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S U M M A R Y
Finite-fault earthquake source inversion is an ill-posed inverse problem leading to non-unique
solutions. In addition, various fault parametrizations and input data may have been used
by different researchers for the same earthquake. Such variability leads to large intra-event
variability in the inferred rupture models. One way to understand this problem is to develop
robust metrics to quantify model variability. We propose a Multi Dimensional Scaling (MDS)
approach to compare rupture models quantitatively. We consider normalized squared and
grey-scale metrics that reflect the variability in the location, intensity and geometry of the
source parameters. We test the approach on two-dimensional random fields generated using
a von Kármán autocorrelation function and varying its spectral parameters. The spread of
points in the MDS solution indicates different levels of model variability. We observe that
the normalized squared metric is insensitive to variability of spectral parameters, whereas the
grey-scale metric is sensitive to small-scale changes in geometry. From this benchmark, we
formulate a similarity scale to rank the rupture models. As case studies, we examine inverted
models from the Source Inversion Validation (SIV) exercise and published models of the
2011 Mw 9.0 Tohoku earthquake, allowing us to test our approach for a case with a known
reference model and one with an unknown true solution. The normalized squared and grey-
scale metrics are respectively sensitive to the overall intensity and the extension of the three
classes of slip (very large, large, and low). Additionally, we observe that a three-dimensional
MDS configuration is preferable for models with large variability. We also find that the models
for the Tohoku earthquake derived from tsunami data and their corresponding predictions
cluster with a systematic deviation from other models. We demonstrate the stability of the
MDS point-cloud using a number of realizations and jackknife tests, for both the random field
and the case studies.
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1 I N T RO D U C T I O N

Spatial and temporal analysis of rupture across a fault area is a useful
tool for understanding the complexity of earthquake sources and the
influence of such complexity on seismic and tsunami hazard assess-
ment. Since the 1980s, finite-fault models have been developed to
characterize the kinematics of the earthquake rupture process. These
models are increasingly generated in an almost routine fashion and
used in subsequent seismological research. For the purpose of earth-
quake early warning, Minson et al. (2014) even proposed real-time
inversions for slip models of finite faults. Soon after an earth-
quake occurs, source studies are now able to provide corresponding

rupture models based on different data sets (e.g. seismic wave-
form, GPS and/or InSAR data), alternative assumptions in the
problem setup, and utilizing different inversion algorithms such
as the multi-time window approach (e.g. Olson & Apsel 1982;
Hartzell & Heaton 1983) or non-linear inversion with a predefined
analytical source-time function (e.g. Cotton & Campillo 1995; Liu
& Archuleta 2004; Tinti et al. 2005). Resulting rupture models often
differ widely, although they typically all fit the data well. Kinematic
source models of the 2011 Mw 9.0 Tohoku earthquake are prime
examples of this variability.

The 2011 Tohoku event occurred off the Pacific coast of north-
eastern Honshu, Japan. Data from such well-recorded earthquake
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have been used in numerous source studies to capture the rupture
process. These studies were based on various data sets including
seismic data (e.g. Hayes 2011; Lay et al. 2011; Shao et al. 2011),
geodetic data (e.g. Feng & Jónsson 2012), tsunami data (e.g. Fujii
et al. 2011; Satake et al. 2013), or a combination of different types
of data sets (e.g. Simons et al. 2011; Yue & Lay 2013). Most of the
proposed rupture models suggest that the largest slip (over 50 m)
was near the trench, although there are significant discrepancies
regarding the spatial pattern of the rupture process. Such discrepan-
cies eventually affect the evaluation of seismic and tsunami hazard
(Goda et al. 2014). Without a rigorous way to compare slip models
quantitatively, it is therefore difficult to assess their common and
stable features, as well as the limits of their resolution.

Statistical techniques have been applied to characterize and quan-
tify the complexity of rupture models (e.g. Somerville et al. 1999;
Mai & Beroza 2002; Lavallée et al. 2006). Significant efforts have
also been expended on assessing the uncertainties in finite-fault
source inversions. Beresnev (2003) discussed the levels of uncer-
tainties in source inversion. To account for uncertainties, Piatanesi
et al. (2007), for instance, performed a statistical analysis of large
sets of inferred source models, while others used Bayesian tech-
niques (e.g. Monelli & Mai 2008; Minson et al. 2013; Razafind-
rakoto & Mai 2014). In this context, the Source Inversion Validation
(SIV; Mai et al. 2007; Page et al. 2011) project seeks to understand
and quantify the variability in slip-model inversions. There have also
been efforts to characterize the differences and similarities between
rupture models. Shao & Ji (2012), for instance, used residual anal-
ysis and spatial cross-correlation to quantify spatial heterogeneity.
These standard methods, however, cannot classify and rank rupture
models.

In this study, we adopt an embedding method based on multidi-
mensional scaling (MDS) to compare rupture models quantitatively.
This approach embeds the dissimilarities between all pairs of slip
models in low-dimensional Euclidean space. Although the MDS
technique has been widely applied in the medical, biological, and
social sciences, very few studies have utilized this approach in earth-
quake seismology. Of these few, Dzwinel et al. (2005) used MDS
to investigate earthquake patterns, whereas Yuen et al. (2009) used
it in earthquake forecasting.

This paper develops a set of benchmarks and metrics that can
help to assess and rank rupture models quantitatively. In doing so,
we evaluate how different data sets and techniques constrain a rup-
ture model. Our analysis is done in two steps. First, we test the
performance of MDS on two-dimensional random fields generated
using a von Kármán autocorrelation function, parametrized with
different correlation lengths and/or Hurst parameters. In the sec-
ond step, we conduct case studies on six inverted slip models from
an SIV exercise and on 21 published slip models of the 2011 Mw
9.0 Tohoku earthquake. The SIV models were obtained using an
identical data set and essentially identical source geometry but with
different inversion techniques, and they can be compared with a
known reference solution. On the other hand, the models for the
Tohoku earthquake were obtained using different inversion tech-
niques, source parametrizations, and data sets, and they include
some variations in the assumed fault geometry as well. In this case,
a known reference solution does not exist.

2 E M B E D D I N G M E T H O D

In this section, we present the embedding method based on MDS
for comparing a set of 2D random fields. The essence of this

technique is to reduce the spatial variability of random fields, and
their corresponding differences, to points in a lower dimensional
space. A key step of this technique is selecting appropriate metrics
that are sensitive to various spatial properties of the random field.

2.1 Metrics

Dissimilarity can be loosely defined as a quantitative measure of
how close two sets of variables (random fields, denoted A, B, C)
are. A dissimilarity metric needs to fulfil three requirements, con-
sisting of reflectivity (d(A, B) = 0 if and only if A = B), symmetry
(d(A, B) = d(B, A)), and triangle inequality (d(A, C) ≤ d(A, B) +
d(B, C)). In this study, we consider normalized squared and grey-
scale metrics owing to their sensitivity to the variability in features’
locations, intensities, and shapes. These two metrics detect com-
plementary information. The normalized squared metric captures
the magnitude of differences between two objects through point-
by-point differences regardless of the position or intensity. It is
computationally efficient and therefore commonly used for com-
paring images. The grey-scale metric, on the other hand, is more
complicated. It requires transformation of the image to different in-
tensity levels. It is computed based on the distance from grid points
to sets of features with various intensities, instead of point-to-point
distances used in the normalized squared metric. Hence, the grey-
scale metric tends to detect differences in shape, as well as features
with similar intensities. Despite its complexity compared with the
normalized squared metric, the grey-scale metric has the advantage
of gaining additional information on the spatial variability of 2D
random fields. Wilson et al. (1997) presented particular examples
for which these two metrics are able to identify specific features
based on a ‘letters’ image. They found that the grey-scale metric
is sensitive to differences such as removing the dot on the letter
‘i’, while the normalized squared metric is more sensitive to image
translation.

For two random fields (or slip models) A and B, the normalized
squared metric is defined as the square of the difference of the
two random fields divided by the mean of their individual squared
values. It is expressed as a percentage (Kragh & Christie 2002):

d1(A, B) = 100

∑
x [A(x) − B(x)]2( ∑

x [A(x)]2 + ∑
x [B(x)]2

)
/2

= 200

∑
x [A(x) − B(x)]2∑

x [A(x)]2 + ∑
x [B(x)]2

, (1)

where x denotes the grid-points on the rupture surface. This metric
consists of point-by-point matching.

The grey-scale metric (Wilson et al. 1997), on the other hand, is
an extension of the binary Baddeley metric (Baddeley 1992) and is
defined, for 1 ≤ p ≤ ∞, as

d2(A, B) =
{

1

N G

∑
x

∑
g
|�[(x, g), �A] − �[(x, g), �B]|p

}1/p

,

(2)

where G presents the number of chosen grey levels, g, N is the
number of elements, (x, g) is a point in set S (rupture surface) × G
(grey level), �A and �B respectively denote the subgraphs of random
fields A and B, which give a set representation of the fields in
different grey-scale levels, and �[(x, g), �A] is a distance function
that represents the shortest distance between a point (x, g) ∈ S × G
and the subgraph of A.
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Quantifying variability in earthquake rupture models 19

In this study, we choose the intensity levels following Mai et al.
(2005) who defined the slip heterogeneity based on a large set
of finite-fault rupture models. They found that earthquake rupture
tends to start close to a region they defined as a large-slip area
( 1

3 Umax < U < 2
3 Umax, where U is the slip value and Umax is the

maximum slip). It then needs to encounter a very-large-slip area
(U ≥ 2

3 Umax) within half of the rupture length to grow into a large
earthquake. These characteristics of a rupture are found to be consis-
tent with the energy balance in the dynamic rupture process. Hence,
based on these findings, we consider three colour levels consisting
of very-large-slip (U ≥ 2

3 Umax), large-slip ( 1
3 Umax < U < 2

3 Umax),
and moderate to low-slip (U ≤ 1

3 Umax) areas.
The metric d1 is expressed as a percentage and its value is not

limited within the range of 0 per cent (best similarity) to 100 per
cent. The theoretical maximum is 200 per cent, in which one of the
random fields contains only zeros. Hence, this metric can attain any
value between 0 per cent and 200 per cent. However, d2 is within
the range of (0, ∞) with 0 indicating the best similarity. To scale the
two metrics similarly, we convert d2 into a percentage as follows:

d2(A,B)=200

{∑ |�[(x, g), �A]−�[(x, g), �B]|p
}1/p

{∑ {�[(x, g), �A]}p
}1/p+{∑ {�[(x, g), �B]}p

}1/p
.

(3)

2.2 Classical multidimensional scaling

In classical MDS, the purpose is to generate an m-dimensional con-
figuration of n points in Euclidean space based on the (dis)similarity
of objects under investigation (2D fields in our case). Accordingly,
we can then visualize and examine point configurations in a lower-
dimensional representation that best preserves the distances (dis-
similarities). The general procedure is as follows (Borg & Groenen
2005):

(i) Start with a matrix of metric distances, D, with elements
dij containing pairwise-computed dissimilarity values between all
random fields (see eqs 1 and 3).

(ii) Construct a matrix, B, from double centring matrix D, which
consists of subtracting the row and column means of a matrix from
its elements and adding the grand mean,

bi j = −1

2

[
d2

i j − d2
i. − d2

. j + d2
..

]
. (4)

The double centring is particularly important to make sure that the
matrix is symmetric. It can also be obtained as follows:

B = −1

2
H DH , (5)

where H = I − 1
n 11′, I represents the identity matrix, and 1 is a

vector with the value of unity in each of its cells.
(iii) Apply Singular Value Decomposition (SVD) to the symmet-

ric matrix, B, by eigendecomposition of B into V�VT, where V is a
matrix containing the eigenvectors of B and � is a diagonal matrix
whose diagonal elements, [λ1, . . . , λn], represent the corresponding
eigenvalues.

(iv) The coordinates of n points in m-dimensional Euclidean

space are then given by yi j = Vi jλ j
1
2 i = 1, . . . , n; j = 1, . . . , m.

The Y coordinates are constructed such that each column sums to
zero (i.e. the origin of configuration Y coincides with the centroid).
The construction is invariant under rotations and reflections. If a

reference model exists or can be defined, this can be used to define
the origin. In this case, the point coordinates become

Ys = (I − 1w)Y = PwY (6)

in which Ys are the new coordinates and w controls the position
of the origin. For instance, w = [0, . . . , 0, 1, 0, . . . , 0] defines
the origin at the position of 1. Likewise, selecting the centroid as
the origin can be obtained using w = [1/n, . . . , 1/n]. Therefore,
instead of finding the SVD of B, it is computed for the matrix, Bs,
defined as

Bs = Pw B P ′
w (7)

The dimension of the space of the derived coordinates (Y or Ys)
is chosen by selecting the first m eigenvalues. Then, the spatial pat-
terns can be analyzed using the resulting point-clouds centred either
at the centroid (mean model) or at any chosen reference model in
m-dimensional space. The separation of points with respect to each
other maps their percentage dissimilarity, because of the chosen
normalization in eqs (1) and (3). The point-cloud therefore clusters
similar random fields based on any chosen metrics. The eigenval-
ues typically help in determining the number of dimensions, m, that
are necessary to represent the dissimilarity matrix accurately. The
sum of eigenvalues, λj, is the total variance in the dissimilarity ma-
trix. Hence, individual eigenvalues expressed as a proportion of the
sum of the eigenvalues yield the proportion of variance explained
by each axis. The purpose is to select enough dimensions to ap-
propriately capture the data. However, for practical reasons, m is
typically restricted to m = 2 or m = 3. It would be possible to use
m = 4 by making a 3D plot and colouring the points according
to their percentage value. Hair et al. (2010) suggest a proportion
of 60 per cent as the minimum acceptable level accounted for by
the approximated representation. We note that the actual physical
meaning of each dimension, m, in an MDS configuration needs to
be assessed based on the physical field under consideration and the
chosen dissimilarity metric.

3 C O M PA R I S O N O F 2 D R A N D O M
F I E L D S

To test the performance of the MDS technique for comparing rup-
ture models, we use 2D random fields generated using the von
Kármán autocorrelation function (Goff & Jordan 1988) belonging
to the Matérn family of correlation functions (Guttorp & Gneiting
2006) and defined as

C(r ) = G(r )/G(0) with G(r ) = r H K H (r ) (8)

in which G(r) is the covariance, r is the distance, H is the Hurst
exponent, KH is the modified Bessel function of the second kind of
order, H. The choice of this autocorrelation function is motivated
by its flexibility, as it includes a range of autocorrelation functions
(e.g. the exponential and Gaussian functions). Therefore, it is well
suited for a variety of applications including the earthquake rup-
ture process. It is also a commonly used class of autocorrelation
functions in the spatial statistics community. In addition, by an-
alyzing 44 published finite-source rupture models of 24 different
earthquakes, Mai & Beroza (2002) found that the von Kármán au-
tocorrelation function best describes the spatial characteristics of
the rupture models.

An autocorrelation function can be converted into its power spec-
tral density in the wave number domain and vice versa through
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Table 1. Similarity scale.

Case Excellent Good Fair Poor

d1
∗(per cent) <5 5–20 20–40 >40

d2
†(per cent) <5 5–20 20–40 >40

∗d1, normalized squared metric.
†d2, grey-scale metric.

Fourier transforms. Then, the corresponding spectral representa-
tion can be written as

P(k) = C2

(1 + k2)H+1
(9)

where k denotes the wavenumber and C is the correlation length
for an isotropic random field. Seed values are used to control the
phase spectrum of the randomized von Kármán autocorrelation
function, and inverse Fourier transform is applied to obtain the
random field distribution in the spatial domain. The seed value
therefore determines the spatial locations of high- and low-slip
values as well as the large-scale characteristics of the random field.
On the other hand, the small-scale details of the generated random
fields are sensitive to the choice of H and C. Small values of H,
for instance, generate highly heterogeneous 2D fields, while values
of H close to unity result in smoother distributions. H is typically
within the range 0 < H < 1, although in some examples we consider
a value up to 1.5 for the purpose of extended sensitivity tests. The
correlation length, C, on the other hand, scales with the source
dimension. Fig. A1 presents random field realizations for various
correlation lengths and Hurst parameters.

We examine the MDS configuration and its sensitivity to dif-
ferent parametrizations for six random fields generated on a pre-
defined plane, including: (a) variable H, (b) variable C (4 to
19 km in steps of 3 km), (c) variable H and C, and (d) variable
H, C, and seed-number. The motivation of this test is to define
and benchmark similarity scales using the normalized squared
metric, d1 and the grey-scale metric, d2 (see eqs 1 and 3). We
define four categories or levels of similarity between the 2D
random fields: ‘excellent’, ‘good’, ‘fair’, and ‘poor’, adopting
quantitative comparisons that are similar to those developed by

Kristeková et al. (2009) for seismic signals. In Table 1, we define
the values of d1 and d2 for each category. ‘Excellent’, for instance,
indicates that two random fields have a less than 5 per cent dis-
similarity, while ‘poor’ corresponds to a greater than 40 per cent
dissimilarity.

3.1 MDS configuration

Figs 1 and 2 show the MDS configuration using the normalized
squared and grey-scale metrics, respectively. For the normalized
squared metric, each 2D representation accounts for more than 90
per cent of the variations. Hence, the choice of dimension m = 2
is sufficient to capture the dissimilarity between random fields.
The point-cloud follows a similar pattern when we vary only the
Hurst parameter or correlation length. It aligns with the axis cor-
responding to the largest eigenvalues (Dimension 1) and is cen-
tred at the mean model (Model 7). Fig. 1(a) presents the case for
varying correlation length. Among the six random fields, Fields
1 and 6 are most dissimilar to each other, but yet with a dissim-
ilarity (d1) of about 3 per cent. These two random fields consist
of the minimum (C = 4 km) and maximum (C = 19 km) spec-
tral parameters, respectively. They also are most dissimilar with
respect to the mean model, with d1 of 1.5 per cent. However,
Model 3 with correlation length C = 10 km is closest to the mean
model. Fig. 1(a) also shows that for larger correlation lengths, the
variability between two random fields with neighbouring C-values
decreases.

As we simultaneously change the two spectral parameters (cor-
relation length and Hurst parameter), the six points no longer lie
on a line. This can be understood from the fact that, by adding
an additional source of variability, we increase the dimension of
the dissimilarity representation. We also find that the points are lo-
cated inside a circle centred at the mean model and with a radius
of 5 per cent if identical seed values are used and areas of high
(low) values of the field occur at the same spatial location (Figs 1a
and b). In this case, we find that the dissimilarity of each ran-
dom field with respect to the mean model is less than 5 per cent.
This value falls into the ‘excellent’ similarity level (see Table 1).

Figure 1. MDS configuration of dissimilarity between six random fields (shown in Fig. A1) using the normalized squared metric. (a) Variable Hurst parameter
or correlation length; (b) variable Hurst parameter and correlation length; (c) variable Hurst parameter and correlation length with the features assumed to
appear anywhere on the rectangular plane. Note the different axis scaling. Random field 7 corresponds to the mean model. The proportion of the dissimilarity
explained by each configuration is listed in the bottom right of each figure.
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Figure 2. MDS configuration of dissimilarity between six random fields (shown in Fig. A1) using the grey-scale metric. (a) Variable Hurst parameter or
correlation length; (b) variable Hurst parameter and correlation length; (c) variable Hurst parameter and correlation length with the features assumed to appear
anywhere on the rectangular plane. The proportion of the dissimilarity explained by each configuration is listed in the bottom right of each figure.

However, in Fig. 1(c), we no longer constrain the seed value. The
slip patch for the six random fields can thus be anywhere on the
rectangular plane. This results in a widely spread point distribution
that occupies a larger circle of radius 20 per cent. We define this
value of d1 (see Table 1) as the limit between similarity level ‘Good’
(d1 = 5 − 20 per cent) and ‘Fair’ (d1 = 20 − 40 per cent). For the
normalized squared metric, the MDS configuration is strongly in-
fluenced by the patch locations, while the spread of the points shows
different similarity levels. Dispersed points correspond to random
fields with low similarity, whereas grouped points represent models
with high similarity.

For the grey-scale metric (Fig. 2), the MDS configuration displays
more distinct clusters, with larger variability along the two dimen-
sions compared with the normalized squared metric. However, the
overall point configurations are similar. Fig. 2(a) displays the MDS
representation for random fields with different Hurst parameters or
correlation lengths. In this case, the point configuration is charac-
terized by a quadratic function (parabola). The axes of symmetry
pass through the centroid, with the vertex at random field 3, which is
closest to the mean model. The grey-scale metric is not a point-by-
point distance metric; therefore the central tendency of the models
is not represented by the mean model. Instead, the model with the
averaged position of the structure/feature in all intensity levels de-
fines the central tendency. The figure also shows, as in the case of
the normalized squared metric, that random fields 1 and 6 are the
most dissimilar with respect to each other, with dissimilarity, d2, of
about 50 per cent. Additionally, we find that random fields 4, 5, and
6 are very close to each other with less than 5 per cent dissimilarity
for both the normalized squared metric d1, and the grey-scale met-
ric, d2. These random fields thus share common features in terms
of the intensity and location of the regions of high (low) values.
These values of d1 and d2 fall into the category ‘excellent’. Simi-
larly to the normalized squared metric, we find in Fig. 2(c) that if
we allow the slip patch to occur anywhere in the rectangular plane,
the points are dispersed farther from the centroid. Random fields
1, 3, and 4, for instance, are dissimilar with respect to the centroid
by more than 40 per cent. This means that the high-slip patches
in these three random fields are located away from the mean patch
location.

3.2 Sensitivity analysis

To capture the sensitivity of the point configurations, we gener-
ate 1000 realizations of random fields following again the four
parametrizations (the variable Hurst parameter or correlation length,
the variable correlation length and Hurst parameter, and finally the
variable Hurst parameter, correlation length, and the seed-number
controlling the patch location). We find that the point configuration
follows the same pattern as for a single realization when varying
only the spectral parameters.

For the normalized squared metric, Fig. 3 displays the distribution
of points corresponding to the variability of the relative point loca-
tion for 1000 replications. Although the variability for six random
fields with different Hurst parameters (Fig. 3b) is slightly larger than
for the random field with different correlation lengths (Fig. 3a), the
distributions of the point configurations are similar for these two
parametrizations. The variability of the point-cloud is mainly along
a line, parallel to the axis of the largest eigenvalue. The variabil-
ity along the second dimension (second largest eigenvalue) is very
small (less than 0.5 per cent). We also notice overlapping point-
clouds, implying that these models are very similar. Fig. 3(c) shows
the case where both the correlation length, C, and Hurst parameter,
H, are different in the six random fields. We increase C from 4 to
19 km in steps of 3 km and decrease H as follows [1.5; 1.3; 1.0; 0.8;
0.5; 0.3]. The variability of the point locations for these six random
fields shows a circular shape, meaning that they are equally sensitive
to the two dimensions. The variability is highest for random field 1
(H = 1.5; C = 4 km). The smallest uncertainty appears for random
field 5 (H = 0.5; C = 16 km), which is closest to the mean model.
These realizations also reveal that the metric, d1, is more sensitive
to the variability of the Hurst parameter compared to that of the
correlation length.

The point configuration of the 1000 realizations of the grey-
scale metric (Fig. 4) also reveals an identical configuration to
that of only one realization (Fig. 2c). The point-cloud for ran-
dom fields with different Hurst parameters (Fig. 4b) and correlation
lengths (Fig. 4a) follows a similar pattern. They both consist of
a parabolic trend with the vertex around random field 3. The dis-
similarities along dimensions 1 and 2 correspond to smoothness
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Figure 3. Sensitivity of the MDS configuration of dissimilarity between six random fields, each with 1000 realizations and using the normalized squared
metric. (a) Variable Hurst parameter; (b) variable correlation length; (c) variable Hurst parameter and correlation length. The bottom panels show zoomed
versions of the top panels.

Figure 4. Sensitivity of the MDS configuration of dissimilarity between six random fields, each with 1000 realizations and using the grey-scale metric.
(a) Variable Hurst parameter; (b) variable correlation length; (c) variable both Hurst parameter and correlation length.

and patch extension, respectively. As we vary both the Hurst pa-
rameter and correlation length (Fig. 4c), the point-cloud becomes
circular.

When we assume that the slip patch can occur anywhere on
the fault rupture plane, the point-clouds do not follow any pattern

in both the normalized squared and grey-scale metrics (Fig. 5).
They spread randomly over the 2D space because, in this case,
the mean model for each realization can be very different as can
be the dissimilarity between each point and with respect to their
corresponding centroid model. This result shows that both metrics
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Quantifying variability in earthquake rupture models 23

Figure 5. Sensitivity of the MDS configuration of dissimilarity between six random fields, each with 1000 realizations for the variable Hurst parameter,
correlation length, and assuming that the features appear anywhere on the rectangular plane. (a) Using the normalized squared metric; the bars indicate the x
and y range of 5, as used in Fig. 3. (b) Using the grey-scale metric.

are more sensitive to slip patch location variability and less sensitive
to the spectral parameters.

These sensitivity tests highlight the stability of the MDS con-
figuration and its low sensitivity to spectral parameters (the Hurst
parameter and correlation length) compared to the slip location vari-
ability. These findings are also consistent with the results of Zhang
et al. (2015) who used statistical hypothesis testing on the same
data. In addition, the MDS technique can be used to rigorously rank
and assess the similarity between any 2D geophysical models and
eventually to rank them. In the following, we apply this technique
to compare earthquake rupture models.

4 C A S E S T U D I E S

In this section, we compare inverted slip models from the SIV ex-
ercise (accessible at http://equake-rc.info/SIV/) and for the 2011
Mw 9.0 Tohoku earthquake, respectively. These models provide
cases with and without a reference model. Fig. 6 depicts the ref-
erence model and six inverted slip models from the SIV exer-
cise. These models have approximately the same fault dimension
with lengths of 30–35 km and widths of 15–20 km. However, the
slip models have been generated using various grid sizes and in-
version techniques. For the Tohoku earthquake, Table 2 lists 21
models obtained from the source model database (http://equake-rc.
info/srcmod/; Mai & Thingbaijam 2014). These slip models were
derived using different inversion techniques and different data sets,
and they have different fault parametrizations (e.g. single/multiple
segments, fault/subfault size).

As a preliminary analysis, we examine the variability of slip
models based on a single physical value such as maximum slip and
centroid location. Table 3 compares the seismic moment, maximum
slip, and centroid location of the slip models from the SIV exercise.
The seismic moments of Models 3 and 4 are closest to the seismic
moment of the reference model. On the other hand, the maximum
slips for Models 7 and 3 are closest to the reference model, while
those for Models 2 and 4 are the farthest with maximum slips of
0.95 and 1.02m, respectively. In addition, we compute a first-order
estimate of the centroid location, C(ci , c j , ck), defined as follows:

ci =
∑n

x=1 Ui
x ix∑n

x=1 Ui
x ; c j =

∑n
x=1 U j

x jx∑n
x=1 U j

x ; ck =
∑n

x=1 Uk
x kx∑n

x=1 Uk
x ,

(10)

where Ui
x, Uj

x, and Uk
x correspond to the projection of the slip

at point x of the fault along the i-, j-, and k-axis, and n represents
the total number of points. This estimation is in line with McGuire
(2004), who considered the temporal centroid. For the SIV slip
models, we estimate this centroid location along the strike and
dip directions (see Table 3). We find that the centroid location of
Model 3 and the reference model are close, 0.24 km away from each
other. The ranking with respect to the reference model in terms of
the centroid location is as follows: Models 3, 2, 7, 1, 4, and 6.
According to this first-order analysis, the best model is Model 3 in
terms of centroid location and seismic moment, whereas it is Model
7 in terms of maximum slip. The worst model is Model 6 in terms
of centroid location and seismic moment, whereas it is Model 2 in
terms of maximum slip.

For the Tohoku earthquake, about half of the slip models have
identical seismic moments (M0 = 3.55 × 1022 Nm), and most of
these models are from tsunami data (aside from Models 5, 9, and
21; see Table 2). The seismic moments of the remaining models
vary from 4.22 × 1022 to 6.00 × 1022 Nm, with Model 13 having
the largest seismic moment. In terms of maximum slip, the min-
imum and maximum values are observed for Models 21 and 17,
respectively. The variability is large, with a mean of 46.7 m and a
standard deviation of 12.6 m. We also compute the centroid location
for the 21 proposed slip models for the Tohoku earthquake along
latitude, longitude, and depth (see Fig. 7). The result shows that the
centroid locations are in the depth range of 14–30 km. Models 9,
19 and 20 have the shallowest depths, whereas Models 8, 17, and
21 have the deepest locations. About half of the models, including
Models 3, 4, 6, 7, 10, 11, 15, 16, and 18, are clustered around latitude
38◦N, longitude 143.1◦E, and depth 17 km. The second cluster con-
sists of Models 1, 2, and 14 that are located to the southeast of the
first group of models (latitude 37.9◦N, longitude 142.8◦E). The third
cluster includes Models 12 and 13 located at about the same latitude
and longitude as the second cluster, although the centroid location is
much deeper. The remaining models do not belong to any group, as
each corresponding location is isolated. According to this analysis,
Models 13, 17, and 21 have extreme values in most of the cases.

These comparisons provide preliminary insight into the rupture
model variability. However, they are limited, as they do not allow
for comparison of the spatial distributions of slip. Thus, we use
the MDS technique to compare the spatial variability of the slip
models.
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24 H.N.T. Razafindrakoto et al.

Figure 6. Selection of rupture models from the SIV exercise. (a) Reference model and (b–g) six inverted slip models.

To facilitate the slip-model comparison, we reconfigure the mod-
els such that they all have the same grid spacing. We adopt a grid
spacing of 1 km and 5 km for the SIV and Tohoku models, respec-
tively. Since the fault geometries for the SIV models are approx-
imately identical, we do not require any additional model trans-
formations. However, for the Tohoku slip models, we additionally
adopt a single-plane representation and consider an average strike,
dip, and depth of the top-edge of the fault from the surface (htop).

Before applying the MDS, we also need to calculate the dissim-
ilarity between each pair of models using eqs (1) and (3) for the
normalized squared metric and the grey-scale metric, respectively.
For the normalized squared metric, we directly use the reconfig-

ured models. However, for the grey-scale metric, we transform the
reconfigured slip models such that they consist of only three areas
(very large, large, and low slip).

4.1 Source inversion validation models

Fig. 8 displays the point-cloud obtained from application of MDS to
the slip models for the SIV exercise, in which Model 5 corresponds
to the reference model. We examine two cases in which the point-
clouds are centred at the centroid of the model ensemble and at the
reference model. For each case, we use both the normalized squared
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Table 2. 2011 Tohoku earthquake rupture models used in this study.

Data Length (km) Width (km) Maximum slip (m) Seismic moment (Nm) Numbering Author

Teleseismic 500 200 41.18 5.01 × 1022 1 Shao et al. (2011)
Teleseismic 500 200 60.11 4.84 × 1022 2 Shao et al. (2011)
Teleseismic 475 200 56.76 5.01 × 1022 3 Shao et al. (2011)
Teleseismic 475 200 62.04 5.01 × 1022 4 Shao et al. (2011)
Teleseismic 625 260 34.13 4.22 × 1022 8 Hayes (2011)
Teleseismic 380 200 57.10 3.55 × 1022 9 Lay et al. (2011)
Teleseismic 500 200 51.32 5.75 × 1022 10 Yagi & Fukahata (2011)
Teleseismic 525 240 31.09 3.55 × 1022 12 Wei & Sladen (2011)∗
Teleseismic 445 240 30.72 3.55 × 1022 21 Ide et al. (2011)
Teleseismic+GPS 625 280 30.95 6.00 × 1022 13 Wei et al. (2011)†
Teleseismic+GPS 600 210 41.02 3.55 × 1022 5 Ammon et al. (2011)
Teleseismic+Tsunami 340 200 67.06 3.55 × 1022 11 Yamazaki et al. (2011)
Tsunami 500 200 48.57 3.55 × 1022 6 Fujii et al. (2011)
Tsunami 500 200 39.11 3.55 × 1022 7 Fujii et al. (2011)
Tsunami 550 200 35.09 3.55 × 1022 18 Satake et al. (2013)
Tsunami 550 200 38.14 3.55 × 1022 19 Satake et al. (2013)
Tsunami 550 200 44.85 3.55 × 1022 20 Satake et al. (2013)
Tsunami+GPS 450 200 44.37 3.55 × 1022 15 Gusman et al. (2012)
Tsunami+GPS 450 200 42.56 3.55 × 1022 16 Gusman et al. (2012)
GPS+GM 525 260 48.31 5.50 × 1022 14 Wei et al. (2012)
GPS+Teleseismic+Tsunami 420 240 75.72 5.92 × 1022 17 Yue & Lay (2013)
∗Wei, S., Sladen, A., 2011. Preliminary Result 3/11/2011 (Mw 9.0), Tohoku-oki, Japan (accessible at http://www.tectonics.caltech.edu/
slip_history/2011_tohoku-oki-tele/index.html).
†Wei, S., Sladen, A., and the ARIA group, 2011. Updated Result 3/11/2011 (Mw 9.0), Tohoku-oki, Japan (accessible at http://www.tectonics.caltech.edu/
slip_history/2011_taiheiyo-oki/index.html).

Table 3. Physical description of the different slip models from the SIV exercise.

Case Maximum slip (m) Centroid location (km) Seismic moment (Nm)
Along strike Along dip

Model 1 1.29 18.5377 10.7413 8.037 × 1018

Model 2 0.91 18.5950 9.89439 8.338 × 1018

Model 3 1.54 19.2123 10.3017 9.515 × 1018

Model 4 1.02 18.4979 9.21181 9.301 × 1018

Model 5∗ 1.85 19.3622 10.1033 9.852 × 1018

Model 6 2.35 17.6148 9.18940 1.185 × 1019

Model 7 2.05 18.5438 10.1822 1.161 × 1019

∗Model 5, reference model.

Figure 7. Centroid slip locations for 21 rupture models of the 2011 Mw 9
Tohoku earthquake.

and grey-scale metrics. All configurations reveal that Models 2 and
4 are very similar to each other (less than 5 per cent dissimilarity)
and cluster in one group, as their slip patches occupy roughly the
same area. Model 6, on the other hand, contains inconsistent high
slip patches. It is hence isolated from the other slip models.

Fig. 8 also reveals some discrepancies in the nearest neighbour
models. The three nearest neighbours in the normalized squared
metric (Fig. 8a) to Model 5 are Models 3, 4, and 2. However, when
we centre the configuration at the reference (Fig. 8c), Models 3,
2, and 7 are closest to the centre. This is expected because there
are multiple sources of spatial pattern dissimilarity (e.g. intensity,
various patch locations, patch extension, and shape) for the SIV slip
models. Therefore, the choice of a two-dimensional representation
may no longer be sufficient to represent the model dissimilarity
fully. For the normalized squared metric, the dissimilarity is less
than 20 per cent with respect to the centroid for all models. Models
3 and 5 are closest to the centroid with d1 less than 5 per cent.
However, in comparison with the reference, Models 3, 7, and 2
have less than 20 per cent dissimilarity, d1. These models fall into
the category ‘good’ in the similarity scale. The remaining models
belong to the ‘fair’ similarity category, for which the dissimilarity
is between 20 and 40 per cent. According to this analysis, Model 3
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Figure 8. MDS configuration of dissimilarity between slip models in the SIV exercise. Centred at the central tendency of the model ensemble using (a) the
normalized squared metric and (b) the grey-scale metric. (c) and (d) configuration with respect to reference model (Model 5). Circles limit different levels in
the similarity scale, excellent (dark grey), good (grey), fair (light grey), and poor (outside the circles). The proportion of the dissimilarity explained by each
configuration is quantified in the bottom right of each figure.

is the best solution to the target/reference Model 5 in the inversion
exercise.

The large variability of the point-clouds for the two cases is
not surprising when we use the grey-scale metric. The first case, in
which the point-cloud is centred at the central tendency of the model
ensemble, reveals three main clusters, Models 7 and 5, Models 3
and 1, Models 2 and 4, and one individual model, Model 6. These
clusters consist of slip models that share the same intensity of
slip at the same location. All these models have between 20 and
40 per cent dissimilarity with respect to the centroid, aside from
Model 3, which has less than 20 per cent dissimilarity. For the
second case, in which the point-cloud is centred at the reference
model (Fig. 8d), Models 3 and 7 are ‘fairly similar’ (d2 between 20
and 40 per cent) to the reference model in terms of location and
extension of the three areas of slip (very large, large, and low slip).
The other models underestimate the feature of the reference model,
and hence have a grey-scale metric, d2, that is greater than 40 per
cent (‘poor’) compared to the reference model.

Each of the two-dimensional representations of the slip-model
variability for the SIV exercise explains about 70 per cent of the full
dissimilarity. This value is considered acceptable as suggested by
Hair et al. (2010). However, this level might change depending on

the context. Hence, to examine possible contributions to the dissim-
ilarity measure when considering high dimensions, we analyze the
three-dimensional representation of the point-clouds (Fig. 9). When
we include the third dimension, the MDS representations explain
about 90 per cent and 80 per cent of the full dissimilarity for the
normalized squared and grey-scale metric, respectively. This repre-
sentation therefore provides a more complete point distribution. By
comparing the configurations centred at the centroid and reference
model in 2D and 3D, we obtain more consistent results in the 3D
point distribution, particularly for the nearest neighbours of each
point. The three nearest neighbours to Model 5 of the normalized
squared metric are Models 3, 2, and 7 for both configurations cen-
tred at the centroid and the reference. Clearly, the third dimension
captures a rather detailed aspect of the spatial variability, compared
to the first and second dimensions. In the normalized squared metric
centred at the centroid, the third dimension consists of patch exten-
sions. This analysis also reveals that Model 3 is the best model.

We find that the percentage of dissimilarity when the grey-scale
metric is used appears larger than that for the normalized squared
metric, because of their sensitivity to different properties of the slip
models. The grey-scale metric is more sensitive to small-scale spa-
tial variability. According to the three-dimensional representations
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Figure 9. 3D MDS configuration of dissimilarity between slip models in the SIV exercise. Centred at the central tendency of the model ensemble using (a) the
normalized squared metric and (b) the grey-scale metric. (c) and (d) configuration with respect to reference model (Model 5).

in Fig. 9 (normalized squared metric) Model 3 is the best solution
to the reference model (Model 5), with between 5 and 20 per cent
dissimilarity. This falls into the category ‘good’. The rest of the
models are ‘fair’, with between 20 and 40 per cent dissimilarity.
The rank of these models is consistent with the findings of Zhang
et al. (2015) for squared loss functions. For the grey-scale metric,
Models 3 and 7 are closest to the reference model with between 20
and 40 per cent dissimilarity. The rest of the models have greater
than 40 per cent dissimilarity. We also find that Models 2, 3, and 4,
which have similar spatial patterns, belong to a single cluster. This
analysis illustrates the importance of a high-dimensional represen-
tation to fully capture the large variability among the models. It also
reveals the ability (strength) of each metric.

4.2 2011 Tohoku earthquake models

We examine two cases of the 2011 Tohoku earthquake to compare
slip models because the fault geometry of the 21 models varies
significantly across the models (see Fig. 10). We consider (a) the
smallest common rupture area for all models and (b) the largest fault

area that contains all models. These two cases capture the variability
in terms of fault geometry and slip distribution, respectively. It is
also important to note that for real earthquakes, no reference model
exists. The comparison is therefore done based on a centroid model,
which is adopted as the reference although it does not represent the
best model.

Figs 11 and 12 display the MDS configuration of the 21 Tohoku
earthquake slip models using a two-dimensional configuration. For
the smallest common rupture plane, similarity appears in the overall
distribution of the point-clouds of both the normalized squared
and grey-scale metrics. We find that Models 15 and 16 are closest
to the centroid with dissimilarity metrics, d1 and d2, less than 5
per cent. Model 17, on the other hand, is farthest from the centre
of the configuration, with greater than 40 per cent dissimilarity
for both metrics. More than half of the slip models fall into the
category ‘good’. Table 4 summarizes the similarity of each model
with respect to the centroid model for these two metrics.

It is important to note that we do not know in advance the mean-
ing of each dimension in terms of the physical parameter of the
fields. In fact, it can be interpreted as a physical parameter that
appears to order the models in the configuration. For the smallest
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28 H.N.T. Razafindrakoto et al.

Figure 10. Twenty slip models for the 2011 Tohoku earthquake (excluding Model 16 that has a similar pattern to Model 15). The original fault geometry
is indicated with red lines. The red dashed lines outline single plane representations of the corresponding model. The smallest and largest areas used in the
slip-model comparison are denoted by black lines and black dashed lines, respectively.
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Figure 11. MDS point-cloud considering the smallest and largest common area of the 2011 Tohoku slip models and using the normalized squared and
grey-scale metrics. The proportion of the dissimilarity explained by each configuration is specified in the bottom right of each figure.

common rupture plane (Figs 11 and 12), Models 17 and 12 are
quite dissimilar on dimension 1, but rather similar on dimension 2.
Hence, dimension 1 relates to the overall intensity (or magnitude)
level of the slip. Dimension 2, on the other hand, corresponds to the
extent of the slip patches. We also find that most of the models are
aligned along the diagonal, aside from Models 1, 2, 5, and 17 which
are separated. This diagonal alignment shows that the variability of
the slip models encompasses both the intensity and the slip patch
extensions.

In the Appendix (see Fig. B6), we present the 3D MDS configu-
ration. The third dimension contributes about 9 per cent and 20 per
cent of the slip-model variability in the grey-scale and normalized
squared metrics, respectively. For the grey-scale metric, the align-
ment of Models 9 and 3, as well as 6 and 13, shows that the third
dimension is related to the variability of the slip patch extension
along the strike direction. However, the contribution of this com-
ponent is small. For the normalized squared metric, the alignment
of Models 1, 2, 19, and 7 suggests that this dimension indicates
the compactness of the slip patches. It also can be interpreted as
the change in the patch locations along the dip direction. Fig. B6
particularly illustrates that the 3D-visualization becomes more chal-
lenging as we have more models. Additionally, with the eigenvalues
ordered from the largest to the smallest, the first dimension con-
tributes most to the dissimilarity, followed by the second dimen-
sion and so forth. The physical interpretation of these dimensions

becomes more difficult (non-unique) as the relative contribution
of the dimension becomes insignificant. We therefore restrict our
analysis to two-dimensional representation for the following cases.

To validate our result from the 2011 Tohoku slip models, we
compared the MDS results with the results obtained from the Spa-
tial Prediction Comparison Test (SPCT; Hering & Genton (2011)).
SPCT is a statistical test that consists of comparing loss functions
between competing forecasts. It was developed for general spatial
fields and applied to wind speed (Hering & Genton 2011), precip-
itation fields (Gilleland 2013), and earthquake slip models (Zhang
et al. 2015). These studies extensively describe the technique. In
Fig. 13, we present the SPCT result using the squared-error (SE)
loss function when considering the mean model (see Appendix) as a
reference model. For further details, we refer to Zhang et al. (2015)
who note that negative values (blue) indicate that the case named
in the corresponding row is the better model in terms of SE loss
functions, and the location with letter ‘a’ indicates that the corre-
sponding two models differ significantly from each other at the 5
per cent confidence level.

Fig. 13 shows that Model 17 differs significantly from all other
models at the 5 per cent level. This model is thus the most dissimilar
to the mean model. This model is in the category ‘poor’ for MDS.
Models 1, 2, 5, 7, and 12, on the other hand, are significantly different
at the 5 per cent level from more than four models. These models
fall into ‘fair’ category in the MDS. The rest of the models are either
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Figure 12. Zoomed version of Fig. 11. Note the different axis scaling.

Table 4. Tohoku slip-model similarity compared to the mean model (smallest com-
mon area).

Case Excellent Good Fair Poor

d1
∗ 15,16,20 3,4,6,8,9,10,11,13,14,18,19 1,2,5,7,12,21 17

d2
† 15,16 3,4,6,7,8,9,10,11,13,14,18,19,20,21 1,2,5,12 17

∗d1, normalized squared metric.
†d2, grey-scale metric.

‘good’, ‘excellent’, or along the boundary between ‘fair’ and ‘good’.
They are significantly different from fewer than three models. Both
techniques also reveal that Models 15 and 16 best represent the
mean model (see Fig. B1 in the Appendix). This validation test
shows that the MDS results are consistent with the SPCT method.

The patterns of the MDS configurations for the largest common
rupture plane (Figs 11 and 12) are not similar between the nor-
malized squared metric and grey-scale metric. The metrics have
different sensitivities. The variability among the slip models with
the normalized squared metric, for instance, is large. The points
appear to be more scattered and occupy a wider area (greater than
40 per cent). This illustrates the large variability in the geometry,
particularly the strike. Despite the scattered points, we still observe
that Models 6, 7, 18, and 19 are clustered. These models are all
obtained by inverting the tsunami data. As we unify the fault geom-
etry (strike, dip, and htop), the slip models become more similar.
With the grey-scale metric, all models appear similar, with less than

20 per cent dissimilarity with respect to the centroid. This is due
to numerous zero-valued grid points over the enlarged area of the
slip models (see white area between red and black dashed line in
Fig. 10). We also examine the alignment of the model along each
axis and find that for the normalized squared metrics, the two princi-
ple sources of variability correspond to the compactness of the patch
(dimension 1) and the intensity (dimension 2). With the grey-scale
metrics, on the other hand, these two dimensions correspond to the
slip patch extension and the shape of the features. The summary
of classification of the 21 Tohoku slip models with respect to the
centroid considering the largest common rupture area is shown in
Table 5.

4.2.1 MDS sensitivity

To assess the stability and accuracy of the MDS solution, we use a
jackknife approach, which is a resampling method that is applied
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Figure 13. Mean loss differentials for the squared loss function with the
hypothesis test results from the spatial prediction comparison test. Locations
with letter ‘a’ indicate that the corresponding two models differ significantly
from each other at the 5 per cent level. Negative values (blue) indicate that
the case named in the corresponding row is the better model.

to statistical inference. It is widely used due to its simplicity and
efficiency. In particular, we use the delete-one jackknife (Efron
1982) that works as follows:

(i) Omit one slip model and generate the dissimilarity matrix
using the remaining slip models.

(ii) Carry out MDS.
(iii) Apply the similarity transformation (Gower & Dijksterhuis

2004) with respect to the original model.

We repeat this procedure for each slip model. Ultimately, we have
n − 1 jackknifed coordinates for each slip model, in which n is
the number of slip models. Fig. 14 depicts the variability of the
point-cloud considering the largest common area of the Tohoku slip
models and using the normalized squared metric. We chose this
metric because it shows the largest dissimilarities among models.
The jackknifed point-cloud shows similar pattern as in the original
configuration. Only Model 17, which is far away from the average
model, has a significant effect in changing the MDS configuration.
We also find that the point-clouds of very similar models such as
Models 15 and 16 as well as 6 and 7 overlap.

4.2.2 Predicted displacement comparison

The MDS technique has been applied to some slip models of the
Tohoku earthquake that required processing in order to map them
onto the same physical space. An alternative approach is to compute
an independent and hence unbiased physical predictor quantity from
each model and to use that predictor for the MDS analysis. In this
section, we use MDS to compare the three components of seafloor

Figure 14. A jackknifed MDS point-cloud for the largest common area of
the Tohoku slip models using the normalized squared metric.

displacement computed from the 21 slip models. The displacements
are computed using Okada (1985) and are presented in the Appendix
(Figs B2, B3, and B4). They all predict displacements over 20m
and 8m on the horizontal and vertical components, respectively.
However, significant variability appears in their spatial patterns that
will affect the prediction of tsunami properties (Goda et al. 2014;
Tappin et al. 2014).

Fig. 15 displays the MDS point-cloud of the predicted seafloor
displacements using the normalized squared metric. We observe
that dissimilarities among the horizontal components are less pro-
nounced than those among the vertical. For the EW component
(Fig. 15a), for instance, the dissimilarities of the predicted displace-
ments with respect to the mean displacement are all less than 40
per cent, aside from the predicted displacements from Models 9, 19,
and 20, which have greater than 40 per cent dissimilarity. For the NS
component (Fig. 15b), the dissimilarity is less than 40 per cent for
all models, aside from the displacement corresponding to Models
9, 11, 13, 19, and 21. However dissimilarities among the vertical
displacements (Fig. 15c) are greater than 40 per cent for most of the
models. Hence, more variability appears in the vertical component
of the seafloor displacements that in fact largely govern the tsunami
generation process. Hence, we conjecture that the predictive ability
to match the tsunami observations from all these models is very
different. We also identify clusters of points for the vertical com-
ponent, such as points 5, 6, 7, 15, 16, 18, 19, 20, and 21; points
3, 10, 13, and 14; and points 1, 2, and 17. The remaining models
are isolated. The first cluster consists mostly of predictions from
slip models generated from tsunami data. Figs B4 and 15(c) also

Table 5. Tohoku slip-model similarity compared to the mean model (largest common area).

Case Excellent Good Fair Poor

d1
∗ 13 3,6,14 4,5,7,8,9,10,11,12,15,16,18,19,20,21 1,2,17

d2
† 3,4,6,13,15,16 1,2,5,7,8,9,10,11,12,14,17,18,19,20,21

∗d1, normalized squared metric.
†d2, grey-scale metric.
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Figure 15. MDS configurations of dissimilarity between predicted seafloor displacement from the 21 Tohoku slip models in Fig. 10. (a) EW component; (b)
NS component; and (c) Vertical component (see Appendix, Figs B2–B4).

suggest that the first and second axes correspond to variability in
the location and in the significance of the uplifted area, respectively.

We observe that the computed seafloor displacements from
Model 9 appear to be isolated for all components. This model has
a compact and shallow slip patch. It is not very different from the
other models in terms of the normalized squared metric. However,
the 3D cloud points of the slip dissimilarity for the grey-scale metric
(see Appendix, Fig. B6) show that this model is isolated and has
between 20 and 40 per cent dissimilarity (‘fair’) compared to the
central tendency of the model. The corresponding EW seafloor dis-
placement is low (around 10 m), and the NS seafloor displacement
is large (around 20 m), compared to the predictions near the trench
from other models.

5 D I S C U S S I O N

In this study, we apply MDS to investigate the characteristics of
the dissimilarity between slip models. This technique augments
standard residual analysis through its ability to cluster the models
with common intensity and patch geometry. This ability eventually
allows for ranking the models based on a reference or central ten-
dency of the model ensemble. Additionally, we investigate the effect
of various physical assumptions and data sets. For example, Fig. 11
shows that slip models from tsunami data form a single cluster.
This suggests that the inverted slip models from tsunami data vary
systematically from the mean, which consists of underestimation of
slip values compared to the mean model. An alternative explanation
is that the differences are due to the fault geometry, as they use an
average strike of 192◦ to 194◦, compared to those of 198◦ to 202◦

for slip models obtained from seismic and/or geodetic data.
We also examine the MDS results based on grey-scale and nor-

malized squared metrics. These metrics are sensitive to different
spatial characteristics of the slip. The normalized squared metric is
more sensitive to the overall intensity, whereas the grey-scale metric
particularly detects the patch geometry and the location of the areas
of large and low slip. Therefore, models that are very similar us-
ing both metrics share common aspects in terms of patch intensity
and geometry. Models with different smoothness and correlation
lengths, for instance, show that they are very similar in terms of the
normalized squared metric, with less than 5 per cent dissimilarity
(Fig. 1a). However, the variability using the grey-scale metric is
larger (Fig. 2), since the change in smoothness or correlation length
particularly affects the geometry of the patches.

In this study, we compared only the slip values. However, the pro-
posed approach can be easily extended and applied to examining

the variability of the full spatio-temporal parameters of the rupture
process. Also, the results we obtained are based on two metrics
relevant to capturing the spatial variability of the slip. However,
additional metrics are proposed that could be utilized and tested to
quantify the dissimilarity of the slip models. Hence, this study could
be extended to examine alternative metrics such as correlation and
warping loss functions (Gilleland 2013), which could potentially
contribute to additional information on the source of the discrep-
ancies. We could additionally mix and weight the different metrics,
although the MDS point-cloud would be more complex as it would
be a mixture of different properties of the spatial pattern.

There is no rigorous statistical method to evaluate the quality and
reliability of a representation produced by MDS. Here, we assess
the accuracy based on the variability of the configuration using a
number of realizations. For the case studies, we obtain the variability
from a jackknife test. An MDS configuration also provides a richer
interpretation compared to a simple residual analysis, as it reveals
classes of slip models sharing common features such as slip patch
intensity, shape, and extension.

5.1 Insights for source inversion

As an application of MDS to a real earthquake, we compared the
slip models from the 2011 Tohoku earthquake. We could, however,
consider this analysis as a benchmark to assess the accuracy of any
earthquake for which multiple finite-fault source models have been
published. We can also use this tool to investigate possible system-
atic classification depending on earthquake magnitudes and tectonic
regimes. Additionally, the sensitivity of data sets in resolving the
rupture process can be extensively explored using this comparison
tool.

We find that the grey-scale metric complements the normalized
squared metric for comparing slip models. The grey-scale metric
thus appears to be a useful Euclidean norm in kinematic source
inversion to statistically discriminate between various proposed so-
lutions. To the best of our knowledge, the use of this metric to
examine the resolution of inverted slip models has never been de-
scribed before.

5.2 Accuracy and limitation

We considered an approximate representation using a dimension-
reduction technique with two or three dimensions. However, two- or
three-dimensional representations may be insufficient to represent
the full dissimilarity between slip models. In Fig. 1(a), for instance,

 at K
ing A

bdullah U
niversity of Science and T

echnology on A
pril 22, 2015

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


Quantifying variability in earthquake rupture models 33

the variability comes from one source, the Hurst parameter, H, or
the correlation length, C. Therefore, even one dimension suffices to
represent the dissimilarity between the random fields. In this case,
the interpretation of the dimension axes is straightforward: it is the
C and H values. As we increase the complexity and the source of
variability in the models, the dimensionality of the dissimilarity
becomes larger. Therefore, the 2D representation is just an approx-
imation to facilitate the visualization and the interpretation of the
different classes, although it still constitutes a limited representation
of the dissimilarity. A comparison of the slip models for the SIV ex-
ercise illustrates this limitation and shows the importance of higher
dimensional-representations. Therefore, it is necessary to assess
percentages of dissimilarity accounted for by each dimension. For
the SIV case, for instance, the two-dimensional representation ac-
counts for 79 per cent of the full dissimilarity. As we incorporate the
third dimension, they account for 95 per cent. The physical meaning
of each dimension also changes depending on the main source of
variability among the model ensemble. The factors involve patch
location, intensity, dimension, extension, shape, or their alternative
combinations.

One limitation of our technique is that we do not have a reference
model for a real earthquake. Therefore, we make comparisons with
respect to the central tendency of the models. However, this mean
model does not, in general, represent the best model in the sense of,
for instance, its capability to fit observation data. Consequently, this
approach does not rely on the best and optimal model, but it helps
to identify those models that share common features and hence may
be able to achieve similar predictions of data or physical quantities.

6 C O N C LU S I O N S

The objective of our study is to quantify both differences and sim-
ilarities between rupture models. We find that the MDS technique
efficiently identifies slip models sharing common spatial pattern
characteristics in terms of the slip patch intensity and geometry. We
also propose a similarity scale for the rupture models based on this
technique. The scale allows for ranking the models with respect to
the centroid or reference model. We find that the generated MDS
point-clouds change depending on the choice of metric. The nor-
malized squared metric is insensitive to the spectral parameters of
the random field but very sensitive to the slip patch locations. The
grey-scale metric, on the other hand, is sensitive to the patch ge-
ometry and hence to small-scale variability in the model. The case
studies also reveal the importance of higher-dimensional represen-
tations for rupture models with large sources of variability. A natural
extension of this work would be to assess the accuracy of inter-event
rupture models and consider both spatial and temporal patterns.

A C K N OW L E D G E M E N T S

We would like to thank Guangcai Feng for his help in computing
seafloor displacements. We also thank the reviewers for constructive
comments that helped to improve this study. The work reported here
was supported by the King Abdullah University of Science and
Technology (KAUST).

R E F E R E N C E S

Ammon, C.J., Lay, T., Kanamori, H. & Cleveland, M., 2011. A rupture
model of the 2011 off the Pacific coast of Tohoku earthquake, Earth
planet. Space, 63(7), 693–696.

Baddeley, A.J., 1992. An error metric for binary images, Robust Computer
Vision, Wichmann, Karlsruhe, pp. 59–78.

Beresnev, I.A., 2003. Uncertainties in finite-fault slip inversions: to what
extent to believe? (a critical review), Bull. seism. Soc. Am., 93(6), 2445–
2458.

Borg, I. & Groenen, P.J.F., 2005. Modern Multidimensional Scaling, 2nd
edition, Springer.

Cotton, F. & Campillo, M., 1995. Frequency domain inversion of strong
motions: application to the 1992 Landers earthquake, J. geophys. Res.,
100, 3961–3975.

Dzwinel, W., Yuen, D.A., Boryczko, K., Ben-Zion, Y., Yoshioka, S. & Ito, T.,
2005. Cluster analysis, data-mining, multi-dimensional visualization of
earthquakes over space, time and feature space, Nonlinear Proc. Geophys.,
12, 117–128.

Efron, B., 1982. The Jackknife, the Bootstrap, and Other Resam-
pling Plans, Society for Industrial and Applied Mathematics, doi:
http://dx.doi.org/10.1137/1.9781611970319.

Feng, G. & Jónsson, S., 2012. Shortcomings of InSAR for studying
megathrust earthquakes: the case of the Mw9.0 Tohoku-Oki earthquake,
Geophys. Res. Lett., 39, L10305, doi:10.1029/2012GL051628.

Fujii, Y., Satake, K., Sakai, S., Shinohara, M. & Kanazawa, T., 2011.
Tsunami source of the 2011 off the Pacific coast of Tohoku earthquake,
Earth planet. Space, 63(7), 815–820.

Gilleland, E., 2013. Testing competing precipitation forecasts accurately and
efficiently: the spatial prediction comparison test, Mon. Wea. Rev., 141(1),
340–355.

Goda, K., Mai, P.M., Yasuda, T. & Mori, N., 2014. Sensitivity of tsunami
wave profile and inundation simulations to earthquake slip and fault ge-
ometry for the 2011 Tohoku earthquake, Earth planet. Space, 66(1), 1–20.

Goff, J.A. & Jordan, T.H., 1988. Stochastic modeling of seafloor morphol-
ogy: inversion of sea beam data for second-order statistics. J. Geophys.
Res., 93, 13 589–13 608.

Gower, J.C. & Dijksterhuis, G.B., 2004. Procrustean Problems, Oxford.
Gusman, A.R., Tanioka, Y., Sakai, S. & Tsushima, H., 2012. Source model

of the great 2011 Tohoku earthquake estimated from tsunami waveforms
and crustal deformation data, Earth planet. Sci. Lett., 341, 234–242.

Guttorp, P. & Gneiting, T., 2006. Studies in the history of probability
and statistics XLIX on the Matérn correlation family, Biometrika, 93(4),
989–995.

Hair, J.F., Anderson, T.E., Tatham, R.L. & Black, W.C., 2010. Multivariate
Data Analysis, Prentice Hall, 7th edn.

Hartzell, S. & Heaton, T.H., 1983. Inversion of strong ground motion and
teleseismic waveform data for the fault rupture history of the 1979 Im-
perial Valley, California, earthquake, Bull. seism. Soc. Am., 73, 1553–
1583.

Hayes, G., 2011. Rapid source characterization of the 03-11-2011 Mw 9.0
off the Pacific coast of Tohoku earthquake, Earth planet. Space, 63(7),
529–534.

Hering, A. & Genton, M.G., 2011. Comparing spatial predictions, Techno-
metrics, 53, 414–425.

Ide, S., Baltay, A. & Beroza, G.C., 2011. Shallow dynamic overshoot and en-
ergetic deep rupture in the 2011 Mw 9.0 Tohoku-Oki earthquake, Science,
332, 1426–1429.

Kragh, E. & Christie, P., 2002. Seismic repeatability, normalized rms, and
predictability, The Leading Edge, 21, 640–647.
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A P P E N D I X A : R E A L I Z AT I O N S O F
R A N D O M F I E L D S

Fig. A1 shows realizations of random fields using different
parametrizations. At the top of the figure, we plot the mean of
the random field ensemble. The generated random fields locate the
slip patches at the same position (same seed value) while varying
the Hurst parameter, H, and the correlation length, C.
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Figure A1. Random field example of different Hurst parameters, H, and correlation lengths, C.

A P P E N D I X B : P R E D I C T E D S E A F L O O R
D I S P L A C E M E N T A N D 3 D
C O N F I G U R AT I O N O F T H E T O H O K U
S L I P M O D E L S

The following figures show the mean model and the predicted dis-
placements from the 21 inverted slip models for the 2011 Tohoku
earthquake. Fig. B1 presents the mean model. Figs B2, B3 and B4,
on the other hand, illustrate the computed EW, NS, and vertical
seafloor displacement, respectively.

We also show in Figs B5 and B6 the 3D MDS configuration for
the smallest common rupture plane of the 2011 Tohoku slip models
using normalized squared and grey-scale metrics.

Figure B1. Mean model of the 21 inverted source models for the 2011
Tohoku earthquake.
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Figure B2. East–west horizontal seafloor displacement from 20 inverted slip models for the 2011 Tohoku earthquake (excluding the prediction from Model
16 that has a similar pattern as the one from Model 15). The green dashed line indicates the Japan trench subduction zone, while the grey curve indicates the
coast line of central and northern Honshu, Japan.
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Figure B3. North–south horizontal seafloor displacement from 20 inverted slip models for the 2011 Tohoku earthquake (excluding the prediction from
Model 16 that has a similar pattern as the one from Model 15). The green dashed line indicates the Japan trench subduction zone, while the grey curve indicates
the coast line of central and northern Honshu, Japan.
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Figure B4. Vertical seafloor displacement from 20 inverted slip models for the 2011 Tohoku earthquake (excluding the prediction from Model 16 that has a
similar pattern as the one from Model 15). The green dashed line indicates the Japan trench subduction zone, while the grey curve indicates the coast line of
central and northern Honshu, Japan.
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Figure B5. 3D MDS point-cloud considering the smallest common area of the 2011 Tohoku slip models and using the normalized squared metric.
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Figure B6. 3D MDS point-cloud considering the smallest common area of the 2011 Tohoku slip models and using the grey-scale metric.

 at K
ing A

bdullah U
niversity of Science and T

echnology on A
pril 22, 2015

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/

