need for ad-
hoc choice of basis functions, is easy to interpret and has
closed form analytic expressions. This approximation is co-
herent with the MARS model introduced in Sect. 3, where
the resulting covariance was shown to depend on a set of
random sp-knots. We like to mention that, conditional on a
fixed number of pp-knots m, we can allow their locations to
vary by using a point process prior on them as in Guhaniyogi
et al. (2011). However, the hierarchical model described in
Sect. 3 already includes an adaptive spatial function based
on sp-knots and GP is used only as a model for the residual
process. So, in this article, we choose to work with a fixed
set of pp-knots only.

We introduce bias correction, a modification discussed
in Finley et al. (2009). Since var{w(sj )} > var{w̃(sj )} for

each j , the predictive process is expected to underestimate
the spatial variance and increase the variance of the pure
error. The correction introduces an heteroscedastic indepen-
dent error ε∗ so that w̃(s) = Lw(s0) + ε∗ and var{w̃(sj )} =
var{w(sj )} for any j = 1,2, . . . , n. Introduction of a bias
correction term also facilitates computation when the GP
under consideration is applied to a latent-stage response (as
ours) that needs to be updated every iteration. The advantage
of this method is illustrated in Sect. 4.3.

4.2 MCMC from the complete hierarchical model

We discuss parameter estimation using a MCMC scheme
from the model in Sect. 3. Let {sl1, sl2, . . . , slnl

} be the
locations in D at which rainrate measurements are avail-
able from the satellite l for l = 1,2, . . . ,L. Let ỹlj and
xlj denote the rainrate measurement and available covari-
ate information, respectively, at location slj by satellite l for
j = 1,2, . . . , nl . Let s denotes the pooled set of n distinct lo-
cations

⋃L
l=1{sl1, sl2, . . . , slnl

} and s0 the set of m pp-knots
as above. For the joint set of locations (s, s0), partition the
spatial correlation matrix as Cn+m(κ) = ( Cn(κ) Cn,m(κ)

Cn,m(κ) Cm(κ)

)
,

where the entries of Cn+m are unit scale correlation terms
under correlation function ρ(·, κ). From Sect. 4.1, L(κ) =
Cn,m(κ)C−1

m (κ). Then we can write the full hierarchical
model as follows:

ỹlj ∼ 1(zlj < 0)δ0 + 1(zlj > 0)LN
(
c1l + c2ly(slj ), σ

2
0

)
,

zlj ∼ N
(
μπ(slj ) + βπy(slj ),1

)
,

y(s) = μy(s) + σyw̃(s),

w̃(s) = L(κ)w
(
s0) + ε∗(s), (6)

w
(
s0) ∼ GP

(
0, ρ(·, κ)

)
,

ε∗(s) ∼ Nn

(
0,Diag

{
In − Cn,m(κ)C−1

m (κ)Cm,n(κ)
})

,

μd(s) = md(s) +
kd∑

h=1

νd,hφd,h

(
x(s)

)
, d = π,y.

Regarding prior specification, we set c1l0 = 0, c2l0 = 1 for
some l0 as discussed in Sect. 3. For l 	= l0 we use Gaus-
sian priors centered at 0 and 1, respectively. For the regres-
sion coefficient βπ and variance parameter σ 2

0 , we use Nor-
mal and inverse-gamma priors, respectively, for conjugacy
of posterior distributions. We choose ρ(·, κ) to be the expo-
nential correlation function with decay parameter κ . It can
be easily shown that κ ≈ 3.0/R (R is the spatial range, i.e.,
the distance at which the correlation falls below 0.05) so
κ can be specified using a prior idea about possible values
of R. An Inverse Gamma (aσ , bσ ) prior was used for the
spatial variance σ 2

y . We chose the trend function md(·) to be
a constant intercept for d = π,y and, without loss of gener-
ality, merge it with the MARS predictors as a constant basis
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function φd,0(·) ≡ 1. Conditional on kπ and ky , the number
of basis functions in the expansion, we assign Gaussian pri-
ors to the coefficient vectors so that νy ∼ Nky (0, σ 2

y τ 2
y Iky )

and νπ ∼ Nkπ (0, τ 2
πIkπ ). We assign Inverse gamma priors

to both scale parameters τ 2
y and τ 2

π to maintain conjugacy,
so that we can draw them from respective Inverse gamma
posterior conditional distributions.

For d = π,y, we can control the parsimony of the non-
stationary function μd in three different ways: (1) chang-
ing the prior mean of kd , (2) putting an order constraint on
each φd,h and (3) setting a fixed threshold k0 for maximum
value of kd . Accounting for the column of ones correspond-
ing to the constant basis function, (kd − 1) is chosen to have
a Poisson(λd ) prior truncated to the right at k0 to control the
number of terms in the sum. For each φd,h we can either
use a strict upper bound (e.g. allowing only functions upto
second order) or choose a prior that puts small probability
on a higher order basis function. The value of k0 should
be chosen based on our idea of the variability in y-surface.
k0 = 0 corresponds to the most parsimonious model—a per-
fectly stationary surface. Increasing k0 will allow us to cap-
ture more and more local patterns but risks overfitting. In
practical examples, the choice of k0 may come from prior
idea about nature of variation in the surface. In absence of
any such information, one can use a validation method, i.e.,
using a subset of the data as the test set, fit the model with
different values of k0 and investigate its influence on the pre-
dictive performance.

During the MCMC, the vector of parameters has been
updated in the following blocks: (i) spline coefficients
{νd,h}, number of basis functions kd and parameters within
each φd,h for d = π,y; (ii) latent rainrate variables y(s);
(iii) auxiliary surface z(·); (iv) regression parameters such
as βπ and {cil : i = 1,2, l = 1,2, . . . ,L, l 	= l0}. We rewrite
the probability distribution of y(s) as y(s) ∼ Nn(μy(s) +
L(κ)w(s0),Σy) where Σy = σ 2

y Diag{In − Cn,m(κ) ×
C−1

m (κ)Cm,n(κ)}. The resulting posterior distribution for y

is Gaussian and, importantly, has independence across lo-
cations. So, it is easy to draw y even when n is large. As
in Albert and Chib (1993), conditional on y(slj ) and ỹlj , zlj

can also be sampled independently across different satellites
and locations:

zlj |ỹlj , y(slj ),μπ ,βπ
ind∼ 1(ỹlj = 0)N(−∞,0)(μlj ,1)

+ 1(ỹlj > 0)N(0,∞)(μlj ,1)

μlj = μπ(slj ) + βπy(slj ),

where NA(μ,1) stands for N(μ,1) distribution truncated
within A ⊂ R.

Next, we discuss updating parameters related to the pos-
terior distribution of y, i.e., κ,σ 2

y and μy . For this, we first

marginalize out w(s0) from the distribution of y. As ob-
served in Chib and Carlin (1999), marginalizing out the ran-
dom effects improves the mixing behavior of the MCMC.
However, this leads to a full covariance structure for y as:

Σ
(
y(s)

) = σ 2
y

[
Cn,m(κ)C−1

m (κ)Cm,n(κ)

+ Diag
{
In − Cn,m(κ)C−1

m (κ)Cm,n(κ)
}]

.

We can use S-W-M type matrix computations for calculat-
ing the determinant and inverse of this covariance matrix and
use that in drawing from posterior distributions of κ and σ 2

y .

Posterior samples of w(s0) can be drawn afterwards from
a multivariate normal distribution as evident from (6). Re-
gression parameters c1k, c2k and βπ can also be updated us-
ing standard sampling steps. The most important component
of this MCMC is updating the spline parameters appearing
in μy and μπ which has been performed using a reversible
jump (Richardson and Green 1997) scheme described be-
low.

We start with μy , the mean function for y. We drop the
suffix y for notational simplicity. With k basis functions,
let αk = {nh,uh,vh, νh, th}kh=1 be the corresponding set of
spline parameters. Marginalizing out ν and σ 2, the distri-
bution for y(s), p(y(s)|k,αk, . . .), can be written in closed
form (see Appendix). Now, using a suitable proposal dis-
tribution q , propose a dimension changing move (k,αk) →
(k′, αk′). We consider three types of possible moves (i) birth:
addition of a basis function; (ii) death: deletion of an exist-
ing basis function; and (iii) change: modification of an ex-
isting basis function. Thus k′ ∈ {k − 1, k, k + 1}. The accep-
tance ratio for such a move is given by

pk→k′ = min

(

1,
p(y(s)|k′, αk′ , . . .)

p(y(s)|k,αk, . . .)

p(αk′ |k′)p(k′)
p(αk|k)p(k)

× q{(k′, αk′) → (k,αk)}
q{(k,αk) → (k′, αk′)}

)

.

First, we mention the prior for (k,αk) in the form of
p(αk|k)p(k). As specified above, (k + 1) has a Poisson(λ)

prior truncated at some upper bound k0. Within each con-
stituent local polynomial, nh controls its order, vh controls
the set of variables involved whereas uh and th determine the
signs and the position of the sp-knot. If p is the total num-
ber of covariates and we allow interactions up to 2nd order,
then the number of possible choices for a basis function (ex-

cluding the constant function) is N = p +p + (
p
2

) = p2+3p
2 .

Accounting for rearrangement of the same set of basis func-
tions, the number of distinct k-set basis functions is Nk/k!.
Once we determine a basis function, we choose the individ-
ual coordinates of that sp-knot uniformly from the available
data points (since a change in pattern can only be detected at
data points) and determine its sign to be positive or negative
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with probability 1/2 each. Thus we obtain:

p(αk|k) ∝ Nk

k! (1/2n)
∑k

h nh .

Although above we assumed that all covariates have n

distinct values to locate a sp-knot, modifications can be
made easily when this is not the case.

Next we specify the proposal distribution q(·, ·) for each
of the three moves as follows:

(i) First decide on the type of move to be proposed with
probabilities bk (birth), dk (death) and ck (change),
bk +dk +ck = 1. We put dk = 0, ck = 0 if k = 1, bk = 0
if k = k0.

(ii) For a birth move, choose a new basis function ran-
domly from the N -set, calculate its order nh and choose
the location of its sp-knot and signs as before with
probability ( 1

2n
)nh .

(iii) The death move is performed by randomly removing
one of the k − 1 existing basis functions (excluding the
constant basis function).

(iv) A change move consists of choosing an existing non-
constant basis function randomly and alter its sign and
corresponding sp-knot.

From above, we have

q
(
(k,αk) → (

k′, αk′
)) =

⎧
⎪⎨

⎪⎩

bk
1
N

( 1
2n

)nk+1 k′ = k + 1,

dk
1

k−1 k′ = k − 1,

ck
1

k−1 ( 1
2n

)nh k′ = k.

Above, for the ‘change’ step, h denotes the index of ba-
sis function that has been randomly chosen for change. The
acceptance ratios for different types of move can be worked
out from this. Set k = k′, αk = αk′ if the move is accepted,
leave them unchanged otherwise. Subsequently, νy can be
updated using the k-variate t distribution with degrees of
freedom d = n + 2aσ , mean μk , dispersion c0kΣk

d
, whose

expressions are given (with derivation) in Appendix. The
updating scheme for the spline parameters in μπ is simi-
lar except for the fact that we need to marginalize over νπ

only as z has a known variance (set to 1) as in (6).

4.3 Posterior inference

The principal objective of this data analysis is to understand
the precipitation pattern over the region D. For that, we cre-
ate spatial maps of (i) expected rainrate {π(s) exp{Y(s)} :
s ∈ D}; and (ii) probability of rainfall {π(s) : s ∈ D} using
the posterior samples. There can be locations inside D with
no available measurements from any of the L satellites that
do not have any likelihood contribution. The realizations of
the rainrate process Y at those locations are constructed us-
ing the predictive distributions of a GP. Since Gaussian pro-
cesses can capture a wide range of dependencies, using them

in a hierarchical setting enhances predictive performance for
the model. Mathematically, if only n out of N sites have
at least one satellite measurement then inference for the re-
maining (N −n) sites is done from their posterior predictive
distributions. If sp = {sn+1, sn+2, . . . , sN } denotes the set of
locations with no precipitation data, the foregoing predictive
process approximation yields

y(sp) = μy(sp) + σy

{
CN−n,m(κ)C−1

m (κ)w
(
s0) + ε∗(sp)

}
,

ε∗(sp) ∼ NN−n

(
0,Diag

{
IN−n − CN−n,m(κ)C−1

m (κ)

× Cm,N−n(κ)
})

.

(7)

As we mentioned earlier, the advantage of using bias cor-
rection is evident here since conditional on w(s0) and κ , we
can draw samples from the posterior predictive distribution
of Y(sp), independent of each other and also of Y(s) (con-
ditional on realizations of w(s0)) due to the independence
among ε∗s across locations. This is computationally very
efficient since we do not need to draw from a high dimen-
sional multivariate Gaussian distribution if we want to study
a larger region and require predicting the rainrate surface at
thousands of sites with no satellite readings. Also of inter-
est is the posterior estimate of {μy(s) : s ∈ D}, which pro-
vides an idea of localized patterns in the rainrate over D. All
these diagnostics are provided with the real data analysis in
Sect. 5.

5 Data analysis

We proceed to application of the variable-knot approach de-
scribed in Sects. 3 and 4. First, in Sect. 5.1 we carry out sim-
ulation studies to highlight the improvement in predictive
performance under the proposed method relative to fixed-
knot predictive process models. Then, in Sect. 5.2, we an-
alyze an actual precipitation dataset from Northern South
America.

5.1 Simulation study

In the discussion following (4) and (5), we have argued
that one of the key advantage of a MARS-based covariance
model is its ability to capture a wide range of spatial struc-
tures in the response surface. To justify that numerically, we
use synthetic datasets from two different models.

For simulation, we fix the input space X to be the unit
hypercube in R

4. The input points x = (x1, x2, x3, x4)
T are

drawn uniformly over X and the response, Y(x), is simu-
lated from a Gaussian process with a nonstationary covari-
ance function as follows:

E
[
Y(x)

] = β0;
Cov

[
Y(x), Y

(
x′)] = σ 2

0 Ix=x′ + xT Ω0x′,
(A)
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Table 1 Comparison of
predictive performance for
different spatial models

Simulation
model

Prediction
property

Model for estimation

MARS
w/pp-knots

Predictive process with

same # pp-knots 2× # pp-knots 3× # pp-knots

(A) Abs. Bias 0.099 0.104 0.107 0.112

Pred. Uncertainty 0.570 0.626 0.603 0.603

Coverage Propn. 92.100 91.500 91.000 90.600

(B) Abs. Bias 0.048 0.271 0.195 0.137

Pred. Uncertainty 0.539 1.937 1.536 1.374

Coverage Propn. 96.200 93.500 93.800 94.500

where IA = 1 if A is true, 0 otherwise. For any σ 2
0 > 0 and

any positive definite matrix Ω0, it is easy to verify that the
above is a valid covariance function.

In the second example, keeping X unchanged, we move
to a more general functional form for Y(x) as follows:

Y(x) = β0 + β1x
5
1 + log

(
1 + x2

2

) + β2x3 sin
(
πx2

1

)

+ Ix4<0.5(x4 − 0.2)2 exp(x2 + 3) + (x3 − 0.75)2x4.

(B)

For comparison based on the above simulations we choose
four competing models for Y(x)—(i) MARS with pp-knot
based residuals as used in (6) and fixed-knot predictive pro-
cess with (ii) equal, (iii) twice and (iv) thrice as many pp-
knots as in (i). We note here that the models in (ii)–(iv) can
be implemented as a special case of (i) by setting νh = 0 for
all h. From each of (A) and (B), we generate 1000 observa-
tions. Then we randomly drop 10 % of the points to create
a ‘test set’, fit the four candidate models (with 30, 30, 60
and 90 pp-knots, respectively) on the remaining points. For
each observation in the test set, we compute three measures
of predictive performance: (i) absolute bias: the magnitude
of how far the observed value of any Y is from its estimated
value, (ii) predictive uncertainty: the width of the 90 % cred-
ible set for MC samples of any Y , i.e., the range of samples
from the posterior distribution of Y excluding the small-
est and largest 5 % of the draws and (iii) coverage status:
whether a specific Y in our test set actually falls inside its
90 % posterior credible set. We replicate this procedure ten
times randomizing selection of the test observations. Below,
in Table 1, we summarize the results over all replications.

Table 1 shows that MARS with predictive process prior
on residuals has performed considerably better than the
other three for both simulation models in terms of all the
criteria—bias, uncertainty and coverage rates. Most impor-
tantly, even with two to three fold increase in knot-size in
the predictive process approximation, the prediction perfor-
mance achieved with MARS cannot be attained. First, in
model (A), where we are trying to fit observations coming
from a nonstationary GP, MARS considerably brings down

the prediction uncertainty for test samples without compro-
mising on the coverage rates. Using predictive process only
has produced wider prediction intervals to achieve compara-
ble coverage rates, irrespective of whether knot size is dou-
bled or tripled. More drastic difference in performance is ob-
served in case of model (B), where Y(x) has a general func-
tional form. Use of sp-knots has significantly brought down
the bias and uncertainty of prediction but it still achieves
the highest coverage proportion among all three methods.
Doubling the number of pp-knots (and subsequent tripling,
too) helps in improving the quality of predictive process ap-
proximation but still lags far behind the one achieved with
MARS-based model. Increasing the number of knots actu-
ally gives rise to the computational demand. Hence, with
larger datasets, we expect to see even more significant gains
in predictive accuracy of our variable knot approach com-
pared to conventional GP approximations without sacrific-
ing the computational efficiency.

At this point, looking at the flexibility of MARS-based
variable-knot spatial structure, it is reasonable to ask whether
we can replace the GP prior on the residual process w(·)
in (4) with a white noise (WN) without significant loss of
performance. This would simplify the MARS + GP spec-
ification for Y to a MARS + WN type model, thus elimi-
nating the need to use predictive process approximation of
Sect. 4 even when the number of observation is large. Actu-
ally, it can be shown that when MARS + GP is allowed to
use fewer interactions (smaller k0, hence a simpler nonsta-
tionary structure) than MARS + WN, even then it can lead
to much improved prediction characteristics such as smaller
bias and shorter predictive intervals than the latter. We refer
the reader to Chakraborty et al. (2013, Sect. 5.1) for a discus-
sion on this and other potential issues regarding application
of MARS-based models.

5.2 Multi-satellite precipitation data

For a real-world application of the proposed method, we
consider the rainrate data from a region in northern South
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Fig. 2 (Left) Map of the study region showing number of satellite measurements available across different sites during 1.30 a.m.–4.30 a.m. on
January 1st, 2008. (Right) Location of the study region in South America

America (Fig. 2) lying south of the equator, inside the rect-
angle [70◦W,40◦W ]× [20◦S,0◦]. This region is chosen be-
cause of its large average rainfall rate, which helps to reduce
sampling errors, and its regular diurnal variability. A long
term mean rainrate pattern over 13 years for this region is
presented in Fig. 3. In the current work, we select a 3-hour
time window, 1.30 a.m.–4.30 a.m. on January 1st, 2008.
Data are available from two satellites—TMI and AMSU-
NOAA17. Other satellites did not make any observation in
this region during the specified time interval. Ground-based
observations by gauges or radar are very sparse in the Ama-
zon basin. From Fig. 2, it is evident that some of the sites
have multiple rainrate measurements as they fell inside the
intersection of trajectories of both satellites during that time
window whereas some parts of the region were not covered
by any of the satellites. Thus, estimation of rainrate at ob-
served locations, from either one or both of the satellites as
well as prediction at unmapped sites are necessary to create
a complete precipitation map for this region.

We start with some empirical summaries of the raw data.
Rainrate measurements from both of the satellites are avail-
able at 2026 of a total of 9600 sites in the region whereas
2305 of them have no available data. During the time win-
dow, TMI was able to cover 5653 sites whereas AMSU-
NOAA17 covered 3668 sites. About 17 % of all satellite
measurements recorded positive precipitation, the rest being
all zero. Figure 4 provides a comprehensive representation
of the precipitation measurements collected during that time
interval from the above region.

We analyze the data using the model from (6). We use
diffused prior specifications for model parameters. Regres-
sion coefficients such as βπ, c11 and c21, are assigned a

N(0,100) prior. For variance parameters, we use an Inverse
Gamma(2,4) prior. For the sp-knots in μy and μπ , we allow
each of them to have at most k0 = 30 nonconstant local func-
tions, i.e. each of ky and kπ is assigned an 1 + Poisson(4)

prior truncated between [1,31]. As we show later, this range
turns out to be adequate for our dataset. We consider local
polynomials of only upto second order, i.e. nh has a uni-
form prior on {1,2}. We select m = 100 locations within the
region as the pp-knots. For the correlation parameter κ , we
first select a possible set of values for the spatial range R and
use a uniform distribution over equidistant points in that set.
As mentioned in Sect. 4.2, this leads to a discrete uniform
prior for κ . The MCMC is run for 15000 iterations, discard-
ing the first 5000 draws and thinning the rest at every 5th
draw.

Before providing the posterior summaries for precipita-
tion patterns, we perform a validation step by comparing
model-based predictions with corresponding true observa-
tions. For that, we randomly remove a “test” set that con-
sists of 130 and 122 sites from the region with positive pre-
cipitation records from TMI and AMSU-NOAA17, respec-
tively. We treat those sites as having no available measure-
ment, predict the latent process Y as in Sect. 4.3 and, trac-
ing back the hierarchy in (6), regenerate the samples for the
“observed” rainrates Ỹ at each of those locations for each of
the satellites using 2000 thinned MC samples of model pa-
rameters. The samples are summarized in form of predictive
mean and credible set. As with the simulation studies, we
compute three measures of predictive performance: (i) abso-
lute bias (ii) predictive uncertainty and (iii) coverage status
for every Ỹ in the test set. In Table 2 we present, for each
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Fig. 3 Climatological mean
surface rainrate for January for
the period 1998–2010 from the
TRMM Multisatellite
Precipitation Analysis (Huffman
et al. 2007). The domain for this
study is indicated by the black
rectangle box. The mean
rainrate field is relatively
smooth across the study domain,
except in the southwest corner,
where orographic effects from
the Andes Mountains are
apparent (Color figure online)

Fig. 4 Grid-level rainrate
measurements from (top) TMI
and (bottom) AMSU-NOAA17
satellites during [1:30,
4:30] a.m. on January 1, 2008
(Color figure online)
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satellite, the summary of these measures—the mean abso-
lute bias, the mean predictive uncertainty and the coverage
proportion.

The results turn out to be satisfactory as the empirical
coverage rates for both satellites exceed 89 %. As expected,
the TMI measurements have significantly better estimates
of error and reduced uncertainty of prediction over those of
AMSU-NOAA17 because the former has been used as the
reference standard for this data analysis. Now, we provide
posterior summary statistics for some important model pa-
rameters in Table 3.

Table 2 Predictive performance of both satellites on test dataset

Satellite Mean absolute
bias (in mm/hr)

Mean predictive
uncertainty
(in mm/hr)

Coverage proportion
for 90 % credible sets

TMI 1.039 3.765 0.892

AMSU-
NOAA17

1.697 5.738 0.893

Combined 1.357 4.720 0.893

The number of sp-knots for the latent log-rainrate process
as well as for the probability of no precipitation are well-
within their assigned range of [1, 31]. The multiplicative
factor for the AMSU-NOAA17, c2 is marginally above 1.
The effect of the latent log rainrate process Y on the event of
rainfall is parametrized by βπ and turns out to be significant.
Next, we look at the spatial maps for rainrate summaries.
First, we present the pointwise estimates for the exp[Y ] and
π surfaces in Fig. 5. Then, the posterior mean and uncer-
tainty estimates (90 % credible set width) of the expected
rainrate process, as defined in Sect. 4.3, are included in

Table 3 Posterior summaries of important model parameters

Parameter
type

Parameter
name

Point
estimate

90 % posterior
credible interval

Latent
process-specific

ky 21 [17, 26]

kπ 8 [5, 12]

βπ 1.392 [1.271, 1.582]

AMSU-NOAA17-
specific

c1 0.332 [0.245, 0.429]

c2 1.090 [0.999, 1.187]

Fig. 5 Posterior surface
estimates of (top) probability of
rainfall π and (bottom) potential
rainrate exp[Y ] (Color figure
online)
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Fig. 6 Posterior estimated
surfaces for (top) expected
rainrate and (bottom) its
uncertainty (width of pointwise
90 % credible sets) (Color figure
online)

Fig. 6. To highlight the contribution of sp-knot based func-
tions, we present the posterior maps of exp{μy(·)} and μπ

in Fig. 7.
Precipitation is mostly concentrated in the west-central

part of the region and decreases as one moves towards the
ocean in the east. In Fig. 5, the probability map shows higher
chance of observing precipitation in the central part of the
region as a result of smoothing effect of high rainfall ob-
servations in the surrounding regions from both satellites.
Figure 6 shows patches of region with relatively higher ex-
pected rainrate. The highs and lows of the uncertainty esti-
mates are often related to those of the corresponding point
estimates. This is a natural property of the log-Gaussian
model (also other models like Gamma) due to the inter-
dependence between mean and variance. The uncertainty
estimates are reflective of typically high variability (as well
as lack of spatial smoothness) of precipitation over a short
time window. Finally, Fig. 7 shows bands of piecewise ho-
mogeneous regions created by the collection of sp-knots
and associated local polynomials. The estimated surface for
exp[μy] contains relatively higher number of localized pat-
terns than the surface for μπ . This is justified by Table 3,
which shows that the posterior probability mass function for

ky puts greater weight on larger values within the [1,31]
range than the one for kπ .

6 Summary and future work

In this article, we presented a novel hierarchical model to
combine precipitation measurements from multiple satel-
lites. To capture a wide range of localized as well as large-
scale spatial patterns in the underlying potential rainrate pro-
cess, a flexible random knot-based mean function has been
used in combination with a stationary residual in the log
scale. The method was adjusted to handle a large number
of observation locations using a predictive process approxi-
mation, making it applicable to studies involving larger re-
gions. However, it is likely for a larger domain to contain
heterogeneous subregions, e.g., land-sea boundaries or re-
gions separated by mountain stretches, that may experience
different rainfall patterns. Whereas the MARS specification,
employed in this work, can be really useful for these sit-
uations (since it does not make assumptions regarding any
global pattern of correlation in the response surface), it is
worth exploring alternative modeling ideas that can account
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Fig. 7 Maps of sp-knot based
surfaces—(top) exp[μy ] and
(bottom) μπ constructed from
their respective posterior
samples (Color figure online)

for boundary effects between nonhomogeneous regions. An-
other extension lies in extending the 3-hr window to a larger
time interval like a day or a week that brings a temporal pat-
tern to the data. The associated spatio-temporal process can
be developed as an extension to the current spatial model for
Y in a number of different ways. Limitations for such spec-
ifications with respect to restricted model assumptions (e.g.
separability across space and time), computational load or
intuitive interpretability need to be compared for preferring
one of them over the others. Another important information
that may significantly improve rainfall prediction is the use
of associated covariate data. Covariates can be of different
types: (i) climate features such as temperature, wind speed,
wind direction etc., (ii) geographic information such as ele-
vation and (iii) measures of human intervention, e.g., forest
cover, emission rates of pollutants etc. which are believed
to influence rainfall in the long run. Inclusion of appropri-
ate local covariate information is often useful to explain the
nonstationarity, thus eliminating the need for complex mod-
els.
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Appendix: Marginalizing out νy and σ 2
y for estimation

of spline parameters in μy(s)

Denote by . . . all parameters except ν,σ 2
y . Let P =

[φ1[x(s)], φ2[x(s)], . . . , φk[x(s)]], S = y(s) − Pνy . We
have,

p
(
y(s)| . . .)

∝
∫

νy

∫

σ 2
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(
y(s)|νy, σ
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∫
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[
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Γ
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)
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Now write ST D−1S + νT
y νy = νT

y Aνy − 2νT
y B + C, where

A = P T D−1P + Ik

τ 2
y

, B = P T D−1Sy , C = ST
y D−1Sy . Then

we have, ST D−1S + νT
y νy + 2bσ = (νy − μk)

T Σ−1
k (νy −

μk) + c0k , where μk = A−1B,Σk = A−1, c0k = C −
bT A−1b + 2bσ . Denote d = n + 2aσ . Then

p
(
y(s)| . . .)

∝ (
πτ 2

y

)−k/2
c
− d+k

2
0k Γ

(
d + k

2

)∫

νy

[
1

d
(νy − μk)

T

×
(

c0kΣk

d

)−1

(νy − μk) + 1

]− d+k
2

dνy.

The integrand is the pdf (up to a constant) for the k-variate t

distribution with mean μk , dispersion c0kΣk

d
and degrees of

freedom d . Hence, we obtain the closed form expression for

p(y(s)| . . .) ∝ (τ 2
y )−k/2c

− d
2

0k |Σk|1/2.
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