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ABSTRACT: Accumulated daily rainfall in non-observed locations on a particular day is frequently required as input to
decision-making tools in precision agriculture or for hydrological or meteorological studies. Various solutions and estimation
procedures have been proposed in the literature depending on the auxiliary information and the availability of data, but
most such solutions are oriented to interpolating spatial data without incorporating temporal dependence. When data are
available in space and time, spatiotemporal models usually provide better solutions. Here, we analyse the performance of
three spatiotemporal models fitted to the whole sampled set and to clusters within the sampled set. The data consists of daily
observations collected from 87 manual rainfall gauges from 1990 to 2010 in Navarre, Spain. The accuracy and precision of
the interpolated data are compared with real data from 33 automated rainfall gauges in the same region, but placed in different
locations than the manual rainfall gauges. Root mean squared error by months and by year are also provided. To illustrate
these models, we also map interpolated daily precipitations and standard errors on a 1 km2 grid in the whole region.
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1. Introduction

Interpolation of daily rainfall data provides important
information for precision agriculture, and for climatolog-
ical, meteorological and hydrological studies for which
daily precipitation data from non-observed locations are
needed. Such interest in spatiotemporal modelling of
rainfall is not new (Cox and Isham, 1988), and many
researches worked on methods to interpolate daily rain-
fall data, whereas hydrologist or climatologists have rec-
ognized the inherent difficulty in this task (Kleiber et al.,
2012). For example, PRISM (Parameter-elevation Regres-
sions on Independent Slopes Model) is a climate analy-
sis system that uses point data, a digital elevation model
(DEM), and other spatial datasets to generate gridded
estimates of annual, monthly and event-based climatic
parameters (Daly et al., 1994). Numerical and determin-
istic approximations of daily precipitation are already
frequent in practice (Martin-Vide, 2004), with determinis-
tic interpolations becoming very popular because of their
simplicity and ease of programming in commercial soft-
ware. However, these approximations are not necessar-
ily based on statistical models, consequently inference is
not possible and precision assessment becomes a diffi-
cult task. For example, Weymouth et al. (1999) solved the
problem in Australia by using a modular Barnes successive
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corrections scheme. They estimated rainfall at a grid-point
by using weighted averages of surrounding observations
and conducted their analysis on a 25 km2 grid with a cor-
relation scale of 80 km. They tested the accuracy of their
method comparing their results with the full climatological
dataset collected by the National Climate Center of Aus-
tralia. Tait et al. (2006) used spline interpolations of daily
rainfall based on a mean annual rainfall surface, rather than
elevation, as an independent variable in an interpolation
of daily rainfall data in New Zealand. They used spatial
but not temporal interpolations. Xie et al. (2007) analysed
daily climatology data by interpolating data from clima-
tological stations as averaged over a 20-year period from
1978 to 1997. The daily climatology data were adjusted
to correct the bias caused by orographic effects. Analysis
of the total daily precipitation was calculated by multiply-
ing the daily climatology data by the daily ratio of pre-
cipitation. Carrera-Hernández and Gaskin (2007) interpo-
lated daily data using different kriging models. They used
spatial information only. Herrera et al. (2012) presented a
spatial interpolation of precipitation data using a 20 km2

grid across Spain using data from 50 years. They used
kriging, thin-plate splines and inverse weighting methods
but no temporal information was added to the interpola-
tion methods. Simple and descriptive methods of inter-
polation such as inverse distance-weighted interpolation
and a local weighted regression method in which eleva-
tion and distance are the explanatory variables used by
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Kurtzman et al. (2009). Their results showed that spa-
tially variable, physically based parametrization of the dis-
tance weighting function can improve the spatial interpo-
lation of daily precipitation data. Newlands et al. (2011)
evaluated the precision of three interpolation methods
(TP splines, a weighted-truncated Gaussian filter, and a
hybrid inverse distance and natural-neighbour interpola-
tion) to interpolate daily precipitation and temperature data
in Canada using available historical records from daily
station time-series data. They compared the performance
of the three methods using cross-validation and averag-
ing daily precipitation over the period 1961–1990. The
specific interpolation of a particular day was not pro-
vided. A hidden Markov model for space–time evolution
of daily rainfall was proposed by Ailliot et al. (2009).
They used the expectation–maximization (EM) algorithm
for the estimation process, but the focus was on evolu-
tion more than on prediction at new locations. Kokic et al.
(2011) demonstrated the potential advantage of using a
linear, mixed-effect state-space model for statistical down-
scaling of climate variables compared to the frequently
used approach of linear regression. They demonstrated
the utility of their method by predicting annual rainfall
and temperature means in Australia. With lead times of
1–10 years, their state-space approach was able to pre-
dict observed seasonal temperature and rainfall means
with substantially greater precision than climatology, mul-
tivariate linear regression or a standard linear state-space
approaches. However, extensions of this model to monthly
or daily data have not been made. Moral (2010) compared
different spatial interpolation methods based on kriging
techniques with monthly precipitation data from 136 rain-
fall stations from Extremadura, Spain. The inclusion of
altitude improved the predictions considerably. Jeong et al.
(2012) aimed at modelling daily temperatures and pre-
cipitation using covariates and historical data. They com-
pared multiple regression models, ordinary least squares
estimates, robust regression, ridge regression and artificial
neural networks to identify an appropriate transfer function
in statistical downscaling models to capture daily precipi-
tation occurrence and amounts. This comparison was made
with data from 25 observation sites located in five Cana-
dian provinces from 1960 until 2000.

The use of simulation techniques may also be useful
to data interpolation. Precipitation simulation dates back
to the 1950s and many simulation techniques have been
developed since then. These techniques are typically based
on the assumption of mixed distributions of rainfall in a
parametric or nonparametric framework (Li et al., 2012)
and the simulations are based on gauge stations. Recently,
extensions to non-gauge stations have been made by bor-
rowing information from the closest stations (Mehrotra
et al., 2012). Vaze et al. (2011) used simulation tech-
niques to reproduce observed historical annual and sea-
sonal mean rainfalls, observed annual rainfall series, and
observed daily rainfall distributions across Southeast Aus-
tralia. Infilling particular records have been also of inter-
est for some authors. Disaggregated rainfall and infill-
ing missing values can also be done using spatiotemporal

models (Cowpertwait et al., 2006). Daily stochastic spa-
tiotemporal precipitation generators have been developed,
although daily generators produce daily rainfall only from
locations with observations. When interpolating without
observations, deterministic methods are commonly used.
Recently Kleiber et al. (2012) provided gridded simula-
tions by using kriging to interpolate the model parameters
necessary for the simulations.

The aim of this paper is to provide daily rainfall estimates
anywhere in a specific region and on any day within a par-
ticular year. These predictions could be easily incorporated
as input into more sophisticated models to study the cli-
mate, agriculture or forestry. We illustrate the results with
historical rainfall data from a network of 87 manual rain-
fall gauges over a period of 21 years. To make predictions
of daily rainfall, we use planar coordinates and elevation
as covariates. Using this temporal and spatial information,
precise and accurate interpolation of rainfall data in 1 km2

network is achieved. Specifically, we compare three alter-
native stochastic models and validate the predictions from
actual data collected from rainfall gauge stations. These
alternative models include a kriging model with an external
drift of historical data, called the spatiotemporal (ST) krig-
ing model, a thin-plate (TP) spline model with the same
external drift as the ST-kriging model and a dynamic state
(S)-space model that simultaneously incorporates spatial
and dynamic temporal dependence. We also analyse the
models using clusters because great variability could occur
on certain days due to the presence of local storms or dra-
matically changing weather.

The rest of the paper is organized as follows. Section 2
presents the data and the methods. It explains the appli-
cation and reviews the models used in the interpolation
process. Section 3 presents the results. Finally, we draw
conclusions in Section 4.

2. Data and methods

The data used in this study are drawn from the records of
87 manual stations with daily precipitation observations
for a 21-year period (1990–2010). There was less than
1% missing data from these stations, because manual sta-
tions experience fewer failures than do automated stations.
Missing data have been replaced by historical means of
5 days, yet other periods can be used. The Agriculture and
Environmental Department of Navarre provided the main
data as well as another set of daily precipitation records
collected from the automated rainfall gauges for valida-
tion purposes. From the automated rainfall gauge stations,
we chose data from 33 rainfall gauges that had no missing
data in 2010. The locations of the automated and manual
rainfall gauge stations differed and were spread across the
region of interest, called Navarre, a province located in the
north of Spain. The left plot of Figure 1 shows the locations
of the 87 manual stations in Navarre as squares and the
locations of the 33 automated ones, along with an elevation
scale in meters. Universal Transversal Mercator (UTM)
original coordinates of Navarre are scaled to kilometres
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and translated into a new coordinate origin defined as the
minimum of X and Y , respectively, to express distances in
kilometres instead of metres. The right plot of the same
figure presents a relief map of Navarre. Navarre is a region
of roughly 10 000 km2 located in North Central Spain.
Elevations vary between 200 and 2500 m in the highest
zone of the Pyrenees, located in northeastern Navarre.
Valleys and mountains are ubiquitous in the north, and
small hills are common in the central part of the province.
South Navarre is mainly flat, with one of the biggest
desert regions of Spain, called Bardenas Reales, the second
largest European dessert with 42 500 ha. In this zone, the
climate is continental with hot and dry summers and cold
winters. The northwest Navarre is humid with an average
annual temperature between 11 and 14.5 ∘C and average
rainfall between 1400 and 2500 mm. The altitude of north-
east Navarre lies between 1459 and 2438 m. The average
annual temperature ranges from 7 to 12 ∘C and rainfall
between 900 and 2200 mm in this area of the province.
Close to Pamplona, the capital of Navarre, rainfall ranges
between 700 and 1400 mm and the average annual tem-
perature fluctuates between 10 and 13 ∘C. The central area
of Navarre has a temperate Mediterranean climate, with
an average rainfall of 450–750 mm and average tempera-
tures between 12.5 and 14 ∘C, which suggests a tendency
towards a continental climate. To the west is an area called
Tierra Estella, where climate changes are frequent between
the mountainous northern area, under the influence of the
Atlantic Ocean with 1100–1500 mm of rainfall and an
average temperature between 9 and 11 ∘C in the area of
Urbasa-Andía. The southern plains of the province are
under a Mediterranean influence with 500–800 mm of rain
and 11.5–13.5 ∘C on average temperatures. In the south,
called the Ribera region, the climate is of a Mediterranean
continental nature, typical of the Ebro depression, with dry
summers, temperatures with large annual variations, little
and irregular rainfall (less than 500 mm year−1) and the fre-
quent presence of the northerly wind. Clearly, the climate
varies a great deal across the province.

For introducing the stochastic models to be used in
the ST interpolation, we assume that zst = (z(s1, t1), z(s1,
t2), … , z(s1, tn), … , z(sn, t1), … , z(sn, tT )) is the spa-
tiotemporal process that has been observed at n
geographical locations, s1, … , sn, (87 in this case), at time
tj, from j= 1, … , T , varying from 1 January 1990 until 31
December 2010. We analyse three models: a ST-kriging
model, a TP-spline model and a S-space model. A brief
description of these models is presented below.

2.1. The spatiotemporal (ST) kriging model

Kriging is the most common statistical procedure for spa-
tial interpolation. Specifically, the assumption upon which
kriging is based on is the decomposition of the stochastic
process represented by accumulated daily rainfall that can
be done through the sum of a linear trend and a stochastic
error process. The linear trend is given by a linear combi-
nation of the planar coordinates and the orthometric eleva-
tion, hs, all of which are time-invariant. To include the time

dimension we introduce a new covariate, ast, computed as
the average precipitation of each 5-day period within each
month between 1990 and 2010. The value of ast is the same
for all the days in the same period. We therefore have 72
different average rainfall values, although alternative peri-
ods are possible (Militino et al., 2003). The total daily rain-
fall on a fixed day t, and at location s is then modelled as

zst = 𝜇st + 𝜖st = 𝛽0,t1+𝛽1,txs +𝛽2,tys +𝛽3,ths +𝛽4,tast +𝜖st,
(1)

where 𝜇st is the linear trend, 1 is a vector of ones, xs and ys
are the spatial coordinates in ℝ2 and 𝜖st ∼Nn(0,Σ(d)). The
spatial covariance structure is accounted for in the model
error. Σ(d) can be estimated between known alternatives
as Matérn, exponential or spherical covariance matrices
(Militino and Ugarte, 2001; Apanasovich et al., 2012). The
covariance matrix depends on the distance d = ||si − sj||,
and it is invariant to translations. The model is therefore
second-order stationary and isotropic. We used model (1)
to make predictions for every day of the year 2010 with
the 87 automated rainfall sampled stations. To validate the
model, we used data from the 87 manual rainfall gauges
and the non-sampled set of 33 automated rainfall gauges.

We used the R package geoR (see Ribeiro and
Diggle, 2001) to estimate the unknown parameters
(𝛽0,t, 𝛽1,t, 𝛽2,t, 𝛽3,t, 𝛽4,t and those from Σ), the predictions,
zk

s0t0
, and the standard errors in the new location, s0, on

a fixed day, t0, by iterative likelihood methods. Conver-
gence is achieved in all cases in a few seconds. However,
additional programming is necessary for calculating and
mapping the predictions and standard errors across the
region. To achieve this aim, we use a regular square grid of
1 km2 covering Navarre province to determine the average
orthometric height and average rainfall for each 5-day
period since 1990, necessary for defining the spatiotem-
poral covariate, ast. This required assigning to every point
of the 2590 points of the grid information on the historical
data corresponding to the closest rainfall gauge station.
Closest rainfall stations are defined as those with lower
Euclidean distance to the specific point on the grid.

2.2. The thin-plate (TP) spline model

A cubic spline is a curve made up of sections of cubic
polynomials joined together so that they are continuous in
value, as well as in their first and second derivatives (Rup-
pert et al., 2003). The TP spline is the two-dimensional
analogue of the cubic spline in one dimension. In particu-
lar, a second-order TP spline is the result of minimizing the

residual sum of squares, 1
n

n∑
i=1

(
zsit

− f
(
xi, yi

))2
, subject to

a constraint that depends on the level of smoothness. The
minimization problem (Duchon, 1977) is expressed as:

1
n

n∑
i=1

(
zsit

− f
(
xi, yi

))2

+ 𝜆∫ ∫
[(

𝜕2f

𝜕x2

)2

+
(
𝜕2f

𝜕y2

)2

+ 2

(
𝜕2f

𝜕x2y2

)2
]

dxdy

(2)
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Figure 1. Left: Map of the locations of the manual rainfall gauges (squares) and automatic rainfall gauges (dots) located in Navarre, Spain, with
elevation. Right: a relief map of Navarre.

The smoothing parameter, 𝜆, must be chosen appropri-
ately if the right balance is to be struck between maxi-
mizing the model’s goodness of fit as measured by the
first term and the model’s wiggliness as measured by the
second one. The value 𝜆= 0 corresponds to no smooth-
ness constraints and then data are interpolated, and 𝜆=∞
corresponds to just fitting the polynomial base model by
ordinary least squares (Wood, 2003).

The TP-spline model used in this paper is an additive
model similar to the ST-kriging model (1), where we
do not necessarily assume a linear relationship of the
total rainfall with the planar coordinates, but a smoother
relationship fitted by splines and expressed by f (xs, ys).
The TP-spline model is given by

zst = f
(
xs, ys

)
+ 𝛽1ths + 𝛽2tast + 𝜖st (3)

where 𝜖st ∼Nn(0,Σ(d)), and hs and ast are the same covari-
ates defined in Section 2.1 The spline is obtained as a
weighted average of the observed data because the optimal
estimate of f (xs, ys) turns out to be linear in the observa-
tions. The solution to this minimization problem is iden-
tical to the universal kriging predictor of f (xs, ys) under
a certain intrinsic random function model that yields the
second-order TP-smoothing spline as the optimal predic-
tor (Stein, 1991). The R package fields (Fields Develop-
ment Team, 2006) estimates second-order TP-smoothing
spline models by fitting a surface to irregularly spaced
data. The smoothing parameter is chosen by general-
ized cross-validation or by restricted maximum likelihood.
Convergence is achieved for 365 days in a few seconds and
additional programming is necessary for calculating and
mapping the predictions and their standard errors across
the region, in a similar way for the ST-kriging model.

The kriging estimator is not only the best linear unbi-
ased estimator but also provides the solution to a particular
variational problem. It can be interpreted as the gener-
alized smoothing spline where the roughness penalty is
determined by the covariance function of a spatial pro-
cess (Nychka, 1995). In other words, the kriging method
provides predictions that are linear combination of basis
functions described by the covariance function. Matheron
(1980) showed that for a given set of data, the interpolating
spline is equivalent to kriging but with the covariance func-
tion given by Σ(d)= |d|2 log(d). Therefore, it is expected
that the ST-kriging model will provide similar predictions
as those obtained with the TP-spline model.

2.3. The state (S)-space model

The S-space model is a spatiotemporal linear model that
simultaneously accounts for spatial and temporal depen-
dence. It is given by a transition equation and a state
equation:

zst = 𝛽0,t1 + 𝛽1,txs + 𝛽2,tys + 𝛽3,ths + vt + 𝜖st

vt = vt−1 + 𝜂t (4)

where zst is the spatiotemporal process of rainfall, the error
process 𝜖st ∼Nn(0,Σ(d)) and Σ(d) is a spatial covariance
matrix similar to the other models. The unobservable latent
temporal process, vt, shows the temporal dynamics of data
through a Markovian random walk. Finally, 𝜂t ∼N(0, 𝜎𝜂),
quantifying the uncertainty of the state estimate given
the n observations. The transition equation incorporates
the spatial dependence and the state equation takes into
account the temporal dependence. Therefore, this S-space
model can be interpreted as a ST-kriging model with a
separable spatiotemporal covariance function.
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The S-space model is implemented in the R pack-
age Stem. It was originally applied to predict air
concentrations or to deal with error measurements in
instruments (Fasso et al., 2007). This package uses the
function Stem.Estimation to carry out the iterations of
the EM algorithm until convergence. Each iteration calls
the function Kalman to carry out both the E-step and
the M-step. The exponential covariance function is also
assumed for Σ(d). A similar S-space model is used by
Amisigo and van de Giesen (2005) to estimate model
parameters and missing data of river basin runoff values.
A maximization process of the likelihood is performed by
using the Kalman filter for which we need the initial val-
ues: 𝜇0 as the initial mean for the normal distribution, and
v0 as the initial state of the latent variable vt. Additional
programming is necessary for calculating new predictions
and producing the maps of Navarre. In this case, we do
not need any historical information about the rainfall at
new locations because the state equation is independent of
the location and the temporal information is dynamically
introduced into the model through the state equation.

3. Results

ST-kriging and TP-spline models can provide predictions
of accumulated daily rainfall in every location of Navarre
as long as we know the UTM coordinates, the elevation and
the historical average accumulated rainfall for 5-day incre-
ments used as the covariate. However, the S-space model
needs planar coordinates and elevation as static covariates,
because the temporal information is dynamically intro-
duced into the model through a random walk in the state
equation. For comparing the performance of the three alter-
native models, we calculated daily predictions during 2010
at the 87 manual rainfall stations and at the 33 automated
stations located in different places.

By looking at daily predictions, we can check how on
some specific days rain is present in small areas but is
completely absent in the rest of Navarre (Militino et al.,
2001). In these cases, we can introduce clusters. Clusters
are defined from the original sample set on the manual
gauge stations. K-means clustering (Hartigan, 1975) is a
method that aims to partition the locations on the sampled
manual rainfall stations into k groups such that the sum of
the squares from points to the assigned cluster centres is
minimized. In this study, only two clusters with a minimum
of ten stations are considered, because of the limited num-
ber of rainfall gauge stations. Observed and historical rain-
fall are the variables of classification for characterizing the
clusters. Other alternatives that include altitude were con-
sidered, but they did not outperform the proposed method.
Therefore, rainfall gauge stations in the same cluster are
more similar to the observed and historical rainfall than to
the spatial proximity, i.e. clusters are not necessarily con-
tiguous because they do not incorporate the spatial posi-
tion of the rainfall stations, yet when representing them
on a map, it is common to observe that the points in the
same cluster are geographically close. Figure 2 shows the
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Figure 2. Clusters on 9 January 2010.

clustering results of 9 January 2010. We can see that the
majority of the rainfall stations belonging to cluster 1 are
located in the south-central Navarre, whereas cluster 2 is
mainly located in the north. It is a cluster scheme very com-
mon in the region, because the central and southern areas
are more continental in climate than in the north, which
is more humid. However, there are a few rainfall stations
labelled as cluster 1 but located between all the stations of
cluster 2 and vice versa. This is also common because of
the presence of valleys between the mountainous regions.

When defining two clusters on a particular day, we need
to fit two models, one for each cluster, for the three mod-
els considered in the paper, yet the analysed models work
exactly in the same way as if there were no clusters. More-
over, additional programming is required for mapping pre-
dictions, because for any point on the 1 km2 grid, we need
to identify which sampled rainfall station is the closest.
If the specific location where we are going to predict is
closer to a sampled location that belongs to cluster 1, we
will use this model for the prediction. In ST kriging and TP
splines, we also borrow the historical covariate of the clos-
est station. We also analysed the alternative of providing a
covariate through inverse distance weighting from a neigh-
bour of five stations but this method did not outperform the
previous one. Mapping predictions and standard errors in
Navarre require matching the results obtained simultane-
ously on a particular day with the appropriate cluster for
every point on the grid.

Figures 3 and 4 summarize overall predictions for 2010.
Obviously, there is a high proximity between real data
and estimated predictions at the manual stations for the
three models, specially in ST kriging, but the overall
performance at the automated rainfall stations is very good
for all models. The use of clusters occasionally allows a
better approximation.
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Figure 3. Monthly predictions of accumulated daily rainfall versus real data for the 87 manual gauge stations without clusters (left) and with clusters
(right) obtained with the three models.

For numerical comparisons of the results, we present
Tables 1 and 2 for the manual rainfall stations and Tables 3
and 4 for automated ones, both without and with clus-
tering, respectively. These tables show the monthly and
yearly observed and predicted accumulated daily rainfall
and the empirical square root of the total mean squared
error (MSE) by month and year obtained with the three
spatiotemporal models. The MSE estimates the distance
between real data and predictions; lower values are there-
fore preferable. As usual, the square root is calculated to
preserve the same units of the variable under study. The

square root of the MSE by month is given by:

RMSEmonth

(̂
z
)j =

√√√√1
n

sn∑
s=s1

Tmonth∑
t=1

(
zst − ẑ j

st

)2

where month represents the 12 months of the year, s indi-
cates the rainfall station, n can be 87 or 33 depending
on manual or automated stations, t indicates the day and
Tmonth is the total number of days of every month. The
index j takes the three values k, ts and ss of the analysed
models, representing ST-kriging, TP-spline and S-space
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Figure 4. Monthly predictions of accumulated daily rainfall versus real data for the 33 automated gauge stations without clusters (left) and with
clusters (right) obtained with the three models.
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Table 1. Observed and predicted total rainfall and mean squared error by month (M) and year (Total) with the three statistical models
without clusters in 87 manual rainfall gauges in 2010.

M Observed Predictions without clusters RMSE

ST kriging TP splines S-space ST kriging TP splines S-space

J 12854.31 12852.70 12895.17 12837.81 0.10 8.92 12.03
F 6756.01 6754.50 6783.19 6744.20 0.10 6.88 8.23
M 4433.81 4432.20 4449.41 4445.84 0.10 3.06 5.38
A 4478.20 4476.10 4493.52 4478.58 0.10 4.87 6.83
M 8086.32 8075.29 8121.85 8075.12 0.47 7.84 10.04
J 7898.80 7897.90 7962.74 7873.82 0.00 10.43 12.26
J 2776.01 2770.10 2809.07 2821.95 0.22 6.52 9.68
A 1842.24 1835.42 1880.31 1864.23 0.22 4.12 5.17
S 3376.80 3372.90 3414.61 3373.15 0.17 7.78 6.20
O 8180.60 8180.65 8231.80 8194.42 0.00 8.88 9.41
N 12694.94 12694.92 12731.00 12696.71 0.00 12.01 11.80
D 7513.51 7513.68 7535.79 7527.72 0.00 9.93 9.49
Total 80891.55 80856.36 81308.46 80933.53 0.62 27.78 31.88

Table 2. Observed and predicted total rainfall and mean squared error by month (M) and year (Total) with the three statistical models
with clusters in 87 manual rainfall gauges in 2010.

M Observed Predictions with clusters RMSE

ST kriging TP splines S-space ST kriging TP splines S-space

J 12854.31 12852.71 12873.44 12848.30 0.10 6.41 10.48
F 6756.01 6754.51 6768.52 6719.22 0.10 5.41 6.81
M 4433.81 4432.21 4440.92 4428.11 0.10 2.84 4.38
A 4478.20 4476.10 4487.68 4522.03 0.10 3.83 6.32
M 8086.32 8075.33 8094.73 8036.70 0.47 7.23 8.38
J 7898.80 7897.90 7948.32 7844.90 0.00 8.87 11.69
J 2776.01 2770.11 2786.14 2773.72 0.22 4.40 2.60
A 1842.24 1835.45 1861.37 1885.01 0.22 3.23 5.17
S 3376.80 3372.90 3416.29 3370.01 0.17 6.56 5.87
O 8180.60 8180.60 8220.89 8183.33 0.00 7.01 8.59
N 12694.94 12694.94 12709.27 12710.59 0.00 9.41 9.10
D 7513.51 7513.51 7548.29 7515.44 0.00 5.98 7.37
Total 80891.55 80856.27 81155.86 80837.36 0.62 21.69 26.48

prediction models, respectively. The total MSE for the
whole year is defined as the square root of the sum of the
MSE (RMSE) by month. It is defined as:

RMSE
(̂
z
)j =

√√√√ 12∑
month=1

MSEmonth

(̂
z
)j

Theoretically, ST kriging should have a RMSE equal to
zero because it is an exact interpolator, but for initiating the
estimation process in all the models, a minimum of 2 mm
needs to be observed across the whole region. Otherwise,
a zero prediction will be given without running any pro-
gramme. Therefore, in ST kriging, small differences are
expected between observed and predicted data.

Tables 1 and 2 present the sum of the predictions by
month and year for the 87 manual sampled stations and
the RMSE calculated with the three models without and
with clusters, respectively. There is a great proximity
between predicted and observed data in all models by
month and by year, particularly for the TP and S-space
models that are not exact interpolators. When using clus-
ters, the differences between predictions and observed

data are even smaller, particularly for the S-space model.
For the 87 sampled stations for the whole year, the
observed rainfall is equal to 80891.55 mm, and the total
predicted rainfall by the S-space model without clusters is
equal to 80933.53 mm whereas using clusters it is equal
to 80837.36 mm. The yearly and many of the monthly
RMSEs of the S-space model are the biggest among the
three models, with and without clusters, but this result is
expected when predicting sampling data, because kriging
is an exact interpolator and the thin-spline model is quite
similar to ST kriging. Table 2 shows how the use of
clusters in sampled data improves the predictions and
reduces the RMSE, except for kriging because in manual
sampled locations it provides the same predictions as the
observed data with or without clusters.

When using data from automated non-sampled rainfall
stations for predictions, the S-space model outperforms
the other two models, with or without clusters (see
Tables 3 and 4). Once again, monthly and yearly totals
are quite similar to the observed rainfall in all models
with and without clusters, and the S-space model provides
the closest yearly prediction to the real data. That is, the
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Table 3. Observed and predicted total rainfall and mean squared error by month (M) and year (Total) with the three statistical models
without clusters in 33 automated rainfall gauges in 2010.

M Observed Predictions without clusters RMSE

ST kriging TP splines S-space ST kriging TP splines S-space

J 2984.00 3601.02 3592.84 3260.04 24.79 25.18 20.31
F 2010.50 2282.62 2284.64 2075.86 16.21 16.23 14.02
M 1409.60 1457.79 1467.67 1370.80 8.39 8.71 8.84
A 1240.40 1265.72 1313.85 1293.51 8.66 8.88 8.57
M 1856.10 2002.09 2026.51 1891.21 22.68 22.90 20.47
J 2113.30 2309.69 2282.66 2142.95 17.54 18.15 16.60
J 921.30 977.88 999.63 1050.98 14.63 15.67 15.36
A 272.70 334.93 368.75 339.14 5.91 6.22 5.94
S 722.90 812.44 804.89 731.71 11.73 11.92 11.80
O 2235.40 2481.07 2513.92 2349.28 19.27 18.64 17.04
N 2826.30 2870.49 2948.60 2774.39 23.17 23.26 21.25
D 1800.60 1963.77 2032.74 1948.00 17.07 16.86 15.67
Total 20393.10 22324.81 22560.55 21207.75 58.57 59.20 53.41

Table 4. Observed and predicted total rainfall and root mean squared error by month (M) and year (Total) with the three statistical
models with clusters in 33 automated rainfall gauges in 2010.

M Observed Predictions with clusters RMSE

ST kriging TP splines S-space ST kriging TP splines S-space

J 2984.00 3473.42 3469.59 3300.93 25.69 26.82 21.51
F 2010.50 2194.46 2239.63 2049.88 16.11 16.97 14.54
M 1409.60 1419.17 1434.03 1339.08 8.39 8.73 8.73
A 1240.40 1296.47 1300.18 1330.65 9.86 9.90 10.38
M 1856.10 1956.58 1959.43 1840.84 22.97 23.06 20.88
J 2113.30 2249.81 2255.34 2158.80 20.38 19.90 18.50
J 921.30 972.95 1011.89 974.36 15.43 16.67 15.36
A 272.70 336.73 344.49 378.16 6.23 6.17 6.31
S 722.90 806.23 788.03 731.70 12.00 12.11 11.80
O 2235.40 2484.99 2437.77 2405.55 19.27 18.64 17.04
N 2826.30 2830.45 2866.54 2782.83 24.59 24.63 22.86
D 1800.60 1934.92 1977.40 1913.99 17.45 17.62 16.93
Total 20393.10 21956.18 22084.32 21206.77 61.08 61.94 56.13

total observed rainfall in 2010 from the 33 stations is
equal to 20393.10 mm. The prediction from the same 33
stations without clusters is equal to 22324.81, 22560.55
and 21207.75 mm and the prediction with clusters is equal
to 21956.18, 22084.32 and 21206.77 mm for ST-kriging,
TP-spline and S-space models, respectively. The yearly
results in Table 3 show that the S-space RMSE is lower
than the TP-spline and ST-kriging RMSE. Therefore, for
new rainfall gauges, the S-space model is the best model
because it provides the lowest RMSE with regard to ST
kriging or TP splines, with or without clusters. The kriging
and the TP-spline model have lower MSEs in the sampled
data, but the S-space model provides the best predictions
for new observations.

Figures 5 and 6 provide maps of the predictions and
standard errors calculated for Navarre for 9 January 2010
without and with clusters, respectively. Standard errors
are calculated for all the models by the specific packages.
Estimation procedures are different, but the S-space model
provides lower ranges of variation than the other models,
i.e. between 1.4 and 2.8 mm without clusters and between
1 and 4 mm with clusters. ST kriging gives standard errors

between 2 and 4 mm without clusters or between 0 and
5 mm with clusters. The TP splines provide standard errors
between 0 and 7 mm in both cases. Maps of predictions
and standard errors provide different patterns for the three
models and above all when looking at the presence of
clusters. In the predictions, the north–west direction has
a darker colour, indicating higher precipitation. Ranges
vary between 0 and 20 mm in many maps, except for ST
kriging and TP splines with clusters. The numbers printed
in the figures indicate the prediction and standard error of
an arbitrary point.

Finally, a continuous ranked probability score (CRPS)
has been calculated to assess the prediction performance of
the analysed models (Gneiting and Raftery, 2007; Gneiting
et al., 2007). If the predictive distribution is normal with
mean 𝜇 and variance 𝜎2, the daily CRPS((N(𝜇, 𝜎2), zst) is
defined as

CRPS
(
N
(
𝜇, 𝜎2

)
, zst

)
= 𝜎

( zst − 𝜇

𝜎

(
2Φ

( zst − 𝜇

𝜎

)
− 1

)

+ 2𝜙
( zst − 𝜇

𝜎

)
− 1√

𝜋

)
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Figure 5. On the left, spatiotemporal kriging, thin-plate splines and state-space predictions for 9 January 2010 in Navarre. On the right, the
corresponding maps of standard errors. Models have been fitted without considering any cluster.
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Figure 6. On the left, spatiotemporal kriging, thin-plate splines and state-space predictions for 9 January 2010 in Navarre. On the right, the
corresponding maps of standard errors. Models have been fitted considering clusters.
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Table 5. Continuous ranked probability score.

Average CRPS manual Average CRPS automated

ST kriging TP splines S-space ST kriging TP splines S-space

Without clusters – 4.81 6.45 10.12 10.74 9.66
With 2 var. in clusters – 3.81 4.77 10.67 10.55 8.65

where zst is the observed rainfall value, and𝜙 andΦ denote
the probability density function and the cumulative density
function of the standard normal distribution, respectively.
The average CRPS is defined as:

CRPS = 1
nT

n∑
s=1

T∑
t=1

CRPS
(
N
(
𝜇, 𝜎2

)
, zst

)
Results in Table 5 are in accordance with Tables 1–4.

At the manual gauge stations, the ST-kriging and the
TP splines outperform the S-space model, and the use
of clusters improves the prediction performance in all
models. At the automated gauge stations, S-space models
outperform the other two models with and without clusters.
The use of clusters improves the predictive performance
in all gauge stations, except with the ST-kriging model,
although the differences are very small. Once again the
S-space model provides a good performance although the
ST-kriging and the TP-spline models are very competitive.

4. Conclusions

Interpolation of rainfall data is a necessary task in preci-
sion agriculture, environmental studies or meteorology.
Methods based on inverse distance weighting, kriging,
cokriging or TP splines are common tools for spatial inter-
polation, but usually they do not incorporate the temporal
dimension. Undoubtedly, the simultaneous use of space
and time in interpolation models increases the difficulty
of providing predictions because spatiotemporal models
are not as widely used as spatial or temporal models. In
this work, we propose two natural and simple extensions
to kriging and TP splines to incorporate time dependence
into the statistical model. Firstly, a new variable is defined
as the average of the historical rainfall at the same rainfall
gauge stations in neighbourhoods of 5 days, yet other
numbers of days can also be used. Secondly, this covariate
is introduced as a new explanatory variable into the model,
in addition to the planar coordinates and the elevation.
The third model analysed in this paper is the space-state
model, which incorporates time dependence as a random
walk in a new state equation of a hierarchical model. This
approach offers great flexibility and incorporates time as
a new dynamic variable without averaging neighbourhood
information. It is a very natural and simple way of intro-
ducing a spatiotemporal model, yet some improvements
can be made using clusters.

Daily rainfall can be difficult to interpolate, particularly
for days with frequent storms or changing weather. There-
fore, we propose to define clusters according to the accu-
mulated and historical rainfall. In these cases, models need

to be estimated and predictions need to be made accord-
ing to these clusters. Model fitting was performed using
the free statistical software R (R Development Core Team,
2012) but additional programming is necessary to yield
predictions at unobserved locations, to define covariates
for non-sampled locations, such as elevation and histori-
cal data that are taken from the closest sampled station,
to map them, and to estimate the mean squared prediction
error. This code is available from the authors.

To check the performance of these models, we used data
from the sampled manual rainfall stations and an additional
set of 33 automated rainfall gauge stations, located at dif-
ferent sites. We compared the predicted rainfall calculated
with the six models, three with clusters and another three
without clusters, with the observed daily rainfall during the
365 days of the year 2010. The performance of the three
models is clearest when the predictions are made for new
data. From the precision point of view, the S-space model
is the best because in new locations its RMSE is the low-
est with or without clusters. From the point of view of
accuracy, the predictions are the closest to the real val-
ues with and without clusters, too. Using clusters does
not guarantee better predictions in new locations, nor the
lowest RMSE, but on specific days it can be appropri-
ate. Unfortunately, these results cannot be clearly shown
in the predictions made over the sample data due to the
exact interpolation property of kriging and the similarity
of the TP splines with kriging. Moreover, the CRPS ranks
the S-space model as the best model when predictions are
made from non-sampled stations. The S-space model per-
forms the best, but the TP splines and ST-kriging models
are still very competitive and can be useful when dealing
with precision agriculture.
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