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When Doesn’t Cokriging
Outperform Kriging?
Hao Zhang and Wenxiang Cai

Abstract. Although cokriging in theory should yield smaller or equal pre-
diction variance than kriging, this outperformance sometimes is hard to see
in practice. This should motivate theoretical studies on cokriging. In gen-
eral, there is a lack of theoretical results for cokriging. In this work, we pro-
vide some theoretical results to compare cokriging with kriging by examining
some explicit models and specific sampling schemes.

Key words and phrases: Cokriging, equivalence of probability measures,
infill asymptotics, kriging.

Genton and Kleiber (2015) provided an excellent re-
view of recent development in the mutivariate covari-
ance functions. In many situations, the ultimate objec-
tive of modeling the multivariate covariance function
is to obtain superior prediction through cokriging. In
theory, cokriging should have a prediction variance no
larger than that of the kriging prediction. However, as
the authors point out in the paper, sometimes the im-
provement of cokriging is very little or none. In this
note, we try to shed some light through some theoreti-
cal investigations.

For univariate Gaussian stationary processes, we
now have a good understanding of the properties of
kriging and statistical inferences. For example, theo-
retical results have been established to justify (i) that
two different covariance functions may yield asymp-
totically equally optimal prediction (Stein, 1999), and
(ii) some parameters are not consistently estimable if
the spatial domain is bounded (Zhang, 2004). We know
the conditions under which a misspecified covariance
function yields an asymptotically right prediction and
can exploit this fact to simplify computations (Zhang,
2004; Du, Zhang and Mandrekar, 2009).
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We lack the analogous understanding for the multi-
variate spatial models. There are no explicit theoretical
results to answer the following questions:

• How important is the cross-covariance function?
Specifically, could two different multivariate covari-
ance functions yield an asymptotically equally opti-
mal prediction?

• Which parameters are important to cokriging? We
know which parameters are important to kriging.

• How much improvement does cokriging have over
kriging?

One particular concept that has been shown useful in
the study of kriging is the equivalence of probability
measures due to a theorem established by Blackwell
and Dubins (1962). Let si , i = 1, . . . , n be sampling
sites on a fixed domain (area) where the process Y(s)
is observed, and {si , i > n} be a set of sites on the
same domain where Y is to be predicted. If the two
Gaussian measures P1 and P2 are equivalent on the
σ -algebra generated by Y(si ), i = 1,2, . . . , then with
P1-probability one,

sup
∣∣P1

{
A|Y(si ), i = 1, . . . , n

}
− P2

{
A|Y(si ), i = 1, . . . , n

}∣∣
→ 0 as n → ∞,

where the supremum is taken over A ∈ σ {Y(si ), i > n}.
The above result implies that the linear predictions un-
der the two measures are asymptotically equally opti-
mal (Stein, 1999).
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This result can be readily extended to the multivari-
ate spatial process and therefore implies two cokriging
predictors are asymptotically equally optimal under the
two probability measures if the two Gaussian measures
are equivalent. However, unlike in the univaritate case,
there are very limited results on equivalence of proba-
bility measures. Ruiz-Medina and Porcu (2015) gave
some general conditions for equivalent measures for
multivariate Gaussian processes though there is still a
lack of explicit examples where equivalent measures
occur.

We now provide some sufficient conditions for the
equivalent of Gaussian measures for a particular bivari-
ate model. Let Y(s) = (Y1(s), Y2(s))′ be a stationary
bivariate Gaussian process with the following bivariate
covariance function under the probability measure Pk ,
k = 1,2, such that

Cij (h) = Cov
(
Yi(s), Yj (s + h)

)
= M

(|h|, σij,k, αk, ν
)
, i, j = 1,2,

where M(·, σ 2, α, ν) denotes the Matérn covariance
function with variance σ 2, scale parameter α and the
smoothness parameter ν. The following are sufficient
conditions for the two measures Pk to be equivalent on
the σ -algebra generated by {Yi(s), s ∈ D, i = 1,2} for
some bounded set D ∈ Rd , d ≤ 3:

σ 2
ii,1α

2ν
1 = σ 2

ii,2α
2ν
2 ,

(1)
σ12,1/

√
σ11,1σ22,1 = σ12,2/

√
σ11,2σ22,2.

To prove this claim, we employ the Karhunen–Loève
expansion under measure P1. Since the two processes
{Yi(s)/

√
σii,1}, i = 1,2, have the same covariance

function M(|h|, a,α, ν) and therefore possess the same
Karhunen–Loève expansion under measure P1,

Yi(s)√
σii,1

=
∞∑
l=1

√
λlfl(s)Zil,

where for i = 1,2, {Zil, l = 1, . . .} consists of i.i.d.
standard normal random variables under measures P1.
Clearly, the eigenvalues λl and eigenfunctions fl(s)
only depend on the correlation function and hence do
not depend on i. In addition,

Zil = 1√
λlσii,1

∫
D

Yi(s)fl(s) ds.

Using the above expression, it is not hard to show
that

E1(Z1lZ2m) = rδl,m
(2)

for r = σ12,1/
√

σ11,1σ22,1,

E2(Z1lZ2m) = rE2(Z1lZ1m).(3)

The Karhunen–Loève expansion implies that {Zil,

l = 1,2, . . . ,∞} is a basis of the Hilbert space gen-
erated by {Yi(s), s ∈ D} with respect to measure P1.
Hence, {Z1l ,Z2l, l = 1,2, . . .} is a basis of the Hilbert
space generated by the two processes {Yi(s), i =
1,2, s ∈ D}. The two measures are equivalent on the
Hilbert space if and only if they are so on {Z1i ,Z2i , i =
1,2, . . .} (Ibragimov and Rozanov, 1978, page 72). To
show the equivalence of the two measures, we only
need to verify (Stein, 1999, page 129)

2∑
i=1

2∑
j=1

∞∑
l=1

∞∑
m=1

(
E1(ZilZjm) − E2(ZilZjm)

)2

(4)
< ∞.

Because conditions (1) imply that the two measures are
equivalent on {Yi(s), s ∈ D} (Zhang, 2004), we must
have
∞∑
l=1

∞∑
m=1

(
E1(ZilZim) − E2(ZilZim)

)2
< ∞, i = 1,2.

For i �= j , equations (2) and (3) imply
∞∑
l=1

∞∑
m=1

(
E1(Z1lZ2m) − E2(Z1lZ2m)

)2

= r2
∞∑
l=1

∞∑
m=1

(
E1(Z1lZ1m) − E2(Z1lZ1m)

)2
< ∞.

Therefore, (4) is proved and so is the sufficiency
of the conditions. We now have an explicit exam-
ple where two different bivariate covariance functions
yield asymptotically equal cokriging results.

Next, we will try to explain why sometimes it is hard
to see the improvement of cokriging over the kriging
prediction. Consider a bivariate Gaussian process with
mean 0 and exponential covariance functions such that

Cij (h) = Cov
(
Yi(s), Yj (s + h)

)
(5)

= σij exp
(−α|h|), i, j = 1,2.

Assume the two processes are observed at n points
si , i = 1, . . . , n, and predict Y1(0). Write Y1 = (Y1(si),

i = 1, . . . , n)′, Y2 = (Y2(si ), i = 1, . . . , n)′. It is known
that in this case the cokriging predictor is identical to
the kriging predictor. To see this, let R denote the cor-
relation matrix of Y1, which is also the correlation ma-
trix of Y2. Then

Cov(Yi ,Yj ) = σijR.

Let V be the matrix with (i, j)th element σij . Then the
covariance matrix of (Y1,Y2) is V ⊗ R. Let k denote
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the vector of correlation coefficients between Y1(s), the
variable to be predicted, and Y1. Then

E
(
Y1(s)|Y1,Y2

)
(6)

= (
(σ11, σ22) ⊗ k′)(V −1 ⊗ R−1)

Y

= ((
k′,0

) ⊗ R−1)
Y = k′R−1Y1

(7)
= E

(
Y1(s)|Y1

)
.

Therefore, cokriging is identical to kriging and we
should not expect any improvement of cokriging over
kriging. We can also show that they are identical if
Y2(s) is observed at a subset of locations where Y1 is
observed.

One scenario where cokriging might outperform
kriging is when the auxiliary variable is observed
at more locations than the predicted variable. In the
next example, we will examine analytically what vari-
ables affect the improvement of cokriging over krig-
ing. We assume the same bivariate model (5) and Y2(s)

are observed at s ∈ O = {i/n, i = ±1,±2, . . . ,±n},
but Y1(s) is observed at half of the points s ∈ O1 =
{2i/n, i = ±1,±2, . . . ,±n/2} where n is an even in-
teger. Denote the kriging predictor and cokriging pre-
dictor of Y1(0) by

Ŷ1(0) = E
(
Y1(0)|Y1(s), s ∈ O1

)
,(8)

Ỹ1(0) = E
(
Y1(0)|Y1(s), s ∈ O1, Y2(t), t ∈ O

)
.(9)

We will derive the following asymptotic relative effi-
ciency of kriging to cokriging:

lim
n→∞

E(Y1(0) − Ỹ1(0))2

E(Y1(0) − Ŷ1(0))2
= 1 − r2/2,(10)

where r is the correlation coefficient of Y1(s) and
Y2(s).

The asymptotic relative efficiency of kriging predic-
tion does not depend on the scale parameter α. In-
tuitively this is understandable. However, for a finite
sample size n, α may affect the efficiency. We now
present a simulation study to see how α and r affect the
relatively efficiency of kriging prediction. We consider
the exponential covariance model with σ11 = σ22 = 1
and r = 0.2 and 0.5, and α = 2,4 and 8. The auxiliary
variable Y2 is observed at ±i/n, i = 1, . . . , n, but the
primary variable Y1 is observed at ±i/n for even inte-
gers 0 < i ≤ n. We calculate the prediction variance for
predicting Y1(0) using both kriging and cokriging and
obtain the relative efficiency of kriging for different n,
α and r .

Figure 1 plots the relative efficiency for different r ,
α and n. We see that the relative efficiency of kriging
decreases as n increases, which means that it is more
likely to see the outperformance of cokriging over krig-
ing when n is larger. When the spatial autocorrelation
is strong (i.e., α smaller), the asymptotic efficiency is
achieved relatively faster (i.e., with n not too larger).
This agrees with many other infill asymptotic results.

We now prove (10). We first note a Markovian prop-
erty of the exponential model established by Du, Zhang

FIG. 1. Relative efficiency of kriging to cokriging for different r , α and n. The solid horizonal line is the asymptotic relative efficiency
1 − r2/2.
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and Mandrekar (2009), which says E(Y1(s)|Y1(s), s ∈
B) only depends on the two nearest neighbors of s in a
finite set B such that s is between the minimum and the
maximum elements of B (Du, Zhang and Mandrekar,
2009, Lemma 1). Also from the lemma, we obtain

E
(
Y1(0) − Ŷ1(0)

)2 = 2σ 2
11α/n + o

(
n−2)

.

In the extreme case when r = 1, we can view the pro-
cess Y1(s) being observed at O . Then in this extreme
case, the above equation implies

E
(
Y1(0) − Ỹ1(0)

)2 = σ 2
11α/n + o

(
n−2)

.

The ratio in (10) is clearly 1/2. Hence, we have veri-
fied (10) for this extreme case. On the other hand, when
r = 0, the two predictors Ŷ1(0) and Ỹ1(0) are identical
and (10) is obviously true.

We are going to show that

Ỹ1(0) = b1Y1(−2/n) + b2Y1(2/n)

+ b3Y2(−2/n) + b4Y2(−1/n)(11)

+ b5Y2(1/n) + b6Y2(2/n),

where

b1 = b2 = e−2α/n

e−4α/n + 1
,

(12)

b3 = b6 = − re−2α/n

e−4α/n + 1
,

b4 = b5 = re−α/n

e−2α/n + 1
.(13)

Some straightforward calculation yields

E
(
Y1(0) − Ỹ1(0)

)2

= −σ 2
11

(−2e−4α/nr2 + e−6α/n + 2e−2α/nr2

+ e−4α/n − e−2α/n − 1
)

/
((

e−4α/n + 1
)(

e−2α/n + 1
))

= σ 2
11

(
2 − r2)

α/n + o
(
n−2)

.

Then (10) immediately follows. Hence, it is suffi-
cient to show (11). It is possible to show that Y1(0) −
Ỹ1(0) is uncorrelated with any Y1(s), s ∈ O1 and with
any Y2(t), t ∈ O . Hence, Ỹ1(0) must be the best lin-
ear prediction. Here we take an alternative but more
intuitive approach. We will apply the Markovian prop-
erty of the Gaussian exponential model to show that
Ỹ1(0) only depends on Y1(−2/n), Y1(2/n), Y2(−2/n),
Y2(−1/n), Y2(1/n) and Y2(2/n). Consequently, the
coefficients bi ’s in (12) and (13) can be found by solv-
ing linear equations.

For any odd integer i between −n and n,

E
(
Y2(i/n)|Y1(s), s ∈ O1, Y2(t), t ∈ O, t �= i/n

)
= E

{
E

(
Y2(i/n)|Y1(t), Y2(t), t ∈ O, t �= i/n

)|
Y1(s), s ∈ O1, t ∈ O, t �= i/n

}
(14)

= E
{
E

(
Y2(i/n)|Y2(t), t ∈ O, t �= i/n

)|
Y1(s), s ∈ O1, t ∈ O, t �= i/n

}
= E

{
Y2(i/n)|Y2(ti−), Y2(ti+)

}
,

where ti− and ti+ are the two nearest neighbors of i/n

in O . For example, for i = −1, ti− = −2/n and ti+ =
1/n.

Define ei = Y2(i/n) − E{Y2(i/n)|Y2(ti−), Y2(ti+)}
for an odd i. Then ei is independent of Y1(s), s ∈ O1
and Y2(t), t ∈ O and t �= i/n. Consequently,

E
(
Y1(0)|Y1(s), s ∈ O1, Y2(t), t ∈ O

)
= E

(
Y1(0)|Y1(s), Y2(s), s ∈ O1, ei, i odd

)
(15)

= E
(
Y1(0)|Y1(s), Y2(s), s ∈ O1

)
+ E

(
Y1(0)|ei, i odd

)
.

The first term in the above equation depends only on
Y1(−2/n) and Y1(2/n) due to the Markovian prop-
erty. For the second term, because the cross-covariance
function is proportional to the covariance function of
Y2(t), we have

E
(
Y1(0)|ei, i odd

) = rE
(
Y2(0)|ei, i odd

)
.

Applying again the property of conditional expectation
and the Markovian property, we get

E
(
Y2(0)|ei, i odd

)
= E

(
E

{
Y2(0)|Y2(t), t ∈ O

}|ei, i odd
)

= βE
{
Y2(−1/n) + Y2(1/n)|ei, i odd

}
= βE

{
Y2(−1/n) + Y2(1/n)|e−1, e1

}
,

where β is the constant in E(Y2(0)|Y2(−1/n),

Y2(1/n)) = β(Y2(−1/n) + Y2(1/n)), and the last
equation follows the fact that ei is independent to
Y(1/n) and Y2(−1/n) if i �= 1 or −1. Therefore, the
second term of (15) is a linear function of e−1 and e1
and hence a linear function of Y2(i/n), i = −2,−1,1
and 2.
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