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SUMMARY

Max-stable processes allow the spatial dependence of extremes to be modelled and quan-
tified, so they are widely adopted in applications. For a better understanding of extremes, it
may be useful to study several variables simultaneously. To this end, we study the maxima of
independent replicates of multivariate processes, both in the Gaussian and Student-t cases. We
define a Poisson process construction and introduce multivariate versions of the Smith Gaussian
extreme-value, the Schlather extremal-Gaussian and extremal-t , and the Brown–Resnick mod-
els. We develop inference for the models based on composite likelihoods. We present results of
Monte Carlo simulations and an application to daily maximum wind speed and wind gust.

Some key words: Composite likelihood; Cross-correlation; Extremal coefficient; Max-stable process; Multivariate
analysis; Random field; Spatial extreme.

1. INTRODUCTION

The statistical modelling of spatial extremes of natural processes is important in environmen-
tal studies to understand the probability of events such as floods, heat waves, or hurricanes.
Extreme events in space can be described by max-stable processes (de Haan & Ferreira, 2006),
which extend the generalized extreme-value distribution. In a seminal unpublished University of
Surrey 1990 technical report, R. L. Smith, using the de Haan (1984) spectral representation, pro-
posed a spatial max-stable model, named the Gaussian extreme-value process, whose dependence
structure is obtained using Gaussian densities. Schlather (2002) extended the de Haan formula-
tion to random functions and proposed a model, named the extremal-Gaussian process. Another
popular spatial max-stable model is the Brown–Resnick process (Brown & Resnick, 1977;
Kabluchko et al., 2009). The extremal-Gaussian max-stable model based on compact random
sets was introduced by Schlather (2002) and used by Davison & Gholamrezaee (2012). Spatio-
temporal max-stable processes have been discussed by Kabluchko (2009), Davis et al. (2013) and
Huser & Davison (2014). Asymptotically independent processes for modelling extreme values
were discussed by de Haan & Zhou (2011), Wadsworth & Tawn (2012) and Padoan (2013a).

c© 2015 Biometrika Trust
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Reviews of recent advances in the statistical modelling of spatial extremes are Davison et al.
(2012), Cooley et al. (2012), Padoan (2013b), Ribatet (2013) and Davison & Huser (2015).

Although the aforementioned literature attests to vigorous research, it is limited to modelling a
single variable. In practice, however, multiple variables are often observed. For instance, rainfall,
temperature and wind may be observed at many locations spread across a region. Each of these
variables has its own spatial variation but also depends on the other variables. The aim of this
paper is to extend the theory and application of max-stable processes to the multivariate setting.
Zhang & Smith (2004) investigated the behaviour of multivariate maxima of moving maxima
processes, but these are not suitable for modelling spatial extremes. There is thus a need to extend
max-stable processes to the multivariate setting and to make them practically useful.

To fix notation, let I = {1, . . . , p} and K = {1, . . . , q} be sets of indices of variables and
of spatial locations, respectively. Let N = pq, J = I × K be the Cartesian product and Jik =
{( j, l) ∈ J\(i, k)}. We denote by {Yi (s)}s∈S a real-valued random process on S ⊆ R

d , with i ∈ N.
Let Y (s)= {Y1(s), . . . , Yp(s)}T be a p-vector of processes observed in S and let {Y (m)(s)}m�1
be independent copies of Y (s).

2. MAXIMA OF INDEPENDENT REPLICATES OF MULTIVARIATE PROCESSES

2·1. Gaussian case

For every n ∈ N, let {Yn(s)}s∈S be a p-dimensional Gaussian process that is second-order
stationary with a zero-mean vector function, unit variances, and a matrix-valued covariance
function, �(h; n)= {ρi j (h; n)}i, j∈I , h ∈ R

d . Specifically, ρi j (h; n)= E{Yin(s) Y jn(s + h)} is
the spatial cross-correlation function between processes i and j , with i |= j , and h is the spatial
lag between locations. When j = i , ρi i (h; n) is the correlation function of process i . If h = 0,
then ρi i = 1 and ρi j represents the correlation between components. For simplicity of notation,
we write ρi j (n) and ρi (h; n) for ρi j (0; n) and ρi i (h; n), respectively.

Let bn be a sequence such that (2π)1/2bn exp(b2
n/2)∼ n as n → ∞ (Resnick, 1987, Ch. 1).

Assumption 1. Suppose that the dependence structure, �(h; n), of Yn(s) depends on n with

2b2
n {ϒ −�(h; n)} →�(h), n → ∞,

where ϒ is a p × p matrix of ones and �(h) is a matrix-valued nonnegative function. By
this, we mean that, for the correlation structure, the following constraints are fulfilled: 2b2

n{1 −
ρi j (h; n)} → λ2

i j (h) as n → ∞, for all h ∈ R
d and for any i, j ∈ I , where λ2

i j (h) is a nonnega-

tive function. When j |= i and h = 0, 2b2
n {1 − ρi j (n)} → λ2

i j , as n → ∞, where λ2
i j ∈ [0,∞) is

assumed. When j = i and h = 0, then ρi (n)= 1 and λ2
i = 0.

The quantity λ2
i j measures the strength of the dependence among the variables in the limit,

λ2
i (h) and λ2

i j (h) represent the limiting spatial inter-component and cross-component dependence
functions. If Assumption 1 holds, then we derive the following generalization of the Hüsler–Reiss
model (Hüsler & Reiss, 1989; Kabluchko et al., 2009; Kabluchko, 2011).

PROPOSITION 1. For every n ∈ N, let {Y (m)n (s)}n
m=1 be independent copies of Yn(s) and let

Mn(s)= {Min(s)}i∈I be the vector of pointwise maxima, where Min(s)= maxm=1,...,n{Y (m)in (s)},
for all s ∈ S. Take Zn(s)= bn{Mn(s)− bn}. Then, Zn(s)→ Z(s) weakly as n → ∞ and
{Z(s)}s∈S is a p-dimensional max-stable process with a finite dimensional distribution, for pos-
itive values {zi (sk)}(i,k)∈J with sk ∈ S, equal to exp(−V [N ]

1···p[{zi (sk)}(i,k)∈J ]) where N = pq and
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V [N ]
1···p[{zi (sk)}(i,k)∈J ] equals

∑
(i,k)∈J

1

zi (sk)
�N−1,�̄ik

⎛
⎝[λi j (sk − sl)

2
+ log

{
z j (sl)/zi (sk)

}
λi j (sk − sl)

]
( j,l)∈Jik

⎞
⎠ , (1)

where �N−1,�̄ik
is the (N − 1)-dimensional Gaussian distribution function with mean zero and

partial correlation matrix, �̄ik , provided that this matrix is invertible.

The proof and the form of �̄ik are reported in the Supplementary Material. Here,
V [N ]

1···p[{zi (sk)}(i,k)∈J ] is a multivariate exponent function; see de Haan & Ferreira (2006, Ch. 9)
for a discussion of the univariate case. The superscript on V means that it is an exponent function
of N random components, that is, p variables observed at q sites. The subscript lists the vari-
ables involved. The overall dependence among the p spatial variables is fully described by (1),
which depends on the spatial cross-component dependence, λi j (sk − sl), the individual spatial
dependence, λi (sk − sl), and the dependence between variables, λi j . We call the process Z(s)
with exponent function (1) the multivariate Hüsler–Reiss process. In (1), if we set a common
threshold, z, then the multivariate extremal coefficient is

θ
[N ]
1···p({sk − sl}k,l∈K )=

∑
(i,k)∈J

�N−1,�̄ik

[{
λi j (sk − sl)/2

}
( j,l)∈Jik

]
.

In this case, 1 � θ
[N ]
1···p({sk − sl}k,l∈K )� N , where the lower bound represents the complete

dependence case, arising when all variables are totally dependent, whereas the upper bound rep-
resents independence (Schlather & Tawn, 2003).

Since for a large number of variables and locations, θ [N ]
1...p({sk − sl}k,l∈K ) may be difficult

to compute, interpret and represent graphically, we propose to use the following lower-order
extremal coefficients to summarize the dependence of multiple spatial extremes. Consider a pair
of variables, (Zi , Z j ), i, j ∈ I (i |= j), observed at two sites separated by h ∈ R

d . A natural sum-
mary of the spatial dependence between the extremes of two variables is the pairwise cross-
component extremal coefficient, θ [2]

i j (h)= 2�{λi j (h)/2} ∈ [1, 2]. In general, θ [2]
i j (h) |= θ [2]

j i (h),
since λi j (h) |= λ j i (h), because ρi j (h) |= ρ j i (h). For a full understanding of the dependence,

θ
[2]
i j (h), θ

[2]
j i (h), θ

[2]
i (h), θ [2]

j (h) and θ [2]
j i should be considered together. A richer measure that

simultaneously uses the information of λi j (h), λ j i (h), λi (h), λ j (h) and λi j is the quadruplewise
spatial extremal cross-component coefficient,

θ
[4]
i j (h)=�3,�̄1

{
λi (h)

2
,
λi j

2
,
λi j (h)

2

}
+�3,�̄2

{
λi (h)

2
,
λ j i (h)

2
,
λi j

2

}

+ �3,�̄3

{
λ j (h)

2
,
λi j

2
,
λ j i (h)

2

}
+�3,�̄4

{
λ j (h)

2
,
λi j (h)

2
,
λi j

2

}
∈ [1, 4]. (2)

This is derived from the distribution of {Zi (s), Z j (s), Zi (s + h), Z j (s + h)}, provided in the
Supplementary Material with the matrices, �̄i (i = 1, . . . , 4). The coefficient in (2) satisfies
θ

[4]
i j (h)= θ

[4]
j i (h), and the pairwise coefficients, θ [2]

i j (h), θ
[2]
j i (h), θ

[2]
i (h), θ [2]

j (h) and θ [2]
i j are spe-

cial cases.
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We can also consider (Zi , Z j , Zv) with i, j, v ∈ I (i |= j |= v), separated by h, h′, h′′ ∈ R
d ,

giving the triplewise spatial extremal cross-component coefficient,

θ
[3]
i jv(h, h′, h′′)=�2,�̄1

{
λi j (h)

2
,
λiv(h′)

2

}
+�2,�̄2

{
λi j (h)

2
,
λ jv(h′′)

2

}
(3)

+ �2,�̄3

{
λiv(h′)

2
,
λ jv(h′′)

2

}
∈ [1, 3].

This summarizes the extremal dependence for {Zi (s), Z j (s + h), Zv(s + h′)}. Although

θ
[3]
i jv(h, h′, h′′) is not invariant with respect to the order of the variables, it represents a com-

promise between complexity and interpretability.

2·2. Correlation models for the Gaussian case

The validity of result (1) depends on whether Assumption 1 is met. Such constraints are satis-
fied by the class of multivariate Gaussian random fields with sufficiently smooth spatial isotropic
cross-correlation functions for which, around h = 0,

ρi j (h; n)= 1 − cn λ
2
i j − cn ψ ‖h‖κ + o(c2

n), (4)

for a sequence of constants, cn , such that cn → 0 as n → ∞, where 0< κ � 2 is a smoothness
parameter, and ψ and λ2

i j , i, j ∈ I , are nonnegative constants. An example of a multivariate cor-
relation model satisfying (4) is the class of power exponential correlation

ρ(h)≡ ρ(h;α, κ)= exp

{
−
(‖h‖
α

)κ}
(α > 0, 0< κ � 2),

where the parameters κ and α represent the smoothness and the scale of the spatial random field.
The cross-correlation functions, with any i, j ∈ I and j |= i , are defined by ρi j (h)= ρ j i (h)=
ρi jρ(h), which contains a factor ρi j that expresses the correlation between the variables. Con-
sidering a correlation matrix,� = {ρi j }i, j∈I , among components, the overall dependence,�(h),
emerges as a nonnegative definite correlation matrix. This correlation model is obtained as a
product between the inter- and cross-correlations. It is therefore separable between the variables
and the spatial domain. It includes the exponential correlation, κ = 1, and the Gaussian correla-
tion, κ = 2.

Define ρi j (h; n)= ρi j (n)ρ(cκn h), where ρi j (n)= 1 − cnλ
2
i j + o(cn) and ρ(cκn h)= 1 −

cn ψ ‖h‖κ + o(cn), for cn → 0 as n → ∞. Then, choosing cn = (2b2
n)

−1, it follows that 2b2
n

{1 − ρi j (h; n)} → λ2
i j (h), where λ2

i j (h)= λ2
i j + λ2(h) is the spatial cross-component depen-

dence function, with λi j the cross-component parameter and λ2(h)= (‖h‖/α)κ the spatial
dependence function. With this correlation model, ψ = α−κ in (4) and ρi j (h)= ρ j i (h) so that

θ
[2]
i j (h)= θ

[2]
j i (h), thus (2) simplifies to

θ
[4]
i j (h)= 4�3,�̄1

{
λ(h)/2, λi j/2, λi j (h)/2

}
. (5)

Although ρi j (h) is separable, the dependence structure of the limiting distribution is not. Indeed,
(5) is not a product of two coefficients, one describing the spatial dependence and the other the
dependence among variables. Further properties of (5) are reported next. Set h = ‖h‖. When the
variables are completely dependent, that is, λi j = 0, then λi j (h)= λ(h) and hence θ [4]

i j (0)= 1

and θ [4]
i j (h)→ 2 as h → ∞. Thus, (5) behaves as the usual pairwise spatial coefficient. When

the variables are dependent, that is, 0<λi j <∞, then 1< θ [4]
i j (h) < 4 for any h > 0 and it is
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Fig. 1. Quadruplewise extremal coefficient functions of the bivariate Hüsler–Reiss
process with power exponential cross-correlation. (a): The curves from top to bot-
tom correspond to 10 equally spaced values of α from 1 to 100 and fixed κ = 0·5;
(b): the curves from bottom to top correspond to 10 equally spaced values of κ

from 0·5 to 2 and fixed α= 15. In both cases, λi j = 0·8 and h = ‖h‖.

1< θ [4]
i j (0) < 2 if h = 0. Thus, (5) behaves like the usual pairwise cross-component coefficient.

When the variables are independent, that is, λi j = ∞, then θ [4]
i j (0)= 2 if h = 0 and θ [4]

i j (h)= 4 for
any h > 0. Figure 1 depicts the behaviour of (5). When h = 0, the coefficient shows the depen-
dence between the two variables and ignores the spatial component. This can be interpreted as an
average dependence between variables in the area. More detailed information is available when
h > 0. We see that the spatial dependence between variables decreases with distance, increases
with increasing scale for a fixed smoothness, and increases/decreases at long/short distances with
increasing smoothness at a fixed scale. Figure 2 depicts the triplewise coefficient function (3)
when h′ = h and h′′ ∈ (0, 2h], using a power exponential cross-correlation function. Depending
on the parameter configuration, the extremal coefficient function exhibits short-, medium- or
long-range variation. Figure 3 plots bivariate Hüsler–Reiss random fields having a power expo-
nential correlation function. A more flexible cross-correlation model would allow for different
scale parameters, αi j , and smoothing parameters, κi j (i, j ∈ I ). Unfortunately, a characterization
of the values of its parameters that leads to a valid cross-correlation model does not appear to be
known (Genton & Kleiber, 2015). Another flexible cross-correlation model is the multivariate
Matérn covariance function (Gneiting et al., 2010; Apanasovich et al., 2012), but this cannot be
used to derive (1) since even in the univariate case it does not satisfy the required condition (4).

2·3. Student-t case

Similarly to the univariate case (Røislien & Omre, 2006), we say that {Y (s)}s∈S is a p-
dimensional Student-t process with vector centring and matrix scale-dependence functions,
{μi (s)}i∈I and �(s)= {σi jρi j (s)}i, j∈I , and ν > 0 degrees of freedom, if for all possible
sequences, {sk}k∈K ∈ S, {Y (sk)}k∈K has an N -dimensional Student-t distribution, N = pq, with
a vector of centres, {μi (sk)}(i,k)∈J , a positive definite N × N scale-dependence matrix, � =
{σi jρi j (sk − sl)}(i,k),( j,l)∈J , and ν degrees of freedom. Without loss of generality, in the sequel,
we assume that μi (s)= 0 and σi j = 1 for all i, j ∈ I , such that the correlation function and the
degrees of freedom determine the dependence structure of the multivariate Student-t random
field. Then, the following result can be derived.

Let {Y (m)(s)}m=1,...,n be a sequence of independent and identically distributed copies of Y (s)
and let Mn(s)= {Min(s)}i∈I be the vector of pointwise maxima. Consider the normalized vector
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Fig. 2. Triplewise extremal coefficient functions of the trivariate Hüsler–Reiss process with power exponential

cross-correlation. Reported is θ [3]
i jv(h, h, h′)with h = ‖h‖, h′ ∈ (0, 2h], different parameter values and λi j = λiv =

λ jv = λ. Extremal coefficients with short, medium and long range are reported from the top to the bottom panels.

of pointwise maxima, Zn(s)= Mn(s)/an(s), where an(s) > 0 is an appropriate vector of normal-
izing functions. Then, Zn(s)→ Z(s) weakly as n → ∞, where Z(s) is a p-dimensional max-
stable process with a finite-dimensional distribution that depends on the exponent function

∑
(i,k)∈J

1

zi (sk)
TN−1,�̄ik ,ν+1

⎧⎨
⎩
⎛
⎝{ ν + 1

1 − ρ2
i j (sk − sl)

}1/2 [{
z j (sl)

zi (sk)

}1/ν

− ρi j (sk − sl)

]⎞⎠
( j,l)∈Jik

⎫⎬
⎭ , (6)
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Fig. 3. Simulated bivariate Hüsler–Reiss max-stable random fields having a power exponential cross-
correlation function at a mesh grid of 60 × 60 on [0, 100]2. Margins are on the standard Gumbel scale.

where TN−1,�̄ik ,ν+1 is an (N − 1)-dimensional Student-t cumulative distribution function with

zero centres, partial correlation matrix �̄ik , and ν + 1 degrees of freedom; see the Supplementary
Material for details. We call the process Z(s) with distribution (6) the multivariate extremal-t
process; for the univariate case, see Nikoloulopoulos et al. (2009), Davison et al. (2012), and
Opitz (2013). In this case, the spatial extremal cross-component coefficient is

θ
[N ]
1···p({sk − sl}k,l∈K )=

∑
(i,k)∈J

TN−1,�̄ik ,ν+1

⎧⎨
⎩
([

(ν + 1){1 − ρi j (sk − sl)}
1 + ρi j (sk − sl)

]1/2
)
( j,l)∈Jik

⎫⎬
⎭ .

Triplewise and quadruplewise extremal coefficient functions similar to those in (2) and (3) can
be derived. The pairwise spatial extremal cross-component coefficient is

θ
[2]
i j (h)= 2Tν+1

([
(ν + 1){1 − ρi j (h)}/{1 + ρi j (h)}

]1/2
)
,

where Tν+1 is a univariate Student-t cumulative distribution function with ν + 1 degrees of
freedom, h ∈ R

d . The benefit of working with the multivariate extremal-t process rather than
with the Hüsler–Reiss model is that we can use the multivariate Matérn covariance function
(Gneiting et al., 2010; Apanasovich et al., 2012). Nonseparable cross-correlation models can be
constructed using latent dimensions as proposed by Apanasovich & Genton (2010). Asymmetric
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cross-correlation models (Li & Zhang, 2011) and spatially varying cross-correlation coefficients
(Kleiber & Genton, 2013) could be investigated as well; see Genton & Kleiber (2015) for a review
of cross-covariance models for multivariate random fields.

3. A POISSON POINT PROCESS CONSTRUCTION

3·1. Multivariate extension

Let X (s)= {X1(s), . . . , X p(s)}T be a real-valued p-dimensional random function on S and
let X (m), m � 1, be independent and identically distributed copies of it. Define, for all s ∈ S,
W (s)= {max{X1(s), 0}, . . . ,max{X p(s), 0}}T. Assume that, for all s ∈ S and i ∈ I ,

E{Wi (s)} = τ ∈ (0,∞), E{sup
s∈S

Wi (s)}<∞. (7)

Let {R(m)}m�1 be points of an inhomogeneous Poisson process on R+ with intensity measure
dr/r2. If the R(m)s are independent of the W (m)s, then

Z(s)= max
m=1,2,...

{R(m) W (m)(s)}/τ (s ∈ S) (8)

defines a p-dimensional max-stable process on S with unit Fréchet margins, where the maximum
is taken componentwise. If p = 1, then we obtain the univariate spectral representation of max-
stable processes (de Haan, 1984; Schlather, 2002; de Haan & Ferreira, 2006, Ch. 9). For a finite
set of spatial points, {sk}k∈K ∈ S, and positive thresholds, {zi (sk)}i∈I , for any given k ∈ K , with
similar arguments as in Schlather (2002) and Ch. 9 in de Haan & Ferreira (2006), the finite-
dimensional distribution is pr{Zi (sk)� zi (sk), (i, k) ∈ J } = exp(−V [N ]

1···p[{zi (sk)}(i,k)∈J ]), where
the exponent function is

V [N ]
1···p[{zi (sk)}(i,k)∈J ] = τ−1 E

[
max
(i,k)∈J

{
Wi (sk)/zi (sk)

}]
. (9)

The process (8) is max-stable since its finite-dimensional distributions are max-stable (de Haan,
1984). The exponent function in (9) is a spatial cross-component exponent function that expresses
the dependence among p variables observed at q spatial points. Since (9) is a homogenous func-
tion of order −1, the overall spatial cross-component extremal coefficient is

θ
[N ]
1···p({sk − sl}k,l∈K )= τ−1 E

{
max
(i,k)∈J

Wi (sk)

}
∈ [1, N ].

A special case of (9) is

V [2]
i j {zi (s), z j (s + h)} = τ−1 E

[
max

{
Wi (s)/zi (s),W j (s + h)/z j (s + h)

}]
.

This is expressed as a function of the separation vector, h, so that the pairwise spatial cross-

component extremal coefficient is θ [2]
i j (h)= V [2]

i j (1, 1), which is equal to θ [2]
i (h) when j = i and

to θ [2]
i j when h = 0. Finally, given p variables observed at q locations, from the exponent function

(9), we can deduce that:

a) θ [N ]
1···p({sk − sl}k,l∈K )= θ

[N ]
i1···i p

({sk − sl}k,l∈K ) for any i1, . . . , i p ∈ I ;

b) θ [N ]
1···p({sk − sl}k,l∈K )= θ

[N ]
1···p({sl − sk}k,l∈K );

c) for every v = 2, . . . , p, θ
[v]
1···v({sk − sl}k,l∈1,...,v) |= θ [v]

i1···iv ({sk − sl}k,l∈1,...,v), for any

i1 |= · · · |= iv ∈ I , and θ [v]
1···v({sk − sl}k,l∈1,...,v) |= θ [v]

1···v({sl − sk}k,l∈1,...,v).
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Thus θ
[N ]
1···p({sk − sl}k,l∈K ) provides a richer summary than θ

[v]
1···v({sk − sl}k,l∈1,...,v), with

v = 2, . . . , p.

3·2. Multivariate max-stable spatial models

Different choices for W allow us to derive different multivariate models for spatial extremes.
In (8), define W (s)= exp{X (s)− σ 2(s)/2}, where X (s) is a zero-mean, p-dimensional

Gaussian process with stationary increments and a finite vector of variances, σ 2(s)= {σ 2
i (s)}i∈I ,

where σ 2
i (s)= var{Xi (s)}, and assume that X has a matrix-valued variogram, 2γ (h)=

{2γi j (h)}i, j∈I , where γi j : S → [0,∞), with γi j (0)= 0, is a conditionally negative definite func-
tion, called the semi-variogram. Specifically, 2γi j (h)= var{Xi (s + h)− X j (s)} is the spatial
cross-variogram between the processes i and j (i |= j). By definition of the variogram, we have

2γi j (h)= σ 2
i (s + h)+ σ 2

j (s)− 2cov{Xi (s + h), X j (s)} (i, j ∈ I ).

When i = j , 2γi (h)= var{Xi (s + h)− Xi (s)} is the purely spatial inter-variogram function for
component i and, finally, when h = 0, we obtain 2γi j = var{Xi (s)− X j (s)}. In this case, the
constant in (7) is τ = 1 and the resulting process, Z , is named the multivariate Brown–Resnick
model. The finite-dimensional distribution of Z has an exponent function equal to (1) but where
λi j (sk − sl)= {2γi j (sk − sl)}1/2 and the partial correlation matrix �̄ik depends on the cross-
variograms, 2γi j (sk − sl), for (i, k), ( j, l) ∈ J . This result is obtained following the argument of
Huser & Davison (2013); see also Wadsworth & Tawn (2014) and the Supplementary Material
for details. The pairwise cross-component extremal coefficient is θ [2]

i j (h)= 2�[{γi j (h)/2}1/2].
In general, the cross-variogram can be asymmetric, that is, 2γi j (h) |= 2γ j i (h). If it is symmetric,
then the spatial cross-component extremal coefficient simplifies further. In particular, if the mul-
tivariate Gaussian process, X (s), has a spatial cross-variogram, 2γi j (h)= λ2

i j + λ2
i (h), where

λ2
i j ∈ [0,∞) and 2γi j (h)= λ2

i j + ‖h/α‖κ (α > 0, κ ∈ (0, 2]), we obtain the same dependence
structure as in § 2·3. Finally, if X (s) is a second-order, zero-mean, stationary, p-dimensional
Gaussian process with σ(s)= {σ, . . . , σ }T for all s ∈ S, then Z is the multivariate version of the
geometric Gaussian process proposed by Davison et al. (2012), whose exponent function is equal
to (1) but where λi j (sk − sl)= [2σ {1 − ρi j (sk − sl)}]1/2.

In (8), define W (s)= max{0, X (s)}ν , where X (s) is a zero-mean, unit-variance, p-
dimensional Gaussian process with matrix-valued covariance function �(h)= {ρi j (h)}i, j∈I and
ν > 0. In this case, the constant in (7) is τ = 2(ν−2)/2�{(ν + 1)/2}/√π and the resulting model
is named the multivariate extremal-t process. The finite-dimensional distribution of Z has expo-
nent function equal to (6) (Opitz, 2013). A positive aspect when working with the multivariate
extremal-t process is that we can use flexible cross-correlation functions, ρi j (h), such as the mul-
tivariate Matérn (Gneiting et al., 2010; Apanasovich et al., 2012) that can have different spatial
scales and smoothnesses for the variables, or other models (Genton & Kleiber, 2015) that, for
example, allow us to control the nonseparability between space and variables.

In (8), define W (s)= { f1(X (m) − s), . . . , f p(X (m) − s)}, where fi , i ∈ I , is a unimodal con-
tinuous probability density on R

d , {X (m)}m�1 are points of a homogeneous Poisson process on
R

d with positive intensity measure δ(dx). If f is a Gaussian density then the process, Z , provides
the multivariate version of the Gaussian extreme-value process due to R. L. Smith and mentioned
in § 1. Results in the Supplementary Material suggest that, in contrast to the univariate case, the
bivariate spatial distribution of the Gaussian extreme-value process is different from that of the
Hüsler–Reiss or Brown–Resnick processes.
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4. INFERENCE

Composite likelihood inference (e.g., Varin et al., 2011) is well-tested with univariate max-
stable processes (Padoan et al., 2010; Davison & Gholamrezaee, 2012; Ribatet et al., 2012).
Denote by ϑ the vector of all the unknown model parameters of a multivariate max-stable pro-
cess. Here we develop three marginal composite likelihood functions that are useful for parame-
ter estimation in the multivariate case. Suppose that {zi (sk)

(t), i ∈ I, k ∈ K }T
t=1, with T ∈ N, are

independent and identically distributed realizations from one of the p-dimensional max-stable
processes described in § 2 and § 3 at a finite set of q locations. For simplicity, we assume that
S ⊂ R

2. Since the model parameters, ϑ , can be identified from the marginal densities, they can
be estimated by maximizing

�2-CI(ϑ)=
∑

t=1,...,T

∑
(i, j,k,l)∈D2

wi jkl log f {zi (sk)
(t), z j (sl)

(t);ϑ}, (10)

where

D2 =
{
(i, j, k, l) :

l > k, k ∈ K , j = i , i ∈ I ,
l, k ∈ K , j > i , i ∈ I ,

f (·, ·;ϑ) is the density of a pairwise marginal distribution of a multivariate max-stable process,
and {wi jkl : (i, j, k, l) ∈ D2} is a set of nonnegative weights. The acronym CI in (10) stands for
cross-inter pairs. Indeed, the log pairwise likelihood involves all the possible distinct bivariate
densities corresponding to any of the following: pairs of variables, spatial pairs of individual
variables and spatial pairs of the crossed variables. If I is composed of a single element, e.g.,
I = {1}, then (10) turns out to be the log pairwise likelihood of a univariate max-stable process.
When the trivariate marginal distribution of a multivariate max-stable process can also be derived,
one can consider the triplewise likelihood function

�3-CI(ϑ)=
∑

t=1,...,T

∑
(i, j,v,k,l,r)∈D3

wi jvklr log f {zi (sk)
(t), z j (sl)

(t), zv(sr )
(t);ϑ}, (11)

where

D3 =
⎧⎨
⎩(i, j, v, k, l, r) :

r > l > k, k ∈ K , v = j = i , i ∈ I ,
l > k, k, r ∈ K , v |= j = i , i ∈ I ,
k, l, r ∈ K , v > j > i , i ∈ I ,

and {wi jvklr : (i, j, v, k, l, r) ∈ D3} are weights. However, given p variables observed at q loca-
tions, the number of all possible distinct pairs and triples is (pq)!/{(pq − m)!m!} with m = 2, 3.
Thus, for large pq, which is the case for most multivariate spatial applications, to estimate ϑ ,
numerically maximizing the pairwise and triplewise composite likelihoods might be too compu-
tationally demanding. Therefore, in order to combine a smaller number of triplewise likelihoods,
we propose to weight (11) so as to obtain the weighted triplewise likelihood

�3-W(ϑ)=
∑

t=1,...,T

∑
j>i∈I,l>k∈K

[log f {zi (sk)
(t), zi (sl)

(t), z j (sk)
(t);ϑ} (12)

+ log f {zi (sk)
(t), zi (sl)

(t), z j (sl)
(t);ϑ} + log f {zi (sk)

(t), z j (sk)
(t), z j (sl)

(t);ϑ}
+ log f {zi (sl)

(t), z j (sk)
(t), z j (sl)

(t);ϑ}].
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In (12), each single likelihood contribution is formed by all the triplewise marginal likelihoods
obtainable from combining two variables where one of the two is observed at two locations. In this
way, the spatial cross-dependence and inter-dependence structures are always evaluated in each
term. The benefit of working with (12) is that the associated composite likelihood estimators have
smaller variances than those of (10) and (11). Each evaluation of (12) involves pq(p − 1)(q − 1)
terms, fewer than the pairwise and triplewise likelihoods. For the latter likelihoods, one can
consider the marginal likelihoods corresponding to only the spatial pairs or triples between the
crossed variables to decrease the computational cost. This means that the inner sums in the like-
lihoods (10) and (11) are restricted to the index sets D∗

2 = {(i, j, k, l) : l, k ∈ K and j > i, i ∈ I }
and D∗

3 = {(i, j, v, k, l, r) : k, l, r ∈ K and v > j > i, i ∈ I }. In these cases, the number of terms
involved in each likelihood evaluation is p!p!q!/{(p − m)!(q − m)!m!m!} respectively with
m = 2, 3. An alternative method (Sang & Genton, 2014) is based on tapering of the compos-
ite likelihood.

5. MONTE CARLO STUDY

We simulated T = 30 independent realizations of a bivariate Hüsler–Reiss process at 35
random locations uniformly in a square of side [0, 100] and computed the estimates of the
range parameter, α, the smoothness parameter, κ , and the cross-coefficient, λ12. The simula-
tions were repeated 1000 times to compute the empirical mean squared errors of the parameter
estimates. For each simulated dataset, we estimated the model parameters using the multivari-
ate extremal-coefficient-based and F-madogram-based approaches (Cooley et al., 2006), and
the composite likelihood approach. For the multivariate extremal-coefficient- and F-madogram-
based approaches, we considered all possible pairs, while, for the composite likelihood approach,
we considered (10), which takes into account all possible pairs, the pairwise likelihood ver-
sion that takes into account only crossed pairs between different variables and locations,
and (12).

The estimation methods provide essentially unbiased estimators for the configuration of
parameters that we considered. Results are reported in the Supplementary Material. Table 1 shows
that some methods are more efficient than others.

The F-madogram estimator performed better than the extremal-coefficient estimator in almost
all parameter settings. Overall, these two empirical estimators performed better than the pairwise
likelihood estimator using only cross-variable-different-location pairs. The pairwise likelihood
estimators that use all pairs outperform the empirical estimators. Although the pairwise likeli-
hood based only on crossed pairs provides fairly quick estimates, a considerable loss of informa-
tion is to be expected. In almost all cases, the relative global efficiency of the pairwise likelihood
based on all the pairs, relative to triplewise weighted likelihood, is less than 100%, with the
smallest value being 64%. The same is true for the relative global efficiencies. This indicates an
efficiency gain from using our proposed likelihood over all the other methods. In addition, the
benefit of using the weighted triplewise likelihood is more pronounced when the spatial depen-
dence range is at a larger scale or when the cross-dependence is weak. Finally, we also notice
that the efficiency gain of using the weighted triplewise likelihood is not always more substantial
for smoother spatial fields, as found in Genton et al. (2011) and Huser & Davison (2013). This
suggests that in the multivariate case, our proposed composite likelihood can be beneficial from
the point of view of statistical and computational efficiency.

A second simulation study was performed considering a trivariate Hüsler–Reiss max-stable
process. The results corroborate the findings above and are reported in the Supplementary
Material.
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Table 1. Relative efficiency (%) relative to the weighted triplewise likelihood estimator

(30,0·5,0·3) REα REκ REλ RGE

θCI 66 18 65 28
νF-CI 83 61 100 73
�2-CI 88 14 3 11
�2-CI 97 93 94 93

(30,0·5,0·8)
θCI 77 16 60 26
νF-CI 87 57 76 61
�2-CI 62 6 16 11
�2-CI 94 80 65 70

(30,0·5,1·5)
θCI 73 16 50 22
νF-CI 83 65 63 60
�2-CI 34 3 72 10
�2-CI 98 88 53 67

(30,0·3,0·8) REα REκ REλ RGE

31 34 62 25
43 69 78 45
36 3 17 5
97 87 64 74

(30,1·8,0·8)
68 11 60 17
94 33 85 46
80 20 82 30
95 74 83 77

(30,1·8,1·5)
72 11 46 15
94 33 60 40
27 10 96 14
95 74 59 64

(5,0·3,0·3) REα REκ REλ RGE

21 25 49 20
45 77 100 66
6 8 1 2
96 100 100 100

(5,1,0·8)
17 14 52 21
49 55 90 71
10 14 3 6
84 80 91 82

(15,1,0·8)
49 13 54 22
91 42 79 55
44 13 21 15
98 75 74 73

α, κ and λ12, different parameter values; θCI, the extremal coefficient; νF-CI, the F-madogram; �2-CI, the pairwise like-
lihood using all pairs; �2-CI, pairwise likelihood using cross-variable-different-location; REα , REκ and REλ, relative
efficiencies; RGE, relative global efficiency.

6. WIND DATA

We illustrate our method using the monthly maximum of daily maximum wind speed and
the monthly maximum of daily maximum wind gust, in kilometres per hour, at 83 monitoring
stations in Oklahoma, U.S.A. The state of Oklahoma has abundant wind resources with high
potential capacity for wind power generation. Investigation of occurrence of extreme wind plays
a central role in better understanding, predicting, and managing the risks posed by high wind
speeds. We derived the monthly maximum wind data from March to May each year from 1994–
2008, the windiest season in Oklahoma, from daily observations obtained from the Oklahoma
Mesonet database. Our goal is to investigate the spatial extremal dependence structure within
and between the extremes of wind speed and gust.

For simplicity, we first separately transformed each variable at each location to a unit Fréchet
distribution. We considered three bivariate max-stable process models: the Hüsler–Reiss model
with a bivariate power exponential correlation and the extremal-Gaussian and t models, both with
a bivariate parsimonious Matérn correlation (Gneiting et al., 2010), which allows two different
smoothnesses but equal spatial scales. For comparison with the univariate case, we estimated the
dependence parameters by maximizing the pairwise likelihood (10). Confidence intervals for the
maximum pairwise likelihood estimates were calculated using the bootstrap. In order to com-
pare the multivariate max-stable processes, we calculated the scaled composite likelihood infor-
mation criterion (Davison & Gholamrezaee, 2012) as CLIC∗ = −2c[�2(ϑ̂)− tr{Ĵ (ϑ̂)Ĥ(ϑ̂)−1}],
where �2(ϑ̂) is the pairwise likelihood computed at the maximum, Ĵ and Ĥ are estimates of
J (ϑ)= var{∇�2(ϑ)} and H(ϑ)= E{−∇2�2(ϑ)}, and c is chosen such that the log pairwise
likelihood is comparable to the log pairwise likelihood under independence. The univariate pro-
cesses were fitted to the extremes of wind speed and gust separately. CLIC∗ values were obtained
for each univariate process by calculating the pairwise likelihood based on all cross-inter pairs
while assuming spatial independence between two variables. In this way, the CLIC∗ values among
univariate and bivariate processes are comparable.
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Table 2. Estimates of the extremal dependence parameters, their 95% bootstrap confidence
intervals and CLIC

∗ scores under each max-stable process

Univariate random fields
Parameters α κ ν CLIC

∗

Models
Hüsler–Reiss WS 1·7 (0·5,6·3) 0·44 (0·35,0·62) 70712
– WG 2·6 (1·5,5·9) 0·50 (0·40,0·66) –
Extremal-Gaussian WS 28 (29,49) 0·49 (0·27,0·55) 63170
– WG 39 (26,47) 0·41 (0·43,0·72) –
Extremal-t WS 119 (99,214) 0·31 (0·22,0·41) 1·75 (1·48,2·68) 63092
– WG 108 (100,155) 0·34 (0·26,0·43) 2·09 (1·43,2·96) –

Bivariate random fields
Parameters α κ λ12/ρ12 ν CLIC

∗

Models
Hüsler–Reiss 2·8 (0·9,7·6) 0·49 (0·38,0·66) 0·95 (0·87,1·04) 64791
Extremal-Gaussian WS 29 (15,53) 0·58 (0·41,0·83) 0·76 (0·73,0·78) 62345
– WG – 0·46 (0·27,0·73) – –
Extremal-t WS 114 (100,172) 0·38 (0·29,0·50) 0·87 (0·84,0·90) 1·98 (1·53,2·82) 62251
– WG – 0·30 (0·21,0·45) – – –

The scale parameter, α, is expressed in kilometres. In the univariate case, estimates concerning monthly maxima of
wind speed, WS, and wind gust, WG, are reported for each model. In the bivariate case, estimates of κ relate to wind
speed and gust maxima, for the extremal-Gaussian and t processes. λ12 and ρ12 are the cross-component dependence
parameters for the bivariate Hüsler–Reiss and extremal-t processes. ν is the degrees of freedom of the extremal-t
process.

Table 2 reports the estimation results. The results from the univariate models indicate that the
range and the smoothness parameters are not significantly different between the wind speed and
gust fields. This supports the use of a power exponential correlation with a constant range and
smoothness in the bivariate Hüsler–Reiss random field, and a parsimonious bivariate Matérn with
a constant range in the bivariate extremal-Gaussian and extremal-t fields.

The estimated cross-correlations from the bivariate processes indicate strong correlation
between wind speed and gust. The estimated smoothness parameter from the bivariate extremal-
t models is slightly smaller than those from the Hüsler–Reiss and bivariate extremal-Gaussian
models, and the smoothness of the wind gust field is similar to that of the wind speed. Over-
all, the smoothness parameters of the bivariate process are small, suggesting rough random
fields. According to CLIC

∗, all three multivariate models fit the data better than their univariate
counterparts. The bivariate extremal-t model has the smallest CLIC∗ among all three multivariate
models, followed by the bivariate extremal-Gaussian model, suggesting that a multivariate corre-
lation model that allows for different smoothnesses is preferred to one with a single smoothness
parameter. The extremal practical ranges (Davison et al., 2012) were calculated from the bivari-
ate extremal-t model. Wind speed has practical ranges (6·9, 107) km, which are longer than (3·5,
88) km, the practical ranges of wind gust. The extremal cross-component coefficient, θ [2]

i j , has

an estimated lower bound of 1·32. The estimate of θ [2]
i j reaches 1·7 beyond 274 kilometres.

Figure 4 plots the binned and unbinned empirical estimates of extremal coefficients against
distance, obtained with the F-madogram and the fitted extremal coefficient functions, obtained
with a pairwise-likelihood estimator under each bivariate random field.

The fitted inter- and cross-component extremal coefficient functions, obtained with the
extremal-t random field, match the binned empirical estimates well. The estimates obtained with
the bivariate Hüsler–Reiss random field appear to underestimate the extremal dependence to
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Fig. 4. Plots of the estimated inter- and cross-component extremal coefficient functions
versus distance. The grey circles are the pairwise empirical extremal coefficients and the
black circles are the binned empirical estimates. The vertical lines are the 95% confi-
dence intervals. The curves are fitted extremal coefficient functions using the pairwise
likelihood under the bivariate Hüsler–Reiss (solid line), extremal-Gaussian (dashed line)

and extremal-t (dot-dashed line) random fields.

some extent, perhaps, partly due to the constraint of using a bivariate power correlation func-
tion with a constant range and smoothness. Conversely, the estimates obtained with the bivariate
extremal-Gaussian random field appear to overestimate the extremal dependence, because the
extremal coefficient function under this model cannot exceed the upper bound, which is approx-
imately 1·71 (Schlather, 2002).

Figure 5 shows 25-year return levels for wind speed and gust. The location and scale marginal
parameters at unobserved locations were estimated using quadratic regressions on longitude and
latitude. The shape parameter was taken as constant. We sampled 10 000 realizations from a
residual bivariate extremal-t random field with unit Fréchet marginals and with the dependence
structure reported in Table 2. We used the realizations of the residual random fields together with
the marginal parameters to transform the data back to generalized extreme-value marginals. The
return levels were then estimated using the empirical quantiles of the sampled random fields.
Figure 5 maps the 25-year conditional return levels of wind speed/gust given wind gust/speed at
the same location or in Oklahoma City. The T -year conditional return level of wind speed/gust
given wind gust/speed is defined as a threshold such that the conditional probability that wind
speed/gust exceeds this threshold is 1/T , given that, at the same location, wind gust/speed
exceeds its own T -year return level. The T -year conditional return level of wind speed/gust
given the wind gust/speed in Oklahoma City is defined as a threshold such that the conditional
probability that wind speed/gust exceeds this threshold is 1/T , given that the wind gust/speed
in Oklahoma City exceeds its own T -year return level. The 25-year conditional return levels of
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Fig. 5. Maps of the 25-year return levels (R.L.) for wind speed (WS) and gust (WG) (top-left and bottom-left
column), maps of 25-year conditional return levels for wind speed given gust and wind gust given speed (top-
middle and bottom-middle column) and the 25-year conditional return levels (C.R.L.) for wind speed given
wind gust in Oklahoma City (OC) and wind gust given wind speed in Oklahoma City (top-right and bottom-
right column) in kilometres per hour. Vertical and horizontal axes report latitude and longitude. The 83 weather
stations are marked by black dots and Oklahoma City by a black triangle. Black lines delineate counties in

Oklahoma.

wind speed/gust given the wind gust/speed in Oklahoma City look similar to their unconditional
counterparts, although they are greater by about 5 to 18 kilometres per hour, indicating that it
is expected that a more extreme wind speed/gust event will be observed when an extreme wind
gust/speed event has occurred in Oklahoma City. The 25-year conditional return levels of wind
speed/gust given wind gust/speed are slightly higher than the 25-year conditional return levels of
both wind speed/gust given wind gust/speed in Oklahoma City, indicating that observing a more
extreme wind speed/gust event when an extreme wind gust/speed event has occurred at the same
location is expected.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes details for deriving the distri-
butions of multivariate Hüsler–Reiss, extremal-t , Brown–Resnick and Gaussian extreme-value
processes, the triplewise and quadruplewise Hüsler–Reiss distributions and simulation results for
the trivariate Hüsler–Reiss process.
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