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ABSTRACT

Smoothness is an important characteristic of a spatial process that measures local variability. If climate model
outputs are realistic, then not only the values at each grid pixel but also the relative variation over nearby pixels
should represent the true climate. We estimate the smoothness of long-term averages for land surface
temperature anomalies in the Coupled Model Intercomparison Project Phase 5 (CMIP5), and compare them
by climate regions and seasons. We also compare the estimated smoothness of the climate outputs in CMIP5
with those of reanalysis data. The estimation is done through the composite likelihood approach for locally
self-similar processes. The composite likelihood that we consider is a product of conditional likelihoods
of neighbouring observations. We find that the smoothness of the surface temperature anomalies in CMIP5
depends primarily on the modelling institution and on the climate region. The seasonal difference in the
smoothness is generally small, except for some climate regions where the average temperature is extremely high
or low.

Keywords: composite likelihood, Gaussian process, NCEP/NCAR reanalysis, restricted likelihood, surface

temperature anomaly, uncertainty quantification, variogram

1. Introduction

Smoothness is an important characteristic of a spatial
process that measures local variability of the process. Due
to the presence of strong spatial correlation in most climate
variables, the values of a climate variable at nearby locations
are considered simultaneously in many studies. Realistic
climate models are expected to produce plausible values of
climate variables, not only at each grid pixel, but also at its
nearby grid pixels, in order to accurately describe spatial
variation of the true process. Therefore, the smoothness is
an important measure to validate climate models in terms
of their ability to simulate fine scale spatial variability of
climate variables. The aim of this paper is twofold: first, we
seek to validate the spatial smoothness of a (temporal) long-
term average climate variable, by season and by climate
regions; and second, we compare the smoothness of climate
model outputs from the Coupled Model Intercomparison
Project Phase 5 (CMIP5) and the meteorological reanalysis
data. The spatial smoothness is estimated by assuming
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isotropy within each climate region, and we assess the
nonstationarity of the climate model outputs by assum-
ing that the smoothness varies by region. We also assess
the similarities in the smoothness across climate model
ensembles. If all climate ensembles represent the same true
phenomenon but deviate from the truth by random errors,
the difference in the smoothness of ensemble realisations
and reanalysis data should be negligible without any
patterns across the climate ensembles.

We consider multidecadal averages of land surface
temperatures in CMIP5 experiments. CMIP5 comprises a
standard set of coordinated climate change experiments
of 60 deterministic climate models. It is processed by
the Working Group on Coupled Modelling of the World
Climate Research Programme, who has gathered around 20
climate modelling groups from across the world. Outputs
are archived in a common format and can be downloaded
from the Program for Climate Model Diagnosis and In-
tercomparison web site (PCMDI, www-pcmdi.llnl.gov/).
Taylor et al. (2012a) presented an overview of the experi-
mental designs in CMIP5 and Knutti and Sedlacek (2013)
described detailed characteristics of climate model projec-
tions in CMIPS. The reanalysis data that we consider are
from the National Centers for Environmental Prediction
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and the National Center for Atmospheric Research (NCEP/
NCAR). The NCEP/NCAR reanalysis data set is a gridded
data set representing the state of the Earth’s atmosphere,
incorporating observations and numerical weather predic-
tion model output. It is provided by the Earth System
Research Laboratory in the National Oceanic and Atmo-
spheric Administration (www.esrl.noaa.gov/psd/). Kalnay
et al. (1996) and Kistler et al. (2001) presented the details of
the NCEP/NCAR reanalysis.

We introduce the concept of a locally self-similar process,
and we model long-term average land surface temperature
anomalies as a Gaussian locally self-similar process. The
local self-similarity is a weaker (and thus more general)
assumption than the Matérn covariance function (a widely
used covariance model that enables modelling the spatial
smoothness of a stochastic process) and is also capable of
modelling spatial smoothness. The estimation of smooth-
ness is done by optimising the composite restricted like-
lihood for the smoothness parameter of a locally self-similar
process (Stein et al., 2004; Lee, 2012). The composite
likelihood is a general term for any product of marginal
or conditional likelihoods (Varin et al., 2011). It has been
widely used as a substitute of likelihood, when the like-
lihood calculation is difficult. This paper considers a
product of conditional likelihoods of neighbouring obser-
vations. Since nearby observations contain most informa-
tion on the local behaviour of a process, our approach
balances statistical and computational efficiency in esti-
mating the smoothness of the process. In addition to the
composite likelihood approach, Gaussian Markov Random
Fields form another approximation approach applicable
(Rue and Held, 2005). However, we chose the composite
likelihood approach since its implementation is closer to
traditional statistical practice and may be more familiar to
the climate science community.

The remainder of this paper is organised as follows:
Section 2 describes the statistical methodology used in the
estimation of the smoothness parameter; Section 3 analyses
long-term average near-surface air temperature anomalies
in CMIP5 and NCEP/NCAR reanalysis by region and
season; and Section 4 summarises the key findings and
proposes related future work. Details on the statistical
methodologies are provided in the Appendix.

2. Methodology

2.1. Locally self-similar process

Suppose that we observe a mean zero and isotropic
Gaussian process, {Z(s), se&}, for £ C R?. We assume
that the semi-variogram of Z, 7y(-), follows a power

function around the origin. That is, for all s and ueé,
with the Euclidean norm, ||-|:
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where 0 =(C, H), for the scale parameter, C >0, and
the smoothness parameter, H €(0,1) (Gneiting et al., 2012).
The notation o(||s—u||**') means that {y(||s—u]|)— C||s—u||*" }/
l|s —ul|* — 0, as ||s — u|| — 0. The scale parameter con-
trols the overall size of the variation of the process. And the
larger the smoothness parameter is, the smoother the
realised surfaces of Z. A process that satisfies eq. (1) is called
locally self-similar, since a self-similar process with index
H satisfies y(||s —u||) = C||s — u[|*” for all s and u € R®
(Samorodnitsky and Taqqu, 1994; Genton et al., 2007). The
index H determines the smoothness of the self-similar process,
and it has been widely used as a measure of surface roughness
for various natural phenomena, such as the surface of soil,
surface height measurements of computer chips, etc. [see
Mandelbrot and Wallis (1969) and Adler (1981) for some
application examples]. Note that the quantity, 2H, is essentially
the fractal index for the mean zero isotropic Gaussian process,
Z (Gneiting and Schlather, 2004; Gneiting et al., 2012).

A locally self-similar process is more general than a self-
similar process, in the sense that it does not fully specify the
variogram but only in a region around the origin. Indeed,
mean zero Gaussian processes with many widely used
parametric covariance functions are locally self-similar.
These include powered exponential, generalised Cauchy or
Matérn covariances (Gneiting et al., 2012, Table 1). Among
these, the most widely used, the isotropic Matérn covar-
iance, takes the following form:
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for all s and h, where I'(+) is the gamma function and I, is a
Bessel function of the second kind of order v. The
parameters of the Matérn covariance function are the
partial sill, o2 >0, the range, ¢ >0, and the smoothness
parameter, v >0. The range parameter controls the rate
of correlation decay with distance and the partial sill
measures the size of variation of the process. A mean
zero Gaussian process with the Matérn covariance satisfies
eq. (1) with H=v and C=¢2""""¢ ~2'T(1 —v)/T(1 +)
when 0 < v <1. Note that our variogram model in eq. (1)
is more general than the Matérn model as we only specify
the variogram near the origin.

In this paper, we restrict our attention to the case when
0 < H <1, under which eq. (1) becomes a statistically valid
variogram. Many natural phenomena satisfy this condition.
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Table 1.

country of modelling institution, grid resolution and number of ensemble realisations available in this paper

The NCEP/NCAR reanalysis and the list of the climate models that comprise historical runs (Experiment 3.2) of CMIPS5, with their modelling institution, official institution ID,

Modelling centre (or group) Institute 1D Country  Model number Model name Resolution  # of replicates
National Centers for Environmental Prediction (NCEP) and NCEP/NCAR USA Reanalysis 192 x 94 n/a
National Center for Atmospheric Research (NCAR)
Commonwealth Scientific and Industrial Research Organization CSIRO-BOM Australia 33 ACCESSI1.0 192 x 145 1
(CSIRO) and Bureau of Meteorology (BOM) 32 ACCESSI.3 192 x 145 3
College of Global Change and Earth System Science, GCESS China 9 BNU-ESM 128 x 64 1
Beijing Normal University
National Center for Atmospheric Research NCAR USA 46 CCSM4 288 x 192 6
Community Earth System Model Contributors NSF-DOE-NCAR USA 45 CESM1(BGC) 288 x 192 1
22 CESMI(CAMS5.1,FV2) 144 x96 4
43 CESMI(CAMY) 288 x 192 3
44 CESMI1(FASTCHEM) 288 x 192 3
21 CESMI(WACCM) 144 x 96 4
Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC Europe 1 CMCC-CESM 96 x 48 1
25 CMCC-CMS 192 x 96 1
47 CMCC-CM 480 x 240 1
Centre National de Recherches Météorologiques/Centre Européen de CNRM-CERFACS  France 37 CNRM-CM5 256 x 128 10
Recherche et Formation Avancée en Calcul Scientifique
Commonwealth Scientific and Industrial Research Organization in CSIRO-QCCCE Australia 26 CSIRO-Mk3.6.0 192 x 96 10
collaboration with Queensland Climate Change Centre of Excellence
Canadian Centre for Climate Modelling and Analysis CCCMA Canada 5 CanCM4 128 x 64 10
4 CanESM2 128 x 64 5
EC-EARTH consortium EC-EARTH Europe 41 EC-EARTH 320 x 160 11
LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences LASG-CESS China 3 FGOALS-g2 128 x 60 5
and CESS, Tsinghua University
The First Institute of Oceanography, SOA FIO China 10 FIO-ESM 128 x 64 1
National Oceanic and Atmospheric Administration, NOAA GFDL USA 20 GFDL-CM2.1 144 x 90 10
Geophysical Fluid Dynamics Laboratory 19 GFDL-CM3 144 x 90 5
18 GFDL-ESM2G 144 x 90 1
17 GFDL-ESM2M 144 x 90 1
NASA Goddard Institute for Space Studies NASA GISS USA 13 GISS-E2-H-CC 144 x 90 1
14 GISS-E2-H 144 x 90 1
15 GISS-E2-R-CC 144 x 90 1
16 GISS-E2-R 144 x 90 25
Met Office Hadley Centre (additional HaddGEM?2-ES realisations MOHC UK 2 HadCM3 96 x 73 10
contributed by Instituto Nacional de Pesquisas Espaciais) 34 HadGEM2-CC 192 x 145 3
MOHC/INPE 36 HadGEM2-ES 192 x 145 4
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Table 1 (Continued)

Modelling centre (or group) Institute ID Country  Model number Model name Resolution  # of replicates
National Institute of Meteorological Research/Korea Meteorological NIMR/KMA Korea 35 HadGEM2-AO 192 x 145 1
Administration
Institut Pierre-Simon Laplace IPSL France 11 IPSL-CMS5A-LR 96 x 96 6
30 IPSL-CM5A-MR 144 x 143 3
12 IPSL-CM5B-LR 96 x 96 1
Japan Agency for Marine-Earth Science and Technology, Atmosphere MIROC Japan 6 MIROC-ESM-CHEM 128 x 64 1
and Ocean Research Institute (The University of Tokyo), and 7 MIROC-ESM 128 x 64 3
National Institute for Environmental Studies
Atmosphere and Ocean Research Institute (The University of Tokyo), MIROC Japan 48 MIROC4h 640 x 320 3
National Institute for Environmental Studies, and Japan Agency 38 MIROCS 256 x 128 5
for Marine-Earth Science and Technology
Max-Planck-Institut fir Meteorologie MPI-M Germany 27 MPI-ESM-LR 192 x 96 3
(Max Planck Institute for Meteorology) 29 MPI-ESM-MR 192 x 96 3
28 MPI-ESM-P 192 x 96 2
Meteorological Research Institute MRI Japan 39 MRI-CGCM3 320 x 160 S
40 MRI-ESM1 320 x 160 1
Norwegian Climate Centre NCC Norway 24 NorESM1-ME 144 x 96 1
23 NorESM1-M 144 x 96 3
Beijing Climate Center, China Meteorological Administration BCC China 42 BCC-CSM1.1(m) 320 x 160 3
8 BCC-CSM1.1 128 x 64 3
Institute for Numerical Mathematics INM Russia 31 INM-CM4 180 x 120 1
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For example, Tuck (2008, p. 14, 41) studied atmospheric
variability and observed that temperature is smoother than
wind speed. The scaling exponent, which is the same as 2H of
eq. (1), of the temperature was shown to be close to but less
than unity. Lovejoy and Schertzer (1985, p. 1235) pointed
out empirically that 0 < H <1 in the rate of energy transfer,
buoyancy, velocity, temperature fluctuations, radar reflec-
tivity and cloud drop volumes. North et al. (2011) found that
the spatial covariance of temperature fields based on simple
energy balance climate models follows the Matérn covari-
ance with v=1, and that v <1 is expected due to rough
landscapes. Sun et al. (2015) mentioned that precipitation
amounts become smoother when summed over longer periods
and they showed numerically that the smoothness of long-
term precipitation amounts is less than v =0.5. We determine
that the smoothness of multidecadal average near-surface air
temperature anomalies is between zero and one in Section 3.

One thing to note is that the estimated smoothness may
depend on the grid resolution of the climate models. In the
estimation procedure described in Section 2.2, the relation-
ship, eq. (1), is applied to the number (k =3,...,10) of
neighbouring observations. As shown in Table 1, climate
models in CMIPS5 have various grid resolutions. In Section
3, we check the effect of spatial grid resolution on the
estimated smoothness.

2.2. Composite likelihood

To estimate the scale and smoothness parameters of a
locally self-similar process, we consider the composite
restricted likelihood of #. We briefly introduce the idea
of composite likelihood as opposed to the likelihood
method in this section. Further details on how to calculate
composite restricted likelihoods are given in the Appendix.
The idea of restricted likelihood is used to estimate var-
iogram parameters without estimating nuisance parameters
such as E{Z(-)} or Var{Z(-)} (Kitanidis, 1983). It is a marginal
likelihood associated with any N—1 linearly independent error
contrasts, mean zero linear combination of the observations.
Since a locally self-similar process does not fully specify the
variogram, we have neither the exact likelihood nor
the restricted likelihood of #. Therefore, we approximate
the restricted likelihood of @ by the composite restricted
likelihood, similarly to Stein et al. (2004) and Lee (2012).
Let us first sketch the idea to obtain a composite
likelihood. Suppose that Z(-) is observed at N locations,
{s1,....sy}. Let p(-; @) indicate a generic probability density
function, possibly conditional density. We order the obser-
vation locations by starting from a random location, s, then
selecting s; to be the nearest location to any of {s;,...,s;_1}
among the remaining locations, for i >2. If there are two or

more locations at equal distance from the set {si,...,s;_1},
we choose one randomly. The likelihood of € is

p(Z(Sl), o '7Z(SN); 0)
:p(Z(S|), e 7Z(sk)§ 0)

x H p(Z(s)|Z(s),- - Z(s;y); 0). 3)

i=k+1

Now, in order to define a composite likelihood, for each s;,
define k locations in proximity of s;, among the previously
selected locations as {s,,,...,s;, }C{s,,...,s,}, for i>k.
Since closely located observations are highly correlated
and informative about the smoothness of the process, the
composite likelihood approximates eq. (3) by conditioning
on {s;1,. ..,y only:

N

Z(s); 0) [ p(Z(s)1Z(s0), - Z(s10); 0.

i=k+1
4

P(Z(s)); -

Call {Z(s;,),...,Z(s;;)} the conditioning set of the com-
posite likelihood, where k denotes the size of the condi-
tioning set. The composite likelihood, eq. (4), is associated
with the statistical optimal property if Z follows a
Gaussian process. For a Gaussian probability density, p,
P(Z(s)|Z(s;1)s - - -+ Z(s;;); 0) is the density of the error of the
best linear predictor of Z(s;) based on Z(s;,),..., Z(s;;).
Also, the approximation in eq. (4) requires O(k’N) opera-
tions while the likelihood requires O(N*) operations. It is
especially beneficial for large irregularly spaced observa-
tions where the likelihood calculation is computationally
demanding.

The composite restricted log-likelihood, rNIk(()), provided
in the Appendix, is defined similarly by applying the idea of
the composite likelihood to the logarithm of the restricted
likelihood. Our estimator, 67, is then defined as a value that
maximises the composite restricted log-likelihood. We
consider the conditioning set of size k =3....,10 in Section
3. We assess the variance of by the sandwich estimator,
a widely used measure of the variance of estimators from
an estimating equation, Vﬁk(e) = 0. Here, V denotes the
vector of partial derivatives with respect to §. Then we have
0 is asymptotically normal with asymptotic covariance
matrix

{1,(0)V,'(0)J,(0)} ", where

J,(0) = E{=V?*/1,(0)} and V,(60) = Var{Vrl (0)}.

See Lindsay (1988) and Godambe and Heyde (2010) for
more details.
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3. Analysis

3.1. Data

Climate model outputs from CMIP5 consist of 3 and 6
hourly, daily, monthly and annual mean values of more than
404 ocean, land and atmosphere related climate variables
for decadal hindcasts and predictions. The NCEP/NCAR
reanalysis data consist of 6 hourly, daily and monthly mean
values of atmospheric variables from January 1948 to the
most recent month. In this paper, we analyse the long-term
average near-surface air temperatures measured at 2m
above ground at gridded locations on the Earth from 1979
to 2005, the time period common to all climate models in
CMIPS and the NCEP/NCAR reanalysis.

We analyse 191 ensemble runs from the 48 climate models
in CMIP5 (experiment 3.2). Each climate model has 1-25
ensemble replicates that are initialised under different or the
same initial conditions but produced by different perturbed
versions of the same model (Taylor et al., 2012b). Ensem-
ble replicates are treated and interpreted independently
from each other, and their spatial resolutions vary from
ensemble to ensemble. Table 1 lists the climate models
in CMIP5 and the NCEP/NCAR reanalysis data set used
in this paper, with their grid resolutions and the numbers
of ensemble replicates. The climate models are numbered
in ascending order of the number of grid pixels. The
model number thus represents the rank of the spatial
resolution of the climate model. For the climate models
with the same spatial resolutions, lower model numbers are

Fig. 1.

given to the ones with smaller average estimated smooth-
ness over the regions.

We focus on the mean surface temperatures in Boreal
winter (December, January, February; DJF) and summer
(June, July, August; JJA), averaged over 27 yr. That is, at
each location, we use multidecadal averages of land surface
air temperatures during DJF and JJA. Also, we divide the
land area except for Antarctica into the 21 climate regions
that are used in Giorgi and Francisco (2000). There are two
main reasons for dividing the land areas into climate
regions. It is common that the smoothness varies spatially
in climate variables. Also, the distance between grid points
becomes smaller in regions at higher latitudes. Since the
estimated smoothness parameter depends on the resolution of
the observed process, dividing regions where observations
are separated by similar spacing is reasonable. The climate
regions are shown in Fig. 1. The sizes of the regions vary
from 807 to 6735km in the north-south and east-west
directions. Each region contains from 12 to 7649 grid
pixels of the ensemble outputs from CMIPS, depending on
the grid resolutions of the ensembles. The minimum spacing
between grid locations at the equator ranges from 83 to
417 km.

3.2. Models

Denote the entire study region as D. Then, partition D into
the climate regions, D = UL, D,. Let Tj(s) be a multi-
decadal average of near-surface air temperature at grid
location seD for climate model j=1,...,48, ensemble

Twenty-one land regions used in the study: Australia (AUS), Amazon Basin (AMZ), Southern South America (SSA), Central

America (CAM), Western North America (WNA), Central North America (CNA), Eastern North America (ENA), Alaska (ALA),
Greenland (GRL), Mediterranean Basin (MED), Northern Europe (NEU), Western Africa (WAF), Eastern Africa (EAF), Southern Africa
(SAF), Sahara (SAH), Southeast Asia (SEA), East Asia (EAS), South Asia (SAS), Central Asia (CAS), Tibet (TIB) and North Asia (NAS).
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replicate /, during DJF and JJA, for i=1 and i=2,
respectively. The number of ensemble replicates varies by
climate model. Let p;(s) = E{T};(s)} be the mean of the
multidecadal average and ¢;(s) be the anomaly (residual)
at location s €D, such that

T; (s) = :uij[(s) + 8;‘,‘1(5)~ )

Since we focus on modelling the smoothness of the tem-
perature anomalies, &, WE first filter the data to estimate the
mean, u;;, and make the anomaly field close to mean zero.
Spherical harmonics, {P”(sin L) cos(ml),P"(sin L) sin(ml)|
n=0,1,2,....m=0,...,min(3,n)}, where —n/2 < L < n/2
is the latitude, —n </ < m is the longitude, and P is
the Legendre polynomial of degree n and order m, provide
a natural basis for capturing large-scale spatial patterns
(Stein, 2007). Because surface temperatures are closely related
to altitude, we estimate u;; by regressing on the altitude
from the sea level in addition to spherical harmonics for
n =12, for each climate ensemble realisation in CMIP5 and
the NCEP/NCAR reanalysis. The choice of n =12 is made
following the literature dealing with similar data sets (Jun
and Stein, 2008; Stein, 2008; Jun, 2011, 2014).

After the mean filtering through regression, we assume
that ¢;;in eq. (5) is a mean zero, locally self-similar Gaussian
process that satisfies for sand u € D,,  E{e;(s) — s,-j,(u)}2 =
Cyulls — ulo(|ls —u|), as  |ls—u|| =0, for

Fig. 2.

r=1,...,21. The smoothness of the temperature anomalies
in the NCEP/NCAR reanalysis is defined similarly. Since
&;(s) is a multidecadal average of temperature anomalies,
its distribution may be close to a Gaussian distribution.

The top panels in Figs. 2 and 3 show the multidecadal
average near-surface air temperature, Ty, the estimated
mean, f;, and the anomaly, &, in the reanalysis and
GFDL-CM3 data, by season. The spherical harmonics
terms and the altitude capture most of the patterns in the
mean, and the anomalies do not have noticeable large-scale
spatial patterns. Figure 4 compares the minimum, median
and maximum values of the anomalies, shown in the
bottom panel of Fig. 2, by climate region and season.
In all regions, the medians of the anomalies are around
zero and the ranges of the anomalies are similar regardless
of season and region, except for ALA and GRL. The
spatial patterns of the mean and residuals displayed in
Figs. 2 and 4 are similar to patterns created by other
ensemble models.

3.3. Estimation of the smoothness

We estimate the smoothness parameter, H, of the anomalies
of multidecadal average land surface temperature in
the NCEP/NCAR reanalysis and CMIP5 by maximising
the composite restricted likelihood with a conditioning set of

The multidecadal average land surface temperature (top panel), its estimated mean (middle panel) and the residuals (bottom

panel) for GFDL-CM3. The left and right panels are during JJA and DIJF, respectively.



Fig. 3.

size k, k=3,...,10. Figure 5 shows the changes in the
smoothness estimates by increasing k. Each plot represents
a climate model in CMIP5 and each curve represents a
climate region in Fig. 1. Among the climate regions, WNA,
SAH, NAS, AMZ and TIB are coloured. We explain the
reason for choosing these specific regions after showing
the estimated smoothness of the NCEP/NCAR reanalysis.
The smoothness estimates become quickly stabilised as k

. LEE ET AL.

The same as Fig. 2 but for the land surface temperatures in the NCEP/NCAR reanalysis.

increases. The estimated smoothness is always less than
unity, regardless of the size of the conditioning set. Hereafter,
we present the estimated smoothness using the composite
restricted likelihood with a conditioning set of size kK = 5.
Figure 6 maps the smoothness estimates of the tem-
perature anomalies in the NCEP/NCAR reanalysis of the
corresponding climate regions during DJF and JJA. Simi-
larly, a smoothness map is drawn for each of the climate
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Minimums, medians and maximums of the anomalies by season in GFDL-CM3.
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Fig. 5.  Smoothness of the multidecadal average near-surface air temperature anomalies in CMIP5, by increasing the size of the
conditioning set in the conditional composite restricted likelihood. Each plot corresponds to a climate model in CMIP5 and has 21 curves
of the estimated smoothness during JJA, one for each climate region. The curves that correspond to the regions WNA, SAH, NAS, AMZ
and TIB are coloured.

model ensembles in CMIP5. The ensemble replicates of the JUA DJF
same climate model have almost the same smoothness
in all climate regions. The climate model outputs generated
from the same modelling institution also have similar
smoothness in all land regions. Therefore, in order to save
space, Figs. 7 and 8 show the smoothness maps of 15 climate
models that have distinct patterns, for DJF and JJA,
respectively.

The estimated smoothness for the NCEP/ NC//}R reana- Fig. 6. Smoothness of the multidecadal average near-surface air
lysis is larger than 0.5 in all regions except CNA (H = 0.041) temperature anomalies in the NCEP/NCAR reanalysis by season.
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CSIRO-BOM

Fig. 7.

during JJA. The regions near the North Pole (WNA, NAS,
NEU, GRL, ALA) have smoother surface temperature
anomaly fields during DJF than during JJA, while the
regions near the equator (SAH, SAS) have smoother fields
during JJA. The seasonal difference in the smoothness is
small in other regions. This is the reason why we coloured
WNA, SAH, NAS, AMZ and TIB in Fig. 5. Among
these, the first three and the last two represent the climate
regions with large and small seasonal differences, respec-
tively. This pattern appears in GCESS, CMCC-CESM,
CMCC-CMS and BCC in CMIP5. The rest of the climate

Smoothness of the multidecadal average near-surface air temperature anomalies in CMIP5 during JJA.

models in CMIPS5 exhibit similar smoothness for JJA
and DJF.

Figures 6—8 show quite a lot of regional variation in each
smoothness map. The smoothness maps from CMIP5 also
vary across climate models. The climate modelling institu-
tion and the climate region are the main factors that
determine the smoothness of the surface temperature
anomalies. The relative regional characteristics, however,
do not change across climate models. Figure 9 plots the
smoothness of the temperature anomalies in CMIP5 against
the climate model number, i.e. the rank of the spatial
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Fig. 8.

resolution of the climate model. There are 21 curves, each
of which represents a climate region. Again, the curves that
represent WNA, SAH, NAS, AMZ and TIB regions are
coloured. Generally, all the curves in Fig. 9 resemble each
other. This implies that the climate model is the primary
factor that determines the estimates for the smoothness,
and the spatial resolution of the model has a weaker effect
than the climate model on the estimated smoothness. Each
climate model generates the relative regional characteristics
well, while the average level of smoothness differs for each
climate model. The climate models developed by NASA
GISS, IPSL, and MOHC produce rougher temperature

Smoothness of the multidecadal average near-surface air temperature anomalies in CMIP5 during DJF.

anomaly fields than do the other climate models over all
climate regions during both seasons. The crosses at model
number 22 indicate the smoothness of the NCEP/NCAR
reanalysis, as the resolution of the reanalysis is similar to the
resolution of climate model 22.

Some smoothness estimates are near the boundaries of
the range of the smoothness parameter, H ~0, suggesting
that the estimation failed. For the NCEP/NCAR reanalysis
data, we fail to estimate the smoothness over the region CNA
during JJA. In CNA, there were seven pairs of neighbour-
ing observations out of 90 observations, which temperature
anomalies differ significantly. Furthermore, the failure of
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Comparison of the smoothness of the multidecadal average near-surface air temperature anomalies in CMIP5, by climate

region and season. Each curve corresponds to a climate region, among which WNA, SAH, NAS, AMZ, and TIB are coloured.
Vertical lines differentiate resolutions (1: 96 x 73, 2: 128 x 64, 3: 96 x 96, 4: 144 x 96, 5: 192 x 96, 6: 192 x 145, 7: 320 x 160, 8: 288 x 192,

9: 640 x 320).

the estimation of CMIPS happens when we do not have
sufficient number of data, for the models with coarse
grid resolution. Climate models 1 (CMCC-CESM) and 2
(HadCM3) of CMIPS5 fail to estimate the smoothness of
CAM, CNA, ALA or NEU during JJA or DJF. Climate
model 1 has a spatial resolution of 96 x 48 on the Earth,
and there are only 12 and 25 observations for CAM and
CNA, respectively.

Figures 10—12 show the estimated scale parameters of
the multidecadal average near-surface air temperature
anomalies in reanalysis and CMIPS5 during JJA and DJF.
The values are plotted on a logarithmic scale due to
wide range of scale parameter estimates for some climate
models and/or climate regions (this is for the display
purposes only). The climate models developed by NASA
GISS and IPSL give large estimates of the scale parameters
for MED, CAS and TIB, while NASA GISS gives large
estimates for AMZ, CAM, GRL and NEU. Relatively
large estimates of the scale parameters occur together
with relatively little smoothness. NASA GISS and IPSL
produce rougher temperature anomalies in those regions.
In other models and regions, the estimates of scale
parameters range from 0.0002 to 1.42 (in logarithmic scale).
The standard errors of the smoothness and scale para-
meter estimates were mostly small, except for the climate
models developed by NASA GISS, MOHC, and IPSL

that produce rough land surface temperature anomaly
fields (not shown).

4. Discussion and conclusion

The smoothness of a spatial process is one of the important
measures of spatial dependence. This paper estimates the
spatial smoothness of multidecadal averages of land sur-
face temperature anomalies in the NCEP/NCAR reanalysis
and the CMIP5 multimodel ensembles by climate region
and season. The temperature anomaly field of the NCEP/
NCAR reanalysis becomes smoother if the average tem-
perature of the field is extremely high or low. This pattern

JUA DJF

.0002

.005 .02 A1 .73

Fig. 10. Scale parameters of the multidecadal average
near-surface air temperature anomalies in the NCEP/NCAR
reanalysis data by season. The values are plotted on a logarithmic

scale.
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appears in some climate models from CMIPS, while the
others exhibit similar smoothness during JJA and DJF. The
smoothness of the multidecadal average near-surface air
temperature anomalies in CMIP5 depends primarily on the
modelling institution and the region. Interestingly, there are
strong similarities in the smoothness between the climate
models generated from the same institution, which sup-
ports observations that have been reported frequently in the
literature (Tebaldi and Knutti, 2007; Jun et al., 2008a, b;
Knutti et al., 2010).

In the future, we plan to examine the smoothness of
various climate variables, such as precipitation amount,

.0002 .001

Scale parameters of the multidecadal average near-surface air temperature anomalies in CMIP5 during JJA. The values are

pressure, wind speed, etc. This can give us more insights into
the characteristics of climate regions and climate models.
Also, CMIPS is an archive of well-designed experiments
of vast climate models. This paper analyses historical runs
(experiment 3.2) of CMIP5 under which all forcings are
implemented. Experiments 5.1-5.5 of CMIPS5 are composed
of simulation runs of the same climate models as in
experiment 3.2 but with emissions forcings with fixed or
different scenarios of the carbon cycle. The carbon cycle
is an important factor that affects surface temperature, as
do the presence of sulphate, clouds, interactive aerosols and
greenhouse gas emissions. By comparing the smoothness
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between the climate models with or without forcings, we
may test the effect of forcings on the local variation of the
surface temperature anomalies.
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6. Appendix

A.1. Details on composite restricted likelihood

Recall that the composite likelihood, eq. (4), factorises
the densities of the error of the best linear predictor of Z(s;)
based on a few neighbouring observations preceding s;
in the ordering of the observation locations. Analogously,
the composite restricted likelihood factorises the densities
of the error of the best linear unbiased predictor (BLUP) of
Z(s;) based on the few preceding observations in a neigh-
bourhood of s;. More specifically, let Z = (Z(s),. . .,Z(sy)) .
For i=k+1,...,N, let B;i(0) be a vector of length N
so that W;.(6) =Bl-y,\,(t9)T Z is the error of the BLUP of
Z(s;) based on Z(s;1),....Z(six). For i=k, take B, ;(0) to
be a fixed matrix (independent of @) of size N x (k—1) with
rank k—1 so that W;,(0) is a set of contrasts of Z(s)),...,
Z(s¢)- Then, W, (0)~N(0, V. (6)), for ¥;,(0) =By (6)"
Var(Z)B,,(0), i=k. The compasit}s
likelihood is: rl,(0) =— Y= log(2n)—L 3" [log{det(V,,(0))}
—|—W,‘k(O)TV,.ﬁk(G)’1 W, (0)]. Refer to l§/{ein et al. (2004,
Appendix B) for the equations of B,,(0), V;lk(é)) and
V2r~lk(0) that are required in the sandwich estimator of
the variance of the composite restricted likelihood estima-
tor of 0. In the analysis in Section 3, we consider r~lk(0) with
k=3,...,10. The estimation of @ is done by profiling out
C from ;'le(ﬂ) and maximising the profiled equation for H
over (0,1), by a combination of golden section search and
successive parabolic interpolation.

restricted  log-
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