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1 Introduction

We would like to congratulate the authors for producing this interesting and novel
methodology for comparison of spatial fields. It is important that this problem be dis-
cussed and expanded, especially in the context of large data sets, which is undoubtedly
one of the main challenges that any statistician working with environmental space–
time data has to face in contemporary research. We have divided our comments in three
sections that cover separate (albeit intertwined) topics. In Sect. 2, we link this work
with previous literature on hypothesis testing with multiple predictors and discuss the
consequences of not accounting for predictor uncertainty. In Sect. 3, we discuss the
interpretability of Locally Selected Predictors (LSP) and Globally Selected Predictors
(GSP) estimates and potential challenges around this issue, while in Sect. 4, we expand
some points on oversmoothing and scalability for large data sets that have arisen in
this work.

2 Uncertainty in spatial predictors

In the case of two spatial predictors, the previous literature has developed hypothesis
tests with the null hypothesis that there is no difference between the predictors either
for every location (Sheng et al. 2002; Sendur et al. 2005; Pavlicová et al. 2008) or
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with a single hypothesis that on average the predictors are the same (Hering and Gen-
ton 2011). Bradley, Cressie and Shi define a methodology for selecting predictors at
unsampled locations with an estimate of the square prediction error, thereby allowing
for maps such as the ones in Figure 8 of the paper that show where different pre-
dictors perform better (more in the next sections). This methodology also allows for
comparison of multiple predictors. This approach however does not allow for formal
testing as in the aforementioned papers, since not all spatial predictors come with a
measure on uncertainty (and consequently spatial correlation), as acknowledged in the
final discussion. This makes the interpretation of the patterns in Figure 8 potentially
problematic, because it is not possible to understand if a method is better in one area
simply by chance. Besides, there could be patterns of correlations among predictors
that could lead to simultaneous good or bad prediction in some locations.

3 Interpretability of spatial predictors comparisons

An issue that arises in the use of LSP instead of a GSP is interpretability. The use of
a global criterion and consequently of a single predictor for all domain D does not
acknowledge that some predictors are locally better than others, but it does allow a
reconstructed map that retains more physical interpretability to be chosen. A similar
issue arises in climate science when we need to determine what is the “best” global or
regional circulation model in a multi-model ensemble, and how to combine information
to gain better predictions (see for example Jun et al. 2008b, a; Knutti 2010; Tebaldi et al.
2004, 2005). In that context, the field output, be it any physical variable, represents
the solution of systems of partial differential equations (PDEs): it therefore has an
important physical meaning. On the other hand, while reconstructing a field by merging
information from multiple fields could lead to a problematic interpretation, a map of
the selected predictor for different locations can be helpful to discuss where some
methods fail, and why. We found the maps in the left column of Figure 8 of the paper
particularly interesting, because there are clearly some spatial patterns, especially for
the moving-window predictor selection (MWS) and nearest-neighborhood predictor
selection (NNS), that could help to understand what is the best interpolation method,
and why. Are these patterns due to the geometry of the retrieval locations? Moreover,
it would be interesting to see the percentages of success of different methods adjusted
for regions of interest for impact assessments (urban land areas).

4 Smoothness in spatial predictors and the big data challenge

Another interesting point of discussion is the use of scalable algorithms for large
data sets such as the AIRS retrievals in the work, comprising approximately 75,000
locations. The authors have given a detailed review of techniques to overcome these
challenges in Sect. 3.1, and we would like to further expand on some of their remarks.
One of the issues that arises with spatial interpolation techniques that reduce the rank
of the covariance matrix is oversmoothing (Stein 2014), as is noticeable in the second
panel in Figure 7. [Regarding the Stochastic PDE approach (SPD), we were quite
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surprised to see such a smooth reconstructed field from this, and we guess the authors
have used a stochastic PDE with constant coefficients, which implies an isotropic
Matérn field as a reference for the Markov Random Field approximation. It would
be interesting to see how spatially varying parameters could change the field, if they
could add some structure, and how this would impact Figure 8.] A possible, alternative
solution could be to divide the world into multiple regions and perform a localized
kriging in each one of them. This would imply a subjective choice of the regions and
suboptimal performances near the boundaries, but this method is scalable and could
be a useful approach if the scientific questions arising from the reconstructed field
are geographically constrained. Another, more computationally demanding approach
would be to perform a global kriging. With the data and the computer at hand, it is not
an impossible task: 75,000 retrievals imply a matrix of approximately 42Gb (in double
precision, ignoring matrix symmetry) and the matrix inversion required for kriging
can be performed using iterative methods. This approach will not be directly applied
if a time window larger than the nine days is considered. In this regard, we believe
that the development of scalable methods for large space–time data sets it still in its
infancy, and this is evident just from the referral of data sets of the size of less than
105 as “very large” or even “massive”, when truly massive data sets [most noticeably
from climate model output; for example, the latest CMIP5 multi-model ensemble
(Taylor et al. 2012)] can be easily several orders of magnitude larger. In some cases,
especially when data are gridded, it is possible to formulate scalable algorithms for
tens of millions of data points using large memories and a large pool of processors
(Castruccio and Stein 2013; Castruccio and Genton 2014), but in cases where the
geometry is not gridded, its extension is not immediate.
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