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In the wind industry, a power curve refers to the functional relationship between the power output generated by a wind turbine and the wind
speed at the time of power generation. Power curves are used in practice for a number of important tasks including predicting wind power
production and assessing a turbine’s energy production efficiency. Nevertheless, actual wind power data indicate that the power output
is affected by more than just wind speed. Several other environmental factors, such as wind direction, air density, humidity, turbulence
intensity, and wind shears, have potential impact. Yet, in industry practice, as well as in the literature, current power curve models primarily
consider wind speed and, sometimes, wind speed and direction. We propose an additive multivariate kernel method that can include the
aforementioned environmental factors as a new power curve model. Our model provides, conditional on a given environmental condition,
both the point estimation and density estimation of power output. It is able to capture the nonlinear relationships between environmental
factors and the wind power output, as well as the high-order interaction effects among some of the environmental factors. Using operational
data associated with four turbines in an inland wind farm and two turbines in an offshore wind farm, we demonstrate the improvement
achieved by our kernel method.
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1. INTRODUCTION

Wind energy is one of the fastest growing renewable energy
sources. According to a report issued by the U.S. Department
of Energy (DOE), wind power installation in the United States
increased by nearly a factor of 10 in the past decade, from 6350
megawatts (MW) in 2003 to 61,108 MW by the end of 2013
(DOE 2014). The DOE advocates working toward the goal that
wind power accounts for 20% of the total electricity generated
in the United States by 2030 (DOE 2008). To manage wind
turbines and to plan wind energy production, it is critical to as-
sess wind power generation under a given weather profile. The
so-called power curve plays a central role in this task (Monteiro
et al. 2009; Giebel et al. 2011). In the wind industry, the power
curve measures the relationship between power output of a tur-
bine and the wind speed. In this article, we estimate the power
curve associated with individual turbines at both inland and off-
shore wind farms using turbine-specific power output data and
environmental data measured from a meteorological mast on the
corresponding farm.

We first explain the basics of the power curve. Denote by
y the power output from a wind turbine and by x the vector
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of explanatory variables. V is the wind speed. In wind power
production, as illustrated in the left panel of Figure 1, a turbine
starts to produce power after the wind reaches the cut-in speed,
Vci. A nonlinear relation between y and V then ensues, until
wind reaches the rated wind speed, Vr . When the wind speed
is beyond Vr , the turbine’s output power will be restricted at
the rated power output, yr , also known as the nominal power
capacity of the turbine, using control mechanisms such as pitch
control and rotor speed regulation. The turbine will be halted
when the wind reaches the cut-out speed, Vco, because high
wind is deemed harmful to the safety of a turbine. For the power
curve shown in the left panel of Figure 1, x := (V ).

The wind industry makes use of power curves for at least
two important purposes. The first is to forecast wind power
(Monteiro et al. 2009; Giebel et al. 2011) in two steps. First,
wind speeds are forecast and then this forecast is converted to
a power forecast using a power curve. The second purpose of
power curves is for turbine performance assessment and tur-
bine health monitoring (Albers, Klug, and Westermann 1999;
Uluyol et al. 2011; Stephen et al. 2011; Lee et al. 2014), in which
a power curve is used to characterize a turbine’s power produc-
tion efficiency by noting the changes in the position and slope of
the turbine’s power curve; for an illustration, see Figure 1, right
panel. We note that wind forecasting is beyond the focus of this
article; it is a subfield of its own; for details on wind forecasting,
interested readers should refer to Gneiting et al. (2006), Mon-
teiro et al. (2009), Hering and Genton (2010), Zhu and Genton
(2012), Pinson (2013), and Zhu, Bowman, and Genton (2014).

The curve shown in the left panel of Figure 1 is an ideal power
curve, also known as the nominal power curve, typically pro-
vided by a turbine manufacturer. The right panel of Figure 1
shows the actual power output and wind measurement data
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Figure 1. An example of a power curve: Vci is the cut-in wind speed, Vco is the cut-out wind speed, Vr is the rated wind speed, and yr is the
corresponding rated power output. In the right panel where real power production data are shown, the power outputs are normalized by the rated
power output, to protect the identity of the turbine manufacturer. The same treatment is applied to all power curve plots throughout the article.

associated with a turbine, which presents a more complicated
picture. Even though the general trend shown in the data tends
to agree with the nominal power curve, there appears to be a
considerable amount of information that cannot be accounted
for by a simple V-versus-y curve. Between 5 meters per second
(m/s) and 15 m/s, there are large amounts of power data for any
given wind speed. What this implies is that if V is used as the
sole explanatory variable, the prediction of wind power suffers
a high degree of uncertainty. We investigate whether, and how,
more explanatory variables can be included to make a better fit
to the power data.

In fact, the meteorological mast on each wind farm included
a wide array of sensors that measure more than just wind speed.
Other environmental variables measured include wind direc-
tion, D, temperature, T , air pressure, P, and humidity, H. Based
on the wind speed measurements, it is also possible to calcu-
late turbulence intensity, I (equal to the standard deviation of
short-duration wind speeds divided by the average wind speed
of the same duration) and wind shear, S (using wind speeds
measured at different heights). If we expand our input vari-
able set to include these environmental factors, we could have
x := (V,D, T , P,H, I, S). Then, our technical objective would
be to estimate the conditional density, p(y|x), or the conditional
expectation, E(y|x). Technically, E(y|x) is no longer a power
curve when x includes multiple elements; it becomes a power
response surface. For the sake of being consistent with industrial
convention, we use the term “power curve” in its broad mean-
ing, covering the cases of both one-dimensional power curves
and multi-dimensional power response surfaces.

The current industrial practice of estimating the power curve
relies on a nonparametric approach, known as the binning
method, recommended by the International Electrotechnical
Commission (IEC 2005). The basic idea of the binning method
is to discretize the domain of wind speed into a finite number of
bins, say, using a bin width of 0.5 m/s. Then, the value to be used
for representing the power output for a given bin is simply the
sample average of all the data points falling within that specific
bin, namely:

yi = 1
Ni

Ni∑

j=1

yi,j , (1)

where yi,j is the power output of the jth data point in bin i, and
Ni is the number of data points in bin i. In the binning method,

almost all other environmental variables are ignored, except for
the so-called air density adjustment, for which we will present
a detailed expression later.

Many existing methods of fitting a power curve are similar to
the binning method in the sense that only wind speed is used as
the sole explanatory variable, although the specific techniques
used for curve fitting were quite different (Yan et al. 2009;
Kusiak, Zheng, and Song 2009; Osadciw et al. 2010; Hayes
et al. 2011; Uluyol et al. 2011). For instance, Yan et al. (2009)
and Osadciw et al. (2010) used a symmetric sigmoid function
and a Gaussian cumulative distribution function for curve fitting,
and Kusiak, Zheng, and Song (2009) used a logistic function.
These methods are of parametric flavor. Kusiak, Zheng, and
Song (2009) also suggested a nonparametric approach, which
is to use the k-nearest neighbor (k-NN) method to make power
predictions.

Wan, Ela, and Orwig (2010) extended the binning method.
In one aspect, they studied the wind direction effect, but their
approach was simply to divide wind direction into a few dis-
jointed subdirections; doing this is, in fact, an action of binning.
Another extension is that they tried a neural network model
that took both wind speed and air density as inputs. However,
their study concluded that doing so does not appear beneficial.
When comparing a few different options, including curve fit-
ting (they did not specify which curve fitting method they used)
and binning, Wan, Ela, and Orwig (2010) concluded that the
binning method with air density correction produced the best
power curve fitting outcome.

A handful of studies do explicitly include both wind speed
and wind direction in their models (Nielsen, Nielsen, and Mad-
sen 2002; Sanchez 2006; Pinson et al. 2008; Jeon and Taylor
2012). The inclusion of wind direction is not surprising because
of the physical intuition that how wind blows the turbine should
matter in wind power production. The specific approaches em-
ployed in these studies differed: Nielsen, Nielsen, and Mad-
sen (2002) used a local polynomial regression; Sanchez (2006)
presented a dynamic combination of several prediction models
based on time-varying coefficients and a recursive solution pro-
cedure; Pinson et al. (2008) used a total least-square criterion
(i.e., orthogonal distance least squares), together with a Huber
M-estimator, to achieve a certain degree of robustness. Kernel
methods are among the sophisticated approaches that are used to
model wind direction predictions (Marzio, Panzera, and Taylor
2012, 2013, 2014) and model the power to wind speed/direction
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Table 1. Specifications of the two wind farms

Wind farm DILWF DOSWF

Number of meteorological masts Multiple Single
Number of wind turbines 200+ 30+
Hub height (m) 80 70
Rotor diameter (m) about 80 about 90
Cut-in wind speed (m/s) 3.5 3.5
Cut-out wind speed (m/s) 20 25
Rated wind speed (m/s) around 13 around 15
Rated power (MW) 1.5–2.0 around 3
Location In-land, U.S. Offshore, Europe

relationship through Jeon and Taylor (2012). Not only did Jeon
and Taylor (2012) consider both wind speed and wind direction,
it also produces a density estimation that can be used to account
for uncertainty in wind power prediction.

It is obvious from the above literature review that despite
the availability of other environmental measurements and their
potential impact on power curve estimation, many current meth-
ods made use of wind speed only, while a few others used wind
speed and direction. The need to develop power curve methods
with multivariate dependencies has been recently noted, directly
by Stephen et al. (2011) and indirectly in the studies by Tindal
et al. (2008) and Albers, Klug, and Westermann (1999). Our re-
search shows that including the extra environmental factors in a
power curve model can indeed improve wind power predictions.
A power curve model that incorporates multiple environmen-
tal factors also provides a useful tool for studying the relative
importance of these environmental variables on wind power
generation.

To fulfill the objective of developing a power curve method
with multivariate dependencies, we devise an additive multivari-
ate kernel (AMK) model. The multivariate aspect empowers the
model to capture interaction effects up to three factors, while the
additive structure allows the resulting model to remain scalable
as people add more explanatory environmental variables into x

in the future. In the remainder of the article, we first describe the
datasets used in this study. We proceed in Section 3 to present
the details of our additive multivariate kernel model. In Section
4, we compare our method with some alternative methods, argu-
ing that the resulting kernel method produces better estimates.
Finally, we end the article with some discussion in Section 5.

2. DATASETS

We study both inland wind turbines (ILTs) and offshore tur-
bines (OSTs), and have two datasets corresponding to an inland
wind farm (ILWF) and an offshore wind farm (OSWF), respec-
tively. The datasets are denoted generally by D or specifically
by DILWF or DOSWF, respectively. Table 1 summarizes the spec-
ifications of the datasets; for certain entries an approximation
rather than the accurate value is given for the protection of the
identities of the turbine manufacturers and wind farms.

We choose four wind turbines and two meteorological masts
from DILWF, and two wind turbines and the single meteorolog-
ical mast from DOSWF. The six turbines are denoted as WT1 to
WT6, respectively, where the first four are inland turbines and
the last two are offshore ones. The environmental data in x were
collected by sensors on a meteorological mast, while the power
output, y, was measured at a wind turbine. Each meteorological
mast has two wind turbines associated with it, meaning that the
x’s measured at this mast are paired with the y’s of those associ-
ated turbines. For the turbines/masts layout and turbine-to-mast
distances, please refer to Figure 2.

For WT1 and WT2 of the ILWF, the data were collected from
July 30, 2010 through July 31, 2011; for WT3 and WT4 (still of
the ILWF), the data were collected from April 29, 2010 through
April 30, 2011, and for WT5 and WT6 of the OSWF, the data
were collected from January 1, 2009 through December 31,
2009.

In current practice, data collected at wind farms are arranged
in 10 min blocks because wind speeds are considered stationary,
and other environmental factors nearly constant, over a 10 min
duration. As a result, the power output, y, as well as the environ-
mental factors, V , D, T , P, H, are the averages of the recordings
in a 10 min duration. Moreover, a few other variables can be
computed as follows:

• Turbulence intensity, I: we first compute the standard de-
viation of the wind speeds in a 10 min duration and denote
it as σ̂ . Then, I = σ̂

V
, where V is the average wind speed

of the same 10 min duration. Apparently, this turbulence
intensity is similar to the coefficient of variation concept
in statistics.

• Wind shear, S: wind speeds V1 and V2, measured at heights
g1 and g2, respectively, are given. Then, S = ln(V2/V1)

ln(g2/g1)
(Rehman and Al-Abbadi 2005). For DILWF, wind speeds
are measured at two heights of 80 m and 50 m, where 80
m is the hub height. Given this instrumentation capability,

Figure 2. Layout of the turbines and masts and turbine-to-mast distances. ILWF: inland wind farm; OSWF: offshore wind farm.
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one wind shear value is calculated, which is a below-hub
wind shear. For DOSWF, wind speeds are measured at the
heights of 116 m, 70 m, and 21 m, where 70 m is the hub
height. Two wind shear values can therefore be calculated:
using the 116 m/70 m pair produces an above-hub wind
shear, while using the 70 m/21 m pair produces a below-
hub wind shear. We denote the above-hub wind shear as Sa

and the below-hub wind shear as Sb.
• Air density, ρ (kg/m3): given air temperature, T , expressed

in Kelvin and air pressure, P, expressed in Newtons/m2,
ρ = P

R·T , where R = 287 (Joule)(kg)−1(Kelvin)−1 is the
gas constant (Uluyol et al. 2011). In the subsequent anal-
ysis, the air density, ρ, instead of T and P, is included as
an explanatory variable in x. The reason is presented in the
next section.

Considering the descriptions presented above, one can see that
for DOSWF, there are seven explanatory variables, that is, x =
(V,D, ρ, H, I, Sa, Sb). In DILWF, humidity measurements are
not available, and the dataset has only the below-hub wind shear.
Consequently, DILWF has five explanatory variables, namely,
x = (V,D, ρ, I, Sb), two fewer than DOSWF has. Throughout
this article, by “a data point,” we refer to a pair of (x, y), and we
denote the total number of data points associated with a turbine
as N.

Although the number of covariates in x is 5 to 7 in this study,
that number can be greater with the advancement of sensor tech-
nology; for instance, if horizontal wind shear can be measured,
it would add at least two more variables (left and right wind
shears) immediately to x.

3. AN ADDITIVE MULTIVARIATE KERNEL METHOD
FOR POWER CURVE ESTIMATION

In this section, we first provide some background information
on the physical understanding of wind power generation. This
physical understanding helps motivate our modeling approach
undertaken subsequently.

3.1 The Physics Behind Wind Power Generation

The physical law of wind power generation (Ackermann
2005; Belghazi and Cherkaoui 2012) states that

y = 1
2

· Cp(β, λ) · ρ · πR2 · V 3, (2)

where R is the radius of the rotor and Cp is the so-called power
coefficient, which is believed to be a function of (at least) the
blade pitch angle, β, and the turbine’s tip speed ratio, λ. What
else might affect Cp is still a matter under investigation. Cur-
rently, no formula exists to express Cp analytically in terms of
its influencing factors. Cp is therefore empirically estimated and
turbine manufacturers usually provide for a specific turbine its
nominal power curve with the corresponding Cp values under
different combinations of wind speed, V , and air density, ρ. The
above expression also provides the rationale why temperature,
T , and air pressure, P, are converted into air density, ρ, rather
than used individually, to explain wind power.

Even though the expression in (2) on the surface suggests
that the electrical power that a wind turbine extracts from the
wind is proportional to V 3, an actual power curve may exhibit a

different nonlinear relationship. This happens because of the tip
speed ratio, λ = ω·R

V
, where ω is the rotor speed. Consequently,

Cp is also a function of wind speed, V .
The power law in (2) governs the wind power generation

before the rated wind speed, Vr . The use of the pitch control
mechanism levels off, and ultimately caps, the power output
when it reaches the rated power output, yr . Recall the shape
of power curve shown in Figure 1. The power curve has an
inflection point somewhere nearby the rated wind speed, so
that the whole curve consists of a convex segment, between Vci

and the inflection point and a concave segment, between the
inflection point and Vco.

Given the physical relation expressed in (2), the wind industry
recognizes the need to include air density as a factor in calcu-
lating the power output, and does so through a formula known
as the air density correction. If V is the raw average wind speed
measured in a 10 min duration, the air density correction is to
adjust the wind speed based on the measured average air density,
ρ, in the same 10 min duration, namely,

V ′ = V

(
ρ

ρ0

) 1
3

, (3)

where ρ0 is the sea-level dry air density (=1.225 kg/m3) per
the International Organization for Standardization’s (ISO) at-
mosphere standard. The binning method with air density cor-
rection uses this corrected wind speed, V ′, and the power output,
y, to establish a power curve. In the subsequent analysis, as well
as in Section 4 where we conduct comparisons of methods, by
“binning method” we refer to this air density corrected version,
unless otherwise noted.

3.2 Additive Multivariate Kernel-Based Power
Curve Model

The underlying physics of wind power generation expressed
above provides some clues concerning a preferable power curve
model. The following summarizes our observations:

• There appear at least three important factors that affect
wind power generation: wind speed, V , wind direction, D,
and air density, ρ. This does not exclude the possibility that
other environmental factors may also influence the power
output.

• The functional relationships between the environmental
factors and the power response are generally nonlinear. The
complexity partially comes from the lack of understanding
of Cp, which is affected by many environmental factors (V ,
D, and ρ included). We also stated above that there is no
analytical expression linking Cp to any of the influencing
factors. As a result, the functional form of a potential power
curve is not known either.

• The environmental factors appear in a multiplicative rela-
tionship in the power law Equation (2), indicating interac-
tions among the factors.

To illustrate the existence of interactions among factors, we
present the following plots in Figures 3 and 4. Figure 3 uses
the data from DILWF and shows the scatterplots between the
power output, y, and air density, ρ, turbulence intensity, I, and
wind shear, Sb, respectively. Unconditional on wind speed, V ,
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Figure 3. Scatterplots of the power output versus environmental factors for 3.5 < V < 20, 0 < D < 360 for data from DILWF.

Figure 4. Scatterplots of the power output versus environmental factors under specific wind speeds and wind directions for data from DILWF.
Top panels: 6.1 < V < 6.2, 270 < D < 300; middle panels: 9.1 < V < 9.2, 270 < D < 300; and bottom panels: 11.1 < V < 11.2, 270 <

D < 300.
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and wind direction, D, these environmental factors therefore
have no obvious effect on the power output. Figure 4, on the
other hand, presents the scatterplots between the power out-
put and environmental factors under different wind speeds and
wind directions. We do observe nonlinear relationships in these
plots, and the relationships appear to be different depending on
the wind conditions. This implies that interaction effects exist
among wind speed, V , wind direction, D, and other environmen-
tal factors. A power curve model should characterize not only
the nonlinear effects of wind speed and wind direction, but also
the interaction effects among the environmental factors.

The existence of interaction effects suggests that purely addi-
tive models or generalized additive models (GAM) are unlikely
to work well in modeling a power curve. There do exist sophisti-
cated semi- or nonparametric approaches that could be capable
of addressing the above identified challenges for power curve
modeling, such as the Bayesian additive regression trees (BART,
Chipman, George, and McCulloch 2010) and the smoothing
spline analysis of variance (SSANOVA, Gu 2013), as well as
the kernel-based method, as used by Jeon and Taylor (2012).

When we look for a modeling strategy, we settle on the kernel-
based approach, namely, using a conditional kernel density es-
timation (CKD) (Rosenblatt 1969; Hyndman, Bashtannyk, and
Grunwald 1996) for estimating the conditional density, p(y|x),
or a kernel regression (Nadaraya 1964; Watson 1964) for esti-
mating the conditional expectation, E(y|x). The reason of our
choice is following. The kernel-based method appears to be a
capable statistical modeling tool, not only capturing the compli-
cated higher order interaction effects but also avoiding the need
to specify a functional form of the power curve relationship. In-
deed, a bivariate CKD including wind speed and direction was
used by Jeon and Taylor (2012), which has produced encour-
aging improvement. We also believe that the aforementioned
physical understanding behind wind power generation offers
useful clues. We should make explicit use of them and devise a
special model structure tailored to handle the power curve mod-
eling more effectively. The simple structure of the kernel-based
approach makes such tailoring easier to develop. In Section 4,
we compare the results from BART and SSANOVA with that
of our proposition and believe that the comparisons substantiate
our claim here.

Specifically, using Rosenblatt’s CKD (Rosenblatt 1969), the
density of y conditional on x can be expressed as

f̂ (y|x) =
N∑

i=1

wi(x)Khy
(y − yi), (4)

where

wi(x) = Khx
(||x − xi ||)∑N

i=1 Khx
(||x − xi ||)

, (5)

hx = (h1, . . . , hq) and hy are bandwidth parameters controlling
the smoothness in, respectively, the environmental factors, x,
and the power output, y, and q is the number of explanatory
variables in x. In our study, q = 7 for DOSWF and q = 5 for
DILWF.

The above formulation contains kernel functions of two dif-
ferent dimensions, Khy

(l) and Khx
(||l||). Khy

is a scaled kernel
function and takes the form of h−1

y K( l
hy

), where K(·) is assumed

to be a real valued, integrable, and nonnegative even function. In
our study, K is chosen to be a univariate Gaussian kernel func-
tion. Khx

(||l||) is a multivariate kernel function and is composed
of a product kernel that is a multiplication of univariate kernel
functions, such as

Khx
(||l||) := Kh1 (l1)Kh2 (l2) · · ·Khq

(lq), (6)

where Khj
(lj ) is generally a univariate Gaussian kernel as well,

except for wind direction, D. The kernel function for D is chosen
to be the von Mises kernel (Taylor 2008), because it is a circular
variable that may cause trouble in numerical computation; for
comprehensive discussion regarding the handling of circular
variables, please refer to Marzio, Panzera, and Taylor (2012,
2013, 2014). The von Mises kernel function can characterize
the directionality of a circular variable and takes the form

Kν(D − Di) = exp{ν cos(D − Di)}
2πI0(ν)

, (7)

where I0(·) is the modified Bessel function of order 0, and ν is
the concentration parameter of the von Mises kernel, which has
now taken the role of the inverse of the bandwidth parameter
h2.

In addition, the mean of the conditional density estimator
in (4) provides an estimator of the conditional mean function,
m(x) := E(y|x), as

m̂(x) =
∫

yf̂ (y|x)dy. (8)

Hyndman, Bashtannyk, and Grunwald (1996) noted that the
estimator in (8) is equivalent to the Nadaraya–Watson (NW)
regression estimator and only depends on hx , the smoothing
parameter related to x. The NW estimator is

m̂(x) =
N∑

i=1

wi(x)yi. (9)

In the remainder of the article, we will use the expression in (9)
as our mean function estimator.

In the current datasets, the environmental factors are five
to seven. As the wind industry currently arranges the data in
10 min blocks, 1 year’s worth of data translates to slightly over
52,000 data points, which can still become scarce in a seven-
dimensional factor space. This is to say, once the data points
are dispersed into the seven-dimensional space, certain combi-
nations of environmental conditions could have very little data
or even no data at all, and therefore deteriorate the performance
of the resulting multivariate kernel model. If a technology in-
novation makes additional measurements available so that the
model could entertain more than seven explanatory variables,
the current CKD approach would run into a scalability prob-
lem. Running a high-dimensional CKD will also take longer
computation times than practitioners typically prefer. It is thus
desirable to use fewer input variables to form the multivariate
product kernels if possible.

Our tailored power curve modeling is to devise an additive
multivariate kernel model. Let us present the mathematical ex-
pression of the kernel first and then elaborate its merit.

For notation simplicity, we designate the first two elements
of x of both DILWF and DOSWF, namely, x1 and x2, as V and D,
respectively. Other environmental variables are denoted by xj ,
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j = 3, . . . , q. We propose to estimate the density of y, condi-
tional on an x, by using

f̂ (y|x) =
N∑

i=1

1
q − 2

[wi(x1, x2, x3)

+ · · · + wi(x1, x2, xq)]Khy
(y − yi), (10)

and the conditional mean function by

m̂(x) = 1
q − 2

[m̂(x1, x2, x3) + · · · + m̂(x1, x2, xq)]. (11)

As in the above expression, our resulting model keeps the
multivariate kernels but we limit them to be product kernels of
three inputs (i.e., x has three elements). Based on the obser-
vations from Figures 3 and 4, we decide to include V and D,
incorporating wind speed and direction information, in every
multivariate kernel so that the three-variable kernel can capture
the interaction effect between the third environmental factor
with wind speed and wind direction. Then, all the multivari-
ate kernels constitute an additive model such that the result-
ing model has good scalability. The resulting model could be
used for high-dimensional data without causing computational
or data sparsity problems. When additional explanatory vari-
ables become available, we would envision to add extra additive
terms, each of which has the same structure as the current terms,
namely, a three-variable multivariate kernel having inputs of V ,
D, and a third explanatory variable.

3.3 Bandwidth Selection

The key parameters in our kernel model are the bandwidths hy

and hx . In this study, we employ a data-driven selection criterion
proposed by Hall, Racine, and Li (2004) and Fan and Yim
(2004), known as the integrated squared error (ISE) criterion, as
follows:

ISE(hx, hy) =
∫ ∫ (

f (y|x) − f̂ (y|x)
)2

f (x)dydx

=
∫ ∫

f̂ (y|x)2f (x)dydx

−2
∫ ∫

f̂ (y|x)f (y|x)f (x)dydx

+
∫ ∫

f (y|x)2f (x)dydx

= I1 − 2I2 + I3. (12)

With this criterion, one would choose the bandwidths that mini-
mize the ISE. Because I3 in the ISE expression does not depend
on the bandwidth selection, it can be omitted during the mini-
mization of ISE.

Fan and Yim (2004) suggested leave-one-out cross-validation
estimators of I1 and I2 as

Î1 = 1
N

N∑

i=1

∫ (
f̂−i(y|xi)

)2
dy, and

Î2 = 1
N

N∑

i=1

f̂−i(yi |xi), (13)

where f̂−i(y|xi) is the estimator f̂ (y|xi) with observation i omit-
ted. Practically, the data-driven bandwidth selection is simply
to choose the bandwidths hx and hy that minimize Î1 − 2Î2.

Using this cross-validation algorithm could, however, take a
long computational time; for the models and datasets we have
at hand, the computation ran for more than a day before we
manually stopped it. To have a faster bandwidth selection for
practical purposes, we choose to employ a much simpler, greedy
procedure to select the bandwidth parameters one at a time, as
described below.

• Algorithm I: Greedy kernel bandwidth selection

1. Consider only a simple univariate kernel regression cor-
responding to individual environmental variables.

2. Calculate the bandwidth for each univariate kernel fol-
lowing the direct plug-in (DPI) approach suggested by
Ruppert, Sheather, and Wand (1995). This DPI ap-
proach provides an optimal bandwidth formula, ex-
pressed below, which is supposed to minimize the
asymptotically weighted integrated squared error:

ĥ =
(

1
2
√

π

)1/5 [
σ̂ 2(b − a)

N θ̂0.05
22

]1/5

, (14)

where [a, b] is the range of each environmental variable,
and σ̂ 2 and θ̂22 are estimated from the data using the DPI
algorithm; for details, please refer to Ruppert, Sheather,
and Wand (1995).

3. Denote the resulting bandwidths as (ĥ1, ĥ2, . . . , ĥq).
4. Use the most basic power curve model that includes

only the wind speed, V and wind direction, D as inputs,
and fix the bandwidths for the two univariate kernels
corresponding to V and D as ĥ1 and ĥ2, respectively.
Then, estimate the bandwidth ĥy that minimizes Î1 −
2Î2.

In the above algorithm, in handling the von Mises kernel,
we follow an approach suggested by Taylor (2008) that ties the
concentration parameter ν to the bandwidth parameter h2 as
ν = 1

h2
2
. Then, h2 can be selected together with other bandwidth

parameters for the Gaussian kernels, as explained above.
As a greedy procedure, the algorithm cannot guarantee the

optimality of the chosen bandwidths. But, as we will show in
the subsequent section, our kernel model with the heuristically
chosen bandwidths is able to produce remarkable error reduction
as compared with the current power curve methods.

4. RESULTS

In this section, we evaluate the performance of our kernel-
based approach using the wind farm measurements inDILWF and
DOSWF and compare its performance with the existing methods.

4.1 Performance Criteria

We evaluate the performance of our method in terms of point
estimation as well as density estimation. We therefore use two
criteria: for point estimation, we use the root mean squared error
(RMSE), and for density estimation, we use the mean continuous
ranked probability score (CRPS) (Gneiting and Raftery 2007).
We randomly divide each dataset into a partition of 80% for
training and 20% for testing, and use the test dataset to make an
out-of-sample evaluation of the above two criteria. Specifically,

D
ow

nl
oa

de
d 

by
 [K

in
g 

A
bd

ul
la

h 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 &

 T
ec

hn
ol

og
y 

K
A

U
ST

] a
t 1

1:
30

 2
2 

A
pr

il 
20

15
 



Lee et al.: Power Curve Estimation with Multivariate Environmental Factors 63

Figure 5. Autocorrelation function values after an AMK model fit, using an inland turbine dataset.

RMSE is computed as

RMSE =

√√√√ 1
NTS

NTS∑

i=1

(m̂(xi) − yi))2, (15)

where NTS is the number of data points in a test dataset. The
CRPS compares the estimated cumulative distribution function
(CDF) with the observed value. It is computed as

CRPS = 1
NTS

NTS∑

i=1

∫ (
F̂ (y|xi) − 1(y > yi)

)2
dy, (16)

where F̂ (y|xi) is the estimated CDF, given a setting of the
environmental variable, xi , and 1(·) is the indicator function.

Algorithm I works well for all datasets for bandwidth selec-
tion. For point estimation, we are able to use all the training
data for bandwidth selection and the computational time is of
no concern at all. But for density estimation, even with the
greedy algorithm, the last step (Step 4 above) that finds the
bandwidth for y still takes a long running time, had we used
all the training data. In the end, we decide to randomly se-
lect 25% of the training data for bandwidth selection in density
estimation.

For the out-of-sample testing purpose, we are able to use all
the testing data points for computing the out-of-sample RMSE
values. But for computing the CRPS values, using all the testing
data again requires more than 10 hr of computation; it is feasible
but not always practical. We experiment with a randomly sam-
pled subset of 1000 data points from the test set and find that
using 1000 data points to calculate the CRPS values remains
reasonably stable over different random sampling. So, in the
subsequent sections, we report the CRPS values based on 1000
testing data points.

A question may arise as of why we use a random split of
training/test data to measure performance. Recall that the focus
of this article is to estimate a functional relationship between
y and x, say f (·). The f (·) is fundamentally decided by a tur-
bine’s own aerodynamic characteristics, primarily through its
design and manufacturing, and can be reasonably assumed un-
changed over a short period of time, say a number of months.
Our objective is to see how well a set of (x, y) data pairs, col-

lected in several months, can help recover this f (·), presumably
stationary over the same period. One important consideration
that we use random splitting is to ensure that the training data
and the test data represent the same spectrum of the weather
conditions x. We believe this is a fair approach to test our
model.

We arrange the data in random order as well as in time se-
ries order, producing two sets of models, and then compute the
autocorrelation function of the respective model residuals pro-
duced from the test data. Figure 5 presents the autocorrelation
function plots. As expected, the autocorrelation in the residu-
als appear stronger when data are arranged in time series but
still the absolute correlation level is low. More importantly, the
autocorrelation drops to a nearly negligible level (below 0.2)
after 1 hr. Considering that our test data are of time durations
ranging from a couple of weeks to a couple months, this slight
correlation among the first hour does not appear to present a
problem.

Table 2. Impact on RMSE when including different environmental
factors. The notation of (·, ·, ρ) means that the additive term included

in the model has the wind speed, V and wind direction D, and air
density, ρ, as its inputs, where the wind speed and wind direction are
shorthanded as two dots. Other notations follow the same convention.

The percentages in the parentheses are the reduction in terms of
RMSE when the corresponding model’s point estimation is compared

with that of BVK

WT BVK (·, ·, ρ) (·, ·, I ) (·, ·, Sb) (·, ·, Sa) (·, ·,H )

WT1 148.2 126.4 144.8 145.9 · ·
(14.7%) (2.3%) (1.6%) · ·

WT2 154.7 136.6 150.3 152.1 · ·
(11.7%) (2.8%) (1.7%) · ·

WT3 144.5 118.2 137.0 131.8 · ·
(18.2%) (5.2%) (8.8%) · ·

WT4 209.4 179.7 192.6 196.7 · ·
(14.2%) (8.0%) (6.1%) · ·

WT5 270.8 245.2 275.4 294.0 268.6 257.0
(9.5%) (−1.7%) (−8.6%) (0.8%) (5.1%)

WT6 291.8 249.3 290.1 285.9 280.6 264.7
(14.6%) (0.6%) (2.0%) (3.8%) (9.3%)
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Table 3. Model comparisons using data in DILWF. RMSE values are
reported in the table

WT (·, ·, ρ) (·, ·, ρ, I ) (·, ·, ρ, Sb) (·, ·, ρ, I, Sb)

WT1 126.4 125.8 125.9 126.9
WT2 136.6 136.0 136.9 136.6
WT3 118.2 115.1 111.5 112.7
WT4 179.7 174.8 177.3 176.2

NOTE: Boldface values are the smallest RSME in the row.

4.2 Important Environmental Factors Affecting
Power Output

From the physical understanding presented in Section 3.1,
we believe that wind speed, direction, and air density should be
important factors to be included in a power curve model. The
question is what else may also need to be included. This section
sets out to find what set of environmental factors makes the best
prediction for a given dataset. In the following, we present the
results of using point estimates and RMSE values.

Our first set of results is to show the RMSE values when
the additive multivariate kernel model includes a single additive
term from x = (x1, x2, x3) to x = (x1, x2, xq). Recall that each
additive term is a three-variable multivariate kernel with the first
two of the variables always being the wind speed, V , and wind
direction, D.

We choose as the baseline model for comparison the kernel
model that has only the wind speed and wind direction (V,D)
in a product kernel. In fact, this bivariate kernel (BVK) model is
the same as the one used by Jeon and Taylor (2012). The results
are shown in Table 2.

Based on these results, we make the following observations:

• In both the inland wind farm and offshore wind farm, air
density, ρ, is indeed, after the wind speed and wind direc-
tion, the most significant factor in wind power generation.
Including ρ in the model delivers reductions in RMSE from
10% to 18% across the board. This outcome is consistent
with the physical understanding expressed earlier.

• For the offshore wind turbines, humidity, H, appears to be
another important factor in explaining variations in power
outputs. Unfortunately, we will not be able to know for
certain whether humidity is also a significant factor in the

Table 4. Model comparisons using data in DOSWF. RMSE values are
reported in the table

WT (·, ·, ρ, H ) (·, ·, ρ, H, I )
(·, ·, ρ, H,

Sa, Sb)
(·, ·, ρ, H, I,

Sa, Sb)

WT5 236.1 239.2 244.1 245.1
WT6 242.5 248.7 250.8 254.8

NOTE: Boldface values are the smallest RSME in the row.

inland wind farm because its measurements were not avail-
able in our dataset. Given its significance in the offshore
farm, this should provide strong enough motivation for
practitioners to measure humidity at some inland wind
farms and test the hypothesis.

• The remaining three factors, namely, turbulence intensity
and the two wind shears, which each represents some other
aspects of wind dynamics, show also mostly positive im-
pact, except for the case of WT5. These wind dynamics
effects appear to be more pronounced for the inland tur-
bines than the offshore ones. The numerical analysis indi-
cates that the significance of these effects are after that of
ρ and H.

The next step we undertake is to determine which other factors
may impact the power output when we include more than one
additive term in our model, conditional on the factors that have
already been included. Based on the observations expressed
above, for both inland and offshore turbines, the first additive
term included is always (V,D, ρ). For the inland turbines, in
addition to this first term, there are two more terms that have ei-
ther turbulence intensity, I, or the below-hub wind shear, Sb. For
the offshore turbines, we also always include a second additive
term (V,D,H ). Then, in addition to the first two terms, there
are three more terms that have either the two wind shears, Sa ,
Sb, or turbulence intensity, I. The two wind shears are always
included or excluded together in the numerical analysis to keep
the total number of model comparisons manageable. Tables 3
and 4 present the model comparison results.

For some of the inland turbines, the best additive multivariate
kernel model explaining their power output includes the input
factors of the wind speed and wind direction (V and D), air
density (ρ), and turbulence intensity (I), while some others
include the wind speed and wind direction (V and D), air density

Table 5. Comparing RMSE using data from DILWF

AMK BART SSANOVA

Turbine BINa BVK (·, ·, ρ) (·, ·, ρ, I ) (·, ·, ρ) (·, ·, ρ, I ) (·, ·, ρ) (·, ·, ρ, I )

WT1 220.4 146.9 123.2 126.1 131.5 127.8 149.3 142.4
(33.3%) (44.1%) (42.8%) (40.3%) (42.0%) (32.3%) (35.4%)

WT2 201.6 149.6 131.2 132.2 137.3 133.3 147.9 153.8
( 25.8%) (34.9%) (34.4%) (31.9%) (33.9%) (26.6%) (23.7%)

WT3 219.2 149.7 119.4 119.6 129.1 120.7 149.0 142.1
(31.7%) (45.5%) (45.4%) (41.1%) (44.9%) (32.0%) (35.2%)

WT4 265.7 193.9 172.1 168.1 187.6 176.9 199.7 190.8
(27.0%) (35.2%) (36.7%) (29.4%) (33.4%) (24.8%) (28.2%)

NOTE: The boldface value is the smallest value in the row.
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Table 6. Comparing CRPS using data from DILWF

AMK BART

Turbine BVK (·, ·, ρ) (·, ·, ρ, I ) (·, ·, ρ) (·, ·, ρ, I )

WT1 84.0 77.3 75.5 74.9 72.6
(8.0%) (10.2%) (10.9%) (13.6%)

WT2 85.5 79.3 77.2 87.9 80.8
(7.3%) (9.7%) (−2.7%) (5.5%)

WT3 84.6 69.1 69.2 78.9 70.2
(18.3%) (18.3%) (6.8%) (17.1%)

WT4 114.9 96.3 96.5 128.3 117.9
(16.2%) (16.0%) (−11.7%) (−2.6%)

NOTE: The boldface value is the smallest value in the row.

(ρ), and wind shear (Sb). These versions differ marginally. In
the next subsection where the additive multiplicative kernel
model is compared with other methods, we choose the model
with four factors, V , D, ρ, and I, as the “best model” for the
inland turbines, because when it does not produce the smallest
RMSE (only one case), the difference between its RMSE and
the smallest RMSE is around three percentage points.

For the offshore turbines, it is rather clear that the model with
the wind speed (V), wind direction (D), air density (ρ), and
humidity (H) produces the lowest RMSE. Including other envi-
ronmental factors in the model could instead increase the RMSE.
The increase in RMSE is consistent and can be as much as 5.1%
for turbine WT6. In the next section, we choose the model with
V , D, ρ, and H as the “best model” for the offshore turbines.

If we repeat the above analysis using the CRPS measure, the
insights remain the same. We therefore omit the presentation of
the detailed CRPS results.

4.3 Comparison of the Estimation Accuracy
of Different Models

In this subsection, we compare the “best” additive multivari-
ate kernel model, selected in the preceding subsection, with
four different methods: the binning method (BIN), popular in
the wind industry and arguably the most widely used method
in practice, BVK (Jeon and Taylor 2012), BART (Chipman,
George, and McCulloch 2010), and SSANOVA (Gu 2013). Our
proposed additive multiplicative kernel method is represented
by AMK. Recall that the binning method we use here is the ver-
sion having incorporated the air density adjustment. To make
this explicit, we use the notation BINa . Note that the RMSE val-

ues of BVK and AMK in this section differ slightly from those in
Tables 3 and 4 because we split the training and test datasets ran-
domly, so that the training/test datasets used in this subsection
are not exactly the same as those in the previous section.

The comparison results using the inland turbines are included
in Tables 5 and 6. These two tables show the RMSE-based com-
parison and the CRPS-based comparison, respectively. Note that
the binning method can produce only point estimation, while
BVK, BART, and AMK produces both point and density esti-
mations. SSANOVA is supposed to produce density estimation
as well, but doing so takes way too long time; we have to man-
ually stop it after 15 hr computation. So, in the CRPS-based
comparison, only BVK, AMK, and BART are included. In the
RMSE-based comparisons, the baseline model used in the ta-
ble is the binning method, and in the CRPS-based comparison,
the baseline model is BVK. In the tables, the lowest values of
RMSE or CRPS are highlighted in boldface fonts.

We notice that the BVK model produces a significant im-
provement over the industry standard binning method, with a
reduction of RMSE ranging from 26% to almost 33%. Our ad-
ditive multivariate kernel method improves further from BVK
another 10% to 14%. In other words, the additive multivari-
ate kernel method can reduce RMSE from the binning method
by 35% to 45%. We believe that the improvement is the result
of including the additional environmental factors in the model.
When compared with BART and SSANOVA, AMK produces
similar, but slightly better, results than BART in terms of point
estimation, while the RMSE from the SSANOVA method is not
as competitive as AMK and BART. In fact, SSANOVA performs
much closer to what BVK does.

In Table 6, when using data from WT1 through WT3,
we notice that both AMK and BART produce better density
estimation than BVK, whereas AMK and BART perform
comparably. In the case of WT4 data, BART performed
noticeably worse than AMK, and even BVK. We observe
that the WT4 data have the largest variations among the four
inland turbine datasets, as evident by its large RMSE/CRPS
values. This large variation could be because WT4 is located
the farthest away from its companion mast so that the wind
measurements taken at the mast are less representative of the
wind condition at the turbine site. This case appears to suggest
the sensitivity of the BART model to the data quality.

Tables 7 and 8 present the comparison results for the offshore
turbines. In terms of point estimation, AMK is 8% to 12%
better than BART, 11% to 14% better than SSANOVA, 10%
to 14% better than BVK, 16% to 25% better than the binning

Table 7. Comparing RMSE using data from DOSWF

AMK BART SSANOVA

Turbine BINa BVK (·, ·, ρ) (·, ·, ρ, H ) (·, ·, ρ) (·, ·, ρ, H ) (·, ·, ρ) (·, ·, ρ, H )

WT5 302.7 281.7 255.7 254.5 278.1 275.7 285.7 289.9
(6.9%) (15.5%) (15.9%) (8.1%) (8.9%) (5.6%) (4.2%)

WT6 328.4 284.1 245.0 248.1 282.2 279.1 293.2 285.3
( 13.5%) (25.4%) (24.5%) (14.1%) (15.0%) (10.7%) (13.1%)

NOTE: The boldface value is the smallest value in the row.
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Table 8. Comparing CRPS using data from DOSWF

AMK BART

Turbine BVK (·, ·, ρ) (·, ·, ρ, H ) (·, ·, ρ) (·, ·, ρ, H )

WT5 130.9 116.2 111.5 152.5 151.5
(11.2%) (14.8%) (−16.6%) (−15.6%)

WT6 146.1 124.1 122.1 177.9 176.3
(15.1%) (16.5%) (−21.8%) (−20.6%)

NOTE: The boldface value is the smallest value in the row.

method, whereas BART, BVK, and SSANOVA perform
comparably. In terms of density estimation, AMK is about 15%
better than BVK, whereas BART is 15% to 20% worse than
BVK, or equivalently, AMK is 24% to 30% better than BART.
The results using the offshore turbines data appear to produce
a similar message as in the case of inland turbine WT4: they all
have a high level of noise, and in all three cases, BART appears
to suffer from the elevated level of noise in data.

5. CONCLUDING REMARKS

This study presents an additive multivariate kernel method for
modeling power curves with a variety of environmental factors.
It is an appealing approach because this new power curve model
can capture the nonlinear relationships between environmental
factors and the wind power output, as well as the high-order in-
teraction effects among some of the environmental factors. The
new power curve model generally outperforms its competitors in
terms of prediction errors for both point estimation and density
estimation. We believe that AMK’s good performance does not
happen by chance. However simple, our method makes explicit
use of the physical understanding behind wind energy produc-
tion for devising the tailored kernel model structure, whereas in
BART or SSANOVA, by contrast, the intrinsic structure is left to
be learned through the data. SSANOVA does not seem capable
enough to capture the structure as much as the tailored AMK
does. BART is more capable than SSANOVA but its capability
is still worse than the human-guided physics-based understand-
ing, and its capability becomes noticeably less effective when
data are noisy.

In addition to its general good performance, we believe that
the merit of our model lies in two additional aspects. The first
one is its simplicity, which is a virtue valued by industrial prac-
titioners, who generally do not like to blindly use a black-box
method of which they do not understand well how the informa-
tion fed into it was manipulated.

Another advantage is its fast computation for producing a
point estimation. When calculating a mean power curve, AMK
takes up to a few minutes, depending on the dataset sizes, while
BART takes up to 40 min on a Dell PowerEdge 2900 3.16
GHz computer (because BART always produces distributions)
and SSANOVA, being the slowest, takes up to 2 hr. In other
words, AMK can be 10 times faster than BART and 30 times
faster than SSANONA. This level of computation times may
not be a point of concern among academic researchers but it is
certainly meaningful and relevant in practice. Although density

estimation offers a fuller picture, computing the conditional
means is a much more common exercise that practitioners need
to do on a routinely basis and do so for a large number of turbines
(in the order of thousands for a major wind company). Being
able to shorten a routine computation by an order of magnitude
is definitely appreciated by practitioners.

[Received January 2014. Revised September 2014.]
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